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Introduction: The integration of robotic-assisted techniques in urologic 
oncology recovery has significantly improved surgical precision and patient 
outcomes. However, postoperative rehabilitation remains a crucial challenge, 
necessitating innovative approaches for enhancing physical recovery and quality 
of life. Personalized sports recommendation systems have emerged as a 
promising solution, leveraging sports analytics, machine learning, and 
biomechanical modeling to tailor rehabilitation exercises. Traditional methods 
rely on generalized rehabilitation protocols, often failing to consider individual 
patient conditions, recovery progress, and biomechanical constraints. These 
limitations hinder optimal rehabilitation and prolong recovery times. 

Methods: To address these challenges, we propose a novel framework 
integrating robotic-assisted assessment with personalized sports analytics. Our 
approach utilizes a Dynamic Sports Performance Network (DSPN), which 
combines spatiotemporal data analysis, reinforcement learning, and real-time 
feedback mechanisms to optimize exercise recommendations. By incorporating 
multi-agent learning and predictive modeling, the system adapts rehabilitation 
plans based on patient performance, ensuring a tailored and effective recovery 
process. The system can integrate wearable sensor data and EMG signals to 
further refine exercise precision and monitor muscular responses in real time. 

Results: Experimental evaluations demonstrate that our method significantly 
outperforms conventional rehabilitation strategies, offering higher precision in 
exercise recommendations, improved adherence rates, and enhanced 
recovery efficiency. 

Discussion: This research provides a new direction in robotic-assisted 
rehabilitation, bridging the gap between sports science, intelligent systems, 
and urologic oncology recovery through interdisciplinary innovation and 
patient-centered design. 
KEYWORDS 

robotic rehabilitation, personalized exercise, sports analytics, reinforcement learning, 
urologic oncology 
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1 Introduction 

The integration of personalized sports recommendation 
systems in urologic oncology recovery has emerged as a crucial 
area of research, aiming to enhance post-operative rehabilitation 
and improve patient outcomes Yang et al. (1). With the rise of 
robotic-assisted surgical techniques, such as robotic-assisted 
laparoscopic prostatectomy (RALP) and robotic cystectomy, post-
surgical recovery has significantly improved in terms of precision 
and reduced complication rates Siech et al. (2). However, patients 
undergoing such procedures often experience long-term functional 
impairments, including urinary incontinence, erectile dysfunction, 
and reduced physical activity levels Zhou et al. (3). These challenges 
necessitate the development of tailored rehabilitation programs that 
not only address physical limitations but also improve overall well­
being. Traditional rehabilitation programs have been largely 
standardized, failing to consider the unique physiological and 
psychological needs of individual patients Sun et al. (4). 
Personalized sports recommendation systems, leveraging artificial 
intelligence (AI) and robotic assisted techniques, provide an 
innovative solution by adapting rehabilitation exercises to patient-
specific conditions Kreutz and Schenkel (5). Not only do these 
systems enable more effective recovery through data-driven 
insights, but they also enhance adherence to physical activity 
regimens, ultimately improving quality of life. Furthermore, AI-
driven personalization ensures that rehabilitation plans evolve 
dynamically based on patient progress, fostering a more adaptive 
and responsive recovery approach Javed et al. (6). 

Early approaches to personalized rehabilitation in urologic 
oncology recovery primarily relied on symbolic AI and 
knowledge-based systems Ivchenko et al. (7). These methods 
utilized expert-defined rules and medical ontologies to provide 
rehabilitation guidance, structuring patient data through explicit 
knowledge representation Fayyaz et al. (8). Rule-based systems and 
expert systems played a fundamental role in recommending 
physical activity regimens, focusing on general guidelines for 
post-operative exercise routines. For example, early clinical 
decision support systems (CDSS) were developed to suggest 
physiotherapy exercises based on predefined risk factors and 
patient demographics Hwang and Park (9). However, these 
knowledge-driven systems were often rigid, lacking the 
adaptability required for patient-specific customization. The 
primary limitation of these approaches was their reliance on 
static, predefined knowledge, which failed to account for 
variations in patient recovery trajectories Maier and Simovici 
(10). Rule-based systems required constant manual updates to 
incorporate new medical findings, making them less scalable for 
widespread clinical application. To address these limitations, 
researchers began exploring data-driven techniques that could 
offer more dynamic and personalized rehabilitation strategies 
Dhelim et al. (11). 

The transition to machine learning-based approaches marked a 
significant shift in personalized rehabilitation. Unlike symbolic AI, 
machine learning models leveraged large datasets to identify 
patterns and predict optimal exercise regimens based on real-
Frontiers in Oncology 02 
world patient data. Supervised learning algorithms, such as 
decision trees, support vector machines, and ensemble methods, 
were employed to classify patient recovery stages and recommend 
appropriate physical activities Urdaneta-Ponte et al. (12). These 
models improved personalization by continuously updating 
rehabilitation recommendations based on feedback from patient 
progress tracking. Wearable sensors and mobile health applications 
facilitated real-time data collection, enhancing the effectiveness of 
AI-driven rehabilitation programs. Despite their advantages, 
traditional machine learning models often required extensive 
feature engineering and struggled with generalization across 
diverse patient populations Shi et al. (13). Moreover, their 
reliance on structured data limited their ability to fully capture 
complex physiological and behavioral interactions influencing 
recovery. As a result, researchers turned to deep learning and pre­
trained models to further refine the adaptability and effectiveness of 
personalized sports recommendation systems Chakraborty 
et al. (14). 

Deep learning and pre-trained models have revolutionized 
personalized rehabilitation by providing more sophisticated, end­
to-end learning capabilities Wei et al. (15). Convolutional neural 
networks (CNNs) and recurrent neural networks (RNNs) have been 
employed to process multimodal patient data, including motion 
tracking from robotic-assisted rehabilitation devices and 
physiological signals from wearable sensors. Transformer-based 
architectures and pre-trained models, such as Bidirectional 
Encoder Representations from Transformers (BERT) and Vision 
Transformers (ViTs), have also been utilized to enhance 
personalized sports recommendation systems Kanwal et al. (16). 
These models enable real-time adjustments to rehabilitation plans 
by integrating diverse data sources, such as historical medical 
records, current patient activity levels, and predictive analytics on 
recovery trends Jadidinejad et al. (17). Furthermore, reinforcement 
learning approaches have been applied to dynamically optimize 
exercise recommendations based on patient adherence and 
performance feedback. Despite their impressive capabilities, deep 
learning models pose challenges related to data privacy, 
computational costs, and interpretability in clinical decision-
making. Ensuring that AI-driven rehabilitation remains 
transparent and clinically validated remains a critical challenge 
for widespread adoption Yang et al. (18). 

Given the limitations of traditional AI, machine learning, and 
deep learning approaches, we propose an advanced personalized 
sports recommendation system that integrates robotic-assisted 
techniques with adaptive AI models. Our approach aims to 
overcome the challenges of static knowledge representation, 
feature engineering dependencies, and interpretability concerns by 
leveraging hybrid AI techniques. By incorporating robotic-assisted 
rehabilitation with real-time physiological monitoring and 
federated learning frameworks, our system ensures continuous 
adaptation to individual patient needs while preserving data 
privacy. The proposed framework integrates deep reinforcement 
learning with knowledge-based reasoning to provide optimal 
rehabilitation recommendations that evolve dynamically with 
patient progress. This novel integration of robotics, AI-driven 
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personalization, and federated learning creates a highly adaptable 
and clinically interpretable rehabilitation system, optimizing patient 
recovery outcomes in urologic oncology. The proposed method has 
several key advantages: 
Fron
•	 Our method introduces a hybrid AI framework that 
combines deep reinforcement learning with symbolic 
reasoning, enabling precise, data-driven rehabilitation 
plans while maintaining clinical interpretability. 

•	 The system utilizes federated learning to ensure secure, 
personalized recommendations across diverse patient 
populations, enhancing generalization and accessibility. 

•	 Preliminary experimental results demonstrate significant 
improvements in patient adherence, recovery speed, and 
quality of life compared to conventional rehabilitation 
approaches. 
2 Related work 

2.1 Personalized rehabilitation programs 

Personalized rehabilitation programs are tailored interventions 
designed to address the unique recovery needs of patients 
undergoing urologic oncology treatments. These programs 
integrate various therapeutic modalities, including physical 
therapy, nutritional guidance, psychological support, and exercise 
regimens, to enhance postoperative recovery and overall quality of 
life Nawara and Kashef (19). The customization of these programs 
ensures that individual patient characteristics, such as age, 
comorbidities, and baseline functional status, are considered, 
leading to more effective rehabilitation outcomes Feng et al. (20). 
Recent studies have highlighted the efficacy of prehabilitation— 
interventions initiated before surgery—in improving surgical 
outcomes for urologic cancer patients. A systematic review 
published in European Urology examined the impact of 
prehabilitation exercise programs on presurgical cardiopulmonary 
fitness measures Khan et al. (21). The findings indicated that such 
programs effectively enhance presurgical fitness, potentially leading 
to better postoperative recovery. However, the review also 
emphasized the need for improvements in program design and 
reporting to conclusively determine their impact on surgical 
outcomes.  Incorporating  technology  into  personalized  
rehabilitation has gained momentum Rocco et al. (22). Mobile 
applications and wearable devices offer platforms for delivering 
tailored exercise programs, monitoring patient progress, and 
facilitating real-time feedback. A study discussed in European 
Urology Focus explored the emerging role of these technologies 
in prehabilitation for urologic oncology patients Cabrera-Sánchez 
et al. (23). The study found that wearable devices could improve 
access to prehabilitation programs, reduce the need for in-person 
visits, and allow for continuous monitoring, thereby enhancing 
patient engagement and adherence. Moreover, the integration of 
personalized rehabilitation programs within Enhanced Recovery 
tiers in Oncology 03	
After Surgery (ERAS) protocols has been associated with reduced 
morbidity and improved recovery times. A study in the European 
Journal of Surgical Oncology evaluated the application of ERAS 
protocols in patients undergoing radical cystectomy Fu et al. (24). 
The study demonstrated that implementing ERAS protocols, which 
include personalized rehabilitation components, significantly 
reduced  the  length  of  hospital  stay  and  postoperative  
complications, underscoring the value of such comprehensive 
approaches in urologic oncology care. 
2.2 Robotic-assisted surgical techniques 

Robotic-assisted surgical techniques have revolutionized the 
field of urologic oncology by offering minimally invasive options 
for procedures such as prostatectomy, nephrectomy, and 
cystectomy. These techniques utilize robotic systems to enhance 
surgical precision, reduce operative times, and minimize patient 
morbidity Argyriou et al. (25). The adoption of robotic-assisted 
surgery has been associated with improved oncological outcomes 
and faster recovery periods compared to traditional open surgeries 
Nawara and Kashef (26). A notable advancement in this domain is 
the development of robot-assisted retroperitoneal lymph node 
dissection (RPLND) for metastatic testicular cancer. Traditional 
open RPLND is associated with significant morbidity and extended 
recovery times Lee et al. (27). However, as discussed in a Cleveland 
Clinic podcast, the robotic-assisted approach offers excellent cancer 
control with vastly improved recovery, making it a preferred option 
among urologic oncologists for select patients. The benefits of 
robotic-assisted surgery extend beyond oncological outcomes 
Yadalam et al. (28). A study highlighted by University College 
London demonstrated that robot-assisted surgery for bladder 
cancer removal enables patients to recover more quickly and 
spend significantly less time in the hospital compared to 
traditional open surgery. This minimally invasive approach not 
only enhances patient recovery but also reduces healthcare costs 
associated with prolonged hospital stays Hsia et al. (29). 
Furthermore, the continuous evolution of robotic technology has 
led to the development of single-port robotic systems, allowing 
surgeons to perform complex urological procedures through a 
single incision. This advancement minimizes surgical trauma and 
enhances cosmetic outcomes, further solidifying the role of robotic-
assisted techniques in modern urologic oncology. 

Recent clinical studies underscore the growing adoption of 
robotic-assisted systems in various urologic procedures, reflecting 
a transformative shift in surgical practices. For example, 
advancements in robot assisted radical prostatectomy and 
nephrectomy have been linked with improved oncological 
control, reduced blood loss, and faster patient recovery times Di 
Bello et al. (30) Carilli et al. (31). Moreover, the development of 
next-generation robotic platforms, including single-port systems 
and AI-enhanced visualization, has broadened surgical precision 
and accessibility Di Bello et al. (32) Falkenbach et al. (33). These 
trends indicate not only increasing trust in robotic solutions among 
urologic surgeons but also the urgent need to develop parallel 
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innovations in post-surgical rehabilitation to match the precision 
and individualization offered intraoperatively. Our proposed 
framework  addresses  this  gap  by  leveraging  AI-driven  
rehabilitation aligned with the evolving robotic surgical landscape. 
2.3 Integration of technology in 
rehabilitation 

The integration of technology into rehabilitation programs has 
opened new avenues for personalized patient care in urologic 
oncology recovery Yeh and Kashef (34). The use of mobile 
applications, wearable devices, and adaptive rehabilitation systems 
facilitates continuous monitoring, personalized exercise regimens, 
and real-time feedback, thereby enhancing patient engagement and 
adherence to rehabilitation protocols Zhang et al. (35). A study 
published in the International Journal of Human-Computer 
Interact ion  in troduced  a  personal ized  sports  heal th  
recommendation system assisted by a Q-Learning algorithm. This 
system leverages artificial intelligence to provide tailored exercise 
recommendations based on individual user data, promoting 
effective and safe rehabilitation practices Ko et al. (36). The 
adaptive nature of the system ensures that exercise intensity and 
type are aligned with the patient’s current health status and recovery 
progress Forouzandeh et al. (37). In the realm of prehabilitation, 
mobile app-based programs have shown promise in preparing 
patients for surgery and aiding in postoperative recovery. A 
prospective nonrandomized study discussed on UroToday 
evaluated the impact of a personalized mobile app designed for 
patients undergoing radical prostatectomy Collà Ruvolo et al. (38). 
The findings suggested that the app-based program improved 
patient outcomes by facilitating better preparation and recovery 
processes, highlighting the potential of digital health interventions 
in surgical care. The development of adaptive rehabilitation 
systems, such as the one by Kaunas University of Technology 
(KTU), offers personalized recovery experiences Ruvolo et al. 
(39). These systems adjust the rehabilitation exercises based on 
the user’s capabilities, ensuring a safe training process and avoiding 
overloading. Such technology driven approaches cater to the 
individual needs of patients, making rehabilitation more effective 
and accessible. The integration of technology in rehabilitation not 
only personalizes the recovery process but also addresses logistical 
challenges by reducing the need for in-person visits. This is 
particularly beneficial for patients with mobility issues or those 
residing in remote areas, ensuring that they receive consistent and 
effective rehabilitation support throughout their recovery journey 
Ruvolo et al. (40). 

Emerging biomedical evidence also highlights the systemic 
benefits of exercise, extending beyond musculoskeletal recovery to 
include metabolic regulation. Notably, recent research suggests that 
structured physical activity can mitigate lipidic imbalance—a 
common issue in postoperative oncology patients that exacerbates 
cardiovascular risk and systemic inflammation Di Bello et al. (41). 
By integrating exercise interventions tailored to each patient’s 
Frontiers in Oncology 04
physiological profile, our proposed rehabilitation system could 
contribute to the normalization of lipid profiles and promote 
comprehensive recovery. This additional metabolic perspective 
reinforces the multi-dimensional value of personalized exercise 
prescription in urologic oncology care. 
3 Method 

3.1 Overview 

Sports analytics has emerged as a crucial interdisciplinary field 
that integrates data science, machine learning, and domain 
knowledge to enhance decision-making processes in sports. This 
section provides an overview of the methodologies and principles 
that underpin our approach to sports analytics. A core challenge in 
sports analytics lies in the complex and dynamic nature of sports 
data, which includes structured tabular records and unstructured 
data. Traditional methods rely on statistical models, whereas 
modern techniques leverage deep learning and reinforcement 
learning to capture intricate patterns and make predictive or 
prescriptive decisions. Our approach aims to bridge these 
methodologies, incorporating domain-specific constraints and 
real-time adaptability. 

In Section 3.2, we formalize the sports analytics problem by 
defining a mathematical representation of key performance metrics, 
player behaviors, and game dynamics. This enables a structured 
formulation that facilitates computational modeling. In Section 3.3, 
we introduce our novel model, which integrates feature engineering, 
neural networks, and optimization techniques to enhance predictive 
accuracy and interpretability. Section 3.4 presents our strategic 
framework that refines decision-making by incorporating real-
time adjustments and uncertainty quantification, ensuring robust 
and adaptive analytics solutions. By systematically integrating data-
driven models with domain expertise, our framework seeks to 
advance sports analytics beyond conventional statistical 
approaches, paving the way for more effective performance 
eva lua t ion ,  game  s t ra tegy  opt imiza t ion ,  and  in jury  
prevention techniques. 
 

3.2 Preliminaries 

In this section, we formalize the problem of sports analytics by 
defining a mathematical framework that encapsulates key aspects 
such as player performance modeling, game dynamics, and 
decision-making processes. Let T denote the total duration of a 
game, discretized into time steps t ∈ f1, 2, …, Tg. Let  P = 

fp1, p2, …, pN g be the set of players, where each player pi is 
associated with a feature vector xi(t) ∈ Rd at time t, representing 
attributes such as velocity, stamina, and skill level. 

We define the game state at time tas (Equation 1): 

St = (X(t), Y(t), Gt ), (1) 
 frontiersin.org 
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where X(t) =  ½x1(t), …, xN (t)] ∈ RNxd is the player state 
matrix, Y(t) ∈ RNxm represents observed actions, and Gt ∈ Rk 

encodes global game context such as score, possession, and 
remaining time. 

The transition of player states over time can be modeled as 
(Equation 2): 

xi(t + 1)  =  f (xi(t), ui(t), hi(t)), (2) 

where ui(t) is the control input, and hi(t) is a stochastic noise 
term representing uncertainties in movement. 

Each player selects an action ai(t) ∈ A based on a policy 
function (Equation 3): 

exp (Q(St , ai))P(aijSt ) =  , (3)
exp (Q(St , a))oa∈A 

where Q(St , a) is the estimated value of taking action a in state St 
. This follows the standard softmax decision model. 

The probability of winning W given the game trajectory t = 

fS1, S2, …, ST g is modeled as (Equation 4): 

  
T 

P(Wjt) =  s wt · f(St ) , (4)o 
t=1 

where s( · ) is the sigmoid function, wt are learnable weights, 
and f(St ) is a feature transformation function capturing 
game impact. 

For each player, we define an individual performance score Ri 

based on contributions to key events (Equation 5): 

T 
Ri ae · Ie,i(t), (5)= oo 

t=1e∈E 

where E represents event types, ae are predefined importance 
weights, and Ie,i(t) is an indicator function for event occurrence. 

The overall team performance is given by (Equation 6): 

T 
Rteam = Ri − loC(t), (6)o 

i∈ P t=1 

where C(t) represents team fatigue cost, and l is a 
regularization coefficient balancing performance and stamina. 

TGiven historical game data D = fSt , At , Rt gt=1, our objective is 
to learn a predictive function F such that (Equation 7): 

R̂ t+1 = F(St , At ; q), (7) 

where q are model parameters optimized via (Equation 8): 

T   2   mino Rt+1 − R̂ t+1 : (8) 
q t=1 

This formulation provides a comprehensive mathematical 
foundation for sports analytics, capturing player behaviors, game 
evolution, and performance evaluation. The subsequent sections 
will introduce our novel model and strategy to enhance prediction 
accuracy and decision-making effectiveness. 
Frontiers in Oncology 05 
3.3 Dynamic sports performance network 

In this section, we introduce the Dynamic Sports Performance 
Network (DSPN), a novel architecture designed to analyze 
and predict player performance and game outcomes in the 
context of sports analytics(As shown in Figure 1). DSPN 
incorporates temporal player dynamics, strategic player 
interaction, and contextualized game understanding into a 
unified modeling paradigm. 

3.3.1 Spatio-temporal player encoding 
To effectively model individual player dynamics within a game, 

DSPN introduces a spatio-temporal encoding mechanism that 
integrates fine-grained  physical  motion,  player-specific 
characteristics, and sequential dependencies across time(As 
shown in Figure 2). At each timestamp t, a player piis represented 
by a composite state vector (Equation 9): 

xi(t) =  ½pi(t), vi(t), ai(t), si(t)] ∈ Rd , (9) 

where pi(t) ∈ R3 is the spatial position, vi(t) =  dpi(t) denotesdt 
pi(t)instantaneous velocity, ai(t) =  d

2

represents acceleration, and sidt2 

(t) encodes domain-specific skill or status vectors such as stamina, 
role, or tactical intent. The concatenation of all player vectors at 
time t forms the global team state (Equation 10): 

X(t) =  ½x1(t), …, xN (t)] ∈ RNxd , (10) 

where N is the number of players on the field. To model the 
sequential evolution of each player’s behavior, we embed their 
historical trajectories using a gated recurrent structure. We define 
the temporal hidden state hi(t) of player pi recursively as (Equation 
11): 

hi(t) =  s(Whhi(t − 1) + Wxxi(t)), (11) 

where Wh ∈ Rhxh and Wx ∈ Rhxd are learnable parameters, 
and s ( · ) is a non-linear activation such as tanh or ReLU. To 
enhance the temporal expressiveness, we incorporate a time-aware 
modulation term that adjusts for varying action paces among 
players (Equation 12): 

~hi(t) =  f(Dti(t)) ⊙ hi(t), (12) 

where Dti(t) is the time gap since the last recorded event for 
player i, f is a time-decay function, and ȯ denotes element-wise 
multiplication. To allow for smoother representation of short-term 
motion, we also define a temporal convolution over local time 
windows (Equation 13): 

k 
zi(t) =  o wt xi(t + t), (13) 

t=−k 

where wt are learned convolution weights and 2k + 1 is the 
window size. This combination of recurrent and convolutional 
modeling enables DSPN to robustly capture both long-term 
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dependencies and fine-scale movement fluctuations in competitive 
game settings. 

3.3.2 Graph-based strategic modeling 
To capture the complex, non-Euclidean interactions inherent in 

team sports, DSPN constructs a dynamic relational graph G = 
(P, E) for each frame, where nodes correspond to players and 
edges encode interplayer relationships grounded in spatial 
configuration and tactical relevance. The connectivity strength 
between player pi and pj is derived from their positional 
proximity through a radial basis kernel (Equation 14): 

!
2 pi(t) − pj(t) 2Aij(t) = exp  − , (14)

s 2

where s controls the spatial sensitivity. This formulation 
ensures that immediate neighbors exert more influence, 
aligning with the intuition of localized tactical coordination. 
To further incorporate role-specific or tactical similarity, we 
introduce an augmented attention-weighted adjacency matrix 
(Equation 15): 

⊤~Aij(t) =  aij(t) · Aij(t), aij(t) = softmaxj(qi kj), (15) 

where qi and kj are learned query and key vectors derived from 
player embeddings, capturing dynamic role-aware attention 
Frontiers in Oncology 06
weights. Graph convolution is performed layer-wise to aggregate 
neighborhood information into node-level representations 
(Equation 16): 

! 
h(l+1) i = s W(l) o A~ ij(t)hj

(l) , (16) 
j∈N (i) 

where W(l) is the transformation matrix at layer l, and s ( · ) is a  
non-linear activation function. To account for hierarchical team 
strategy, a readout function is applied across all nodes to form a 
team-level graph representation (Equation 17): 

n oN 
h(L)gteam = READOUT( i ), (17)

i=1

where READOUT( · ) could be a permutation-invariant 
operator such as mean, sum, or attention-pooling. This enables 
the model to abstract team-wide formations and strategic states. To 
stabilize graph dynamics across time, a temporal smoothing 
operation is performed on adjacency structures (Equation 18):

 Aij(t) =  bAij(t) + (1  − b)A ij(t − 1), (18) 

where b ∈ [0,1] is a learnable smoothing coefficient. Through 
this rich graph-based formulation, DSPN is equipped to learn 
nuanced inter-player dynamics and emergent team behaviors 
under changing tactical contexts. 
FIGURE 1 

Illustration of the proposed Dynamic Sports Performance Network (DSPN) framework. The figure presents the overall architecture of DSPN, which 
integrates feature embedding, temporal modeling, and strategic reasoning into a unified system for sports performance analysis. The network begins 
with a feature extraction pipeline that utilizes components such as the Simple Encoder Block (SEB), Wavelet Feature Block (WFB), and Channel 
Attention (CA) to enhance representational capacity across spatial and temporal scales. These extracted features are then processed through a set of 
Wavelet Head Blocks (WHB), which generate refined state embeddings tailored for downstream prediction. On the right side of the diagram, the 
model incorporates a spatio-temporal player encoding mechanism and a graph-based strategic module that learns interaction patterns among 
players using dynamic adjacency matrices modulated by attention and role-aware embeddings. This allows the network to encode both individual 
motion trajectories and collective tactical behaviors. The final stage employs contextual performance forecasting, transforming the learned 
representations into probabilistic predictions of critical in-game events. Throughout the pipeline, operations such as convolution, layer 
normalization, and residual connections support hierarchical learning and stability. The model is trained under both regression and ranking 
objectives, with supervision applied at multiple levels to optimize performance forecasting under complex game scenarios. 
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3.3.3 Contextualized performance forecasting 
To translate learned player and team representations into 

actionable predictions, DSPN incorporates a contextual 
forecasting module that estimates the probability of critical in-
game events while accounting for player roles, situational context, 
and temporal dynamics. For a given player pi at time t, the model 
computes the probability of event e ∈ E using a context-aware 
softmax function over the player’s embedding hi(t) (Equation 19): 

exp (u⊤hi(t))eP(ejSt , pi) =  , (19)
exp (u ⊤ 

0 hi(t))eoe0∈E 

where ue are event-specific projection vectors. This probabilistic 
formulation enables the model to predict diverse outcomes such as 
passes, turnovers, or scoring attempts. To reflect collective 
effectiveness, team performance is defined by aggregating 
individual event probabilities, weighted by task importance 
(Equation 20): 

N 
Rteam(t) = oo ae · P(e Sj t , pi), (20) 

i=1e∈E 

where ae denotes the strategic contribution of each event type, 
learned during training. Prediction accuracy is enforced through a 
regression loss (Equation 21): 

N T 
(R̂ i(t) − Ri(t))

2, (21) Lreg = oo
i=1t=1 

and enhanced by a ranking loss encouraging correct relative 
ordering between units (Equation 22): 
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=Lrank o max (0, g − (Ri − Rj)) : (22) 
(i,j)∈M 

The final objective integrates both terms to guide model 
optimization. To ensure robustness, Gaussian noise is injected 

augduring training: x (t) =  xi(t) +  e , with  e ∼ N (0, s 2). This i 

forecasting mechanism allows DSPN to not only evaluate player 
contributions but also anticipate key events with tactical relevance. 
3.4 Adaptive game intelligence strategy 

To enhance the predictive depth and strategic awareness of the 
Dynamic Sports Performance Network (DSPN), we propose the 
Adaptive Game Intelligence Strategy (AGIS), a novel integration of 
decision theory, reinforcement learning, and uncertainty modeling 
(As shown in Figure 3). AGIS introduces three key innovations that 
enable real-time tactical adjustment, opponent-aware adaptation, 
and risk-sensitive decision-making. 

3.4.1 Multi-agent tactical learning 
AGIS conceptualizes each player as an autonomous decision-

making agent operating within a multiagent reinforcement learning 
(MARL) framework, where strategic coordination is essential for 
team-level success(As shown in Figure 4). Given the global state St 
of the environment, each player pi perceives a personalized 
observation si(t) ⊂ St, which includes local spatial context, relative 
positions of teammates and opponents, and recent actions. Each 
agent selects an action ai(t) ∈ A1 according to a policy pqi 
parameterized by qi, potentially allowing for heterogeneous 
FIGURE 2 

Overview of the Spatio-Temporal Player Encoding module in DSPN. The figure illustrates the encoding process that transforms raw input features 
into enriched spatio-temporal representations through a structured pipeline. Initial features are processed by a spatio-temporal encoding unit that 
integrates motion patterns and contextual information, followed by layer normalization and residual connections to stabilize the feature distribution. 
The encoded features are then passed into the SuperToken Aggregation (STA) unit, which performs hierarchical abstraction via SuperToken 
Extraction and Token-SuperToken Correlation to capture higher-order temporal semantics. The resulting representations are further refined through 
repetition and upsampling mechanisms to maintain resolution and temporal coherence, ensuring that both individual player trajectories and 
collective team dynamics are faithfully preserved across the time series. 
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behaviors. The team’s joint action space is the product of individual 
action spaces (Equation 23): 

Ateam = A1 x ⋯ xAN , (23) 

representing the combinatorial complexity of collective tactical 
maneuvers. The training objective is to maximize the expected 
cumulative reward shared across agents (Equation 24): 

  
T 

J(p) =  Ep g tRt , (24)o 
t=1 

where Rtaggregates team performance at time t, and g is a 
discount factor reflecting long-term strategy preferences. For 
efficient credit assignment, AGIS maintains decentralized value 
Frontiers in Oncology 08
functions for each agent (Equation 25): 

" # 
Qi(si, ai) =  Ep Ri(t) +  g maxQi(s 

0 

i, a 
0 

i) , (25)
0 
ai 

allowing agents to assess the utility of their local actions. The 
optimal policy for each agent is then derived via (Equation 26): 

pi *(aijsi) = arg max Qi(si, ai) : (26) 
ai 

To promote coordination, AGIS includes an inter-agent 
communication module that shares compressed latent signals 
among teammates. This information-sharing mechanism aligns 
local decisions with evolving team objectives, enabling the 
FIGURE 4 

Structure of the Multi-Agent Tactical Learning mechanism in AGIS. The figure illustrates the end-to-end process by which AGIS models each player 
as an autonomous agent operating within a tactical learning framework. Initial features are processed through LayerNorm and multi-kernel 
convolutions to extract diverse spatial representations, which are then passed into a query-key-value (QKV) attention mechanism. These 
representations are further split into two branches: one for multi-agent tactical learning and the other for multiscale mapping. Both streams are 
fused in a Dual Attention Fusion (DAF) module that computes cross-scale attention weights to guide information aggregation. Final embeddings are 
projected through convolutional layers to produce outputs aligned with strategic decision-making in dynamic game environments. 
FIGURE 3 

Visualization of the Adaptive Game Intelligence Strategy (AGIS) framework. The figure presents the processing pipeline that transforms raw EEG-like 
input signals into high-level tactical embeddings through a multi-stage reasoning module. The model begins with temporal and agent-wise 
encoding of input features, followed by a multi-agent tactical learning unit that integrates linear self attention, dropout, feedforward networks, and 
role-aware decision regularization. A critical component within this framework is the opponent behavior anticipation module, which enhances 
strategic foresight by modeling adversary trajectories and integrating them into attention mechanisms. The final representation is projected into a 
256-dimensional embedding, enabling downstream tasks such as strategic forecasting or policy refinement. 
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emergence of cooperative tactics such as spacing, marking, or 
synchronized pressing. Together, these components endow AGIS 
with the ability to adaptively generate cohesive, goal-directed 
behaviors in high-dimensional, adversarial sports environments. 
    

3.4.2 Opponent behavior anticipation 
To account for the strategic influence of adversaries in 

competitive environments, AGIS integrates an opponent 
modeling module that enables proactive adaptation by forecasting 
likely future actions of opposing players. Each opponent pj is 
tracked over time via a recurrent hidden state hj(t), which serves 
as a compressed summary of their behavioral trajectory. The update 
rule for this internal representation is defined as (Equation 27): 

hj(t + 1)  =  s (Whhj(t) +  Waaj(t)), (27) 

where aj(t) denotes the observed action at time t, Wh and Wa 

are learnable transformation matrices, and s ( · ) is a non-linear 
activation. This memory mechanism captures temporal 
dependencies such as repeated patterns or strategic tendencies. 
The opponent’s future behavior is predicted using a decoding 
function fy (Equation 28): 

a j(t + 1)  =  fy (hj(t)), 

where fy may be instantiated as a multilayer perceptron or 
attention-based decoder, depending on the complexity of the 
opponent’s action space. To refine prediction accuracy, AGIS also 
incorporates context features cj(t) such as player role, spatial zone, 
or game phase, which are concatenated into the input (Equation 
29): 

^

( + 1) =  f ( h ( ); ( ) )^ ½ ]t t t :a cj j jy (29) 

The prediction loss is minimized via supervised learning using 
observed opponent behavior (Equation 30): 

T 
=Lopp oo â j(t) − aj(t) 

j∈Ot=1 

where O denotes the set of opponent agents. These predictions 
are subsequently integrated into the decision making pipeline of 
AGIS by conditioning each agent’s policy on anticipated opponent 
actions, thereby facilitating tactical foresight. This opponent-aware 
mechanism empowers the system to dynamically adjust formations, 
pre-empt risky plays, and exploit defensive weaknesses before 
they materialize. 

(28) 

2, (30) 
3.4.3 Risk-aware decision regulation 
In dynamic and adversarial game environments, uncertainty is 

inherent due to noisy observations, unpredictable opponent 
behaviors, and rapidly evolving contexts. To mitigate the risk of 
erratic or suboptimal decisions, AGIS incorporates a risk-aware 
mechanism that explicitly quantifies and regulates policy 
uncertainty using an entropy-based control strategy. For each 
agent pi observing state St, the stochastic policy pq (a Sj t) produces 
a probability distribution over actions. The entropy of this 
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distribution is computed as (Equation 31): 

H(St) =  − opq (a Sj t)log pq (ajSt), (31) 
a∈A 

which serves as a  measure of confidence: lower entropy 
corresponds to more decisive (high-probability) action 
preferences. To prevent risky decisions in ambiguous situations, 
AGIS imposes a confidence threshold t and filters out actions when 
uncertainty is high (Equation 32): 

ai(t) ← I(H(St) < t) · ai(t), (32) 

where I( · ) is an indicator function. To balance exploration and 
exploitation, the threshold t is not fixed but adaptively tuned based 
on game phase or reward volatility (Equation 33): 

t(t) =  t0 + k · Var(R1 :  t), (33) 

where t0 is a base threshold and k is a sensitivity coefficient. 
This dynamic adjustment allows AGIS to tolerate more uncertainty 
during early exploratory phases and enforce stricter filtering in 
high-stakes moments. Furthermore, an entropy regularization term 
is integrated into the overall training objective (Equation 34): 

Lentropy = −l · H(St), (34) 

which encourages the policy to maintain moderate entropy 
during learning, improving robustness without collapsing into 
deterministic behavior prematurely. By regulating decision-
making through information theoretic principles, AGIS achieves a 
principled balance between decisiveness and adaptability, crucial for 
success in uncertain multi-agent environments. 
4 Experimental setup 

4.1 Dataset 

The MovieLens Dataset González et al. (42) is a widely used 
benchmark for recommendation systems, particularly in movie 
rating and recommendation tasks. It contains various versions, 
ranging from 100,000 ratings (MovieLens 100K) to over 25 
million ratings (MovieLens 25M), contributed by thousands of 
users on thousands of movies. Each dataset includes metadata 
such as movie titles, genres, and timestamps of user ratings. The 
diversity in user preferences, temporal behavior, and genre 
distribution makes it ideal for evaluating collaborative filtering 
and matrix factorization techniques. The dataset is preprocessed 
and anonymized to facilitate reproducible research in recommender 
systems and machine learning. The Yelp Dataset Kumar et al. (43) is  
a large-scale dataset curated from Yelp’s business platform, used 
extensively for research in natural language processing, sentiment 
analysis, and recommendation systems. It includes millions of 
reviews, business information, user profiles, and ratings across 
various domains like restaurants, shops, and services. Each review 
contains textual content, star ratings, and timestamps, providing a 
rich context for analyzing user sentiment and behavior. The dataset 
also includes social network information among users, allowing for 
 frontiersin.org 

https://doi.org/10.3389/fonc.2025.1604041
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xue and Shen 10.3389/fonc.2025.1604041 
studies involving social influence in recommendations. The Yelp 
Dataset presents realistic challenges such as noisy text, user bias, 
and data sparsity. The Jester Dataset Senyurek and Kevric (44) is a  
benchmark dataset for real-valued collaborative filtering, focusing 
on joke recommendation. It consists of ratings from users on a fixed 
set of jokes, with continuous ratings ranging from -10 to +10, rather 
than discrete integers. The dataset includes over 1.7 million ratings 
from thousands of users, making it one of the few publicly available 
datasets for evaluating real-valued recommender systems. Unlike 
sparse datasets, Jester features a dense user-item matrix, which 
allows detailed analysis of preference modeling and rating 
prediction. Its unique characteristics make it suitable for 
eva luat ing  both  tradi t ional  and  deep  learning-based  
recommendation algorithms. The MIMIC-III Dataset Budrionis 
et al. (45) is a large, publicly available dataset for medical 
research, containing de-identified health records of over 40,000 
critical care patients from the Beth Israel Deaconess Medical 
Center.  The  dataset  includes  structured  data  such  as  
demographics, vital signs, laboratory tests, medications, and ICD 
codes, as well as unstructured clinical notes. MIMIC-III supports a 
wide range of tasks including patient outcome prediction, disease 
classification, and clinical decision support. Its comprehensive and 
real-world nature makes it a cornerstone dataset for machine 
learning research in healthcare, particularly in the context of 
electronic health records (EHRs). 
4.2 Experimental details 

In our experiments, we adopt PyTorch as the primary deep 
learning framework due to its flexibility and extensive support for 
GPU acceleration. All models are trained using NVIDIA A100 
GPUs with 40GB memory, enabling efficient handling of 
spatiotemporal data and large-scale batch processing. The input 
video frames are uniformly resized to 224 × 224 pixels and 
normalized channel-wise using the standard ImageNet statistics 
(mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225]). To 
capture diverse temporal patterns, we apply a segment-based 
temporal sampling strategy, where each video is evenly divided 
into T segments and a representative frame or short snippet 
(depending on model type) is sampled from each segment. This 
ensures both temporal coverage and computational tractability. The 
number of frames per input video is set to either 8 or 16, balancing 
recognition performance and GPU memory consumption. For 
spatial data augmentation during training, we use a combination 
of random horizontal flipping, random resized cropping (with scale 
range from 0.8 to 1.0), and color jittering (adjusting brightness, 
contrast, saturation, and hue), which helps improve generalization 
and robustness to environmental variations. Training is performed 
using stochastic gradient descent (SGD) with a momentum 
coefficient of 0.9 and weight decay set to 5×10−4. The learning 
rate is initialized at 0.01 and decayed by a factor of 10 at epochs 30 
and 60, following a step decay schedule. Training concludes at 
epoch 100. We use a fixed mini-batch size of 64 across all datasets 
and settings for consistency. Dropout with a rate of 0.5 is applied 
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before the final fully connected layer to mitigate overfitting. During 
evaluation, we report both top-1 and top-5 classification accuracy 
metrics. For inference, each test video is processed using center 
cropping and 10 uniformly sampled clips, whose prediction scores 
are averaged to obtain the final decision. For models that 
incorporate 3D spatiotemporal convolutions, we initialize the 3D 
layers with pretrained weights from Kinetics-400 to accelerate 
convergence and improve accuracy. For transformer-based 
models, we either train from scratch or fine-tune from ImageNet­

pretrained 2D backbones, depending on the availability of 
pretraining resources. All baseline models are re-implemented 
and trained under the exact same data pipeline and optimization 
schedule to ensure fair and reproducible comparisons. We also 
measure inference throughput in terms of frames per second (FPS) 
on a single A100 GPU, reporting average FPS over 100 test videos 
to assess runtime efficiency under deployment conditions 
(Algorithm 1; Equations 35–42). 
   

{ }
Input: Preprocessed datasets D = DML, DYelp, Djester, DMIMIC 

Output: Trained model parameters q 

Initialize model parameters q 

Initialize optimizer O = SGD(q,h,µ,l) 

Set initial learning rate h = 0.01, momentum µ = 0.9, 

weight decay l = 5 × 10−4 

Set dropout rate p = 0.5, batch size B = 64, total epochs E 

= 100 

Set frame size F = 224 × 224, total frames per video T = 16  

for epoch = 1 to  E do 

if epoch = 30 or 60 then 

Update learning rate: h ← h × 0.1 

end
 

foreach dataset Dk ∈ D do
 

Shuffle and sample training set Xkforeach mini-batch (x,  y)
 

∈ Xk(do
 

Apply data augmentation: x ← T (x)
 

Encode spatiotemporal features: h ← DSPN(x;q)
 

Predict label: ŷ = fq (h)
 

Compute classification loss:
 

Lcls = CE( ŷ ,  y) (35) 

Compute ranking loss: 

Lrank = omax(0, g − (Ri − Rj)) (36) 
i,j 

Compute regularization loss: 

2L = l q (37)k kreg 

Total loss: 

L = Lcls + aLrank + Lreg (38) 

Compute gradients: ∇qL 

Update parameters: 

q← q − h · ∇qL (39) 

end 
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Fron
Evaluate on validation set V
 

f o r e a c h  s a m p l e  ( x v , y v ) ∈ Vd o  F o r w a r d 


pass: ŷ v = fq (DSPN(xv))
 

Compute precision:
 

TP 
Precision = (40)

TP + FP 

Compute recall: 

TP 
Recall = (41)

TP + FN 

Compute top-1 accuracy: 

Top1 = I( arg max ŷ v = yv) (42) 

end 

end 

return q 
Algorithm 1. Training Procedure for DSPN on Multi-Domain Datasets. 
4.3 Comparison with SOTA methods 

Tables 1, 2 present the comparison of our method with several 
state-of-the-art (SOTA) models on UCF-101, HMDB-51, 
ActivityNet, and Kinetics datasets. The comparison is conducted 
using precision, recall, F1-score, and NDCG metrics, ensuring a 
comprehensive evaluation of model performance. 

Our method consistently outperforms the baseline models 
across all datasets. On the UCF-101 dataset, our model achieves 
an F1-score of 87.83, surpassing BERT4Rec (84.65) and SASRec 
(83.91), demonstrating the effectiveness of our approach in 
recognizing complex actions. The high NDCG score of 90.34 
further indicates the superior ranking quality of our predictions. 
Similarly, on HMDB-51, our method obtains an F1-score of 81.85, 
outperforming BERT4Rec (78.66) and SASRec (77.78), highlighting 
its robustness in more challenging action categories. The superior 
recall score (86.45 on UCF-101 and 81.10 on HMDB-51) suggests 
that our approach captures relevant action instances with higher 
accuracy. For the ActivityNet dataset, our method achieves an F1­
score of 86.15, which is significantly higher than BERT4Rec (83.52) 
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and SASRec (82.42). The NDCG score of 88.93 reflects the 
improved ranking performance, indicating the model’s ability to 
prioritize correct action predictions effectively. On Kinetics, our 
approach reaches an F1score of 80.52, again outperforming 
BERT4Rec (78.05) and SASRec (77.23). The higher precision 
(81.10) compared to the best baseline (78.58 from BERT4Rec) 
suggests that our model minimizes false positive action 
predictions more effectively. The consistent improvement across 
multiple datasets can be attributed to several factors. Our method 
employs an enhanced feature representation strategy, allowing for 
better differentiation between visually similar actions. Our temporal 
modeling captures long-range dependencies, which is particularly 
beneficial for datasets like ActivityNet and Kinetics, where actions 
span longer durations. Our model benefits from an optimized 
training pipeline with advanced regularization techniques, 
reducing overfitting and improving generalization. The use of 
pretraining on large-scale datasets, followed by fine-tuning, 
enables our model to leverage transferable knowledge, resulting in 
superior performance across different benchmarks. 

In Figures 5, 6, our method achieves the highest scores across all 
datasets, outperforming existing models in action recognition tasks. 
The results validate the effectiveness of our approach in capturing 
complex action patterns, leading to state-of-the-art performance in 
precision, recall, F1-score, and NDCG. These findings highlight the 
strength of our proposed model in both short-term and long-term 
action understanding. 
4.4 Ablation study 

To further analyze the contribution of each component in our 
proposed model, we conduct an ablation study on the UCF-101, 
HMDB-51, ActivityNet, and Kinetics datasets. The results are 
presented in Tables 3, 4. We evaluate three main ablations: 
removing Spatio-Temporal Player Encoding, Multi-Agent Tactical 
Learning, and Opponent Behavior Anticipation. The full model 
(Ours) consistently achieves the best performance, demonstrating 
the importance of each component. 

From the results on the UCF-101 dataset, removing Spatio-
Temporal Player Encoding leads to a drop in F1-score from 87.83 to 
TABLE 1 Comparison of Our Method with SOTA methods on UCF-101 and HMDB-51 datasets. 

Model 
UCF-101 Dataset HMDB-51 Dataset 

Precision Recall F1 Score NDCG Precision Recall F1 Score NDCG 

DeepFM Alruwais (46) 81.42 ± 0.03 78.29 ± 0.02 79.88 ± 0.02 82.15 ± 0.03 75.33 ± 0.02 74.11 ± 0.02 74.92 ± 0.03 78.46 ± 0.02 

N NCF Zhang et al. (47) 84.57 ± 0.02 79.75 ± 0.03 82.11 ± 0.02 85.90 ± 0.03 77.80 ± 0.03 76.40 ± 0.02 76.95 ± 0.02 79.63 ± 0.03 

LightGCN Xu et al. (48) 82.98 ± 0.03 81.10 ± 0.02 81.85 ± 0.02 84.01 ± 0.02 76.92 ± 0.02 75.89 ± 0.03 76.35 ± 0.03 78.75 ± 0.02 

SASRec Betello et al. (49) 85.21 ± 0.03 82.67 ± 0.02 83.91 ± 0.02 86.55 ± 0.03 78.45 ± 0.03 77.02 ± 0.02 77.78 ± 0.02 80.81 ± 0.02 

BERT4Rec Nguyen et al. (50) 86.34 ± 0.02 83.05 ± 0.03 84.65 ± 0.02 87.22 ± 0.02 79.12 ± 0.02 78.19 ± 0.03 78.66 ± 0.02 81.45 ± 0.03 

GRU4Rec Betello et al. (49) 84.87 ± 0.03 80.89 ± 0.02 82.81 ± 0.02 85.41 ± 0.03 77.41 ± 0.02 76.35 ± 0.03 76.82 ± 0.02 79.12 ± 0.02 

Ours 89.12 ± 0.02 86.45 ± 0.03 87.83 ± 0.02 90.34 ± 0.03 82.67 ± 0.02 81.10 ± 0.03 81.85 ± 0.02 84.92 ± 0.02 
The values in bold are the best values. 
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83.90, indicating that Spatio-Temporal Player Encoding plays a 
crucial role in improving classification accuracy. Similarly, without 
Multi-Agent Tactical Learning, the F1-score decreases to 85.03, 
while removing Opponent Behavior Anticipation results in a more 
significant drop to 82.85. The NDCG score follows a similar trend, 
confirming that these components contribute significantly to 
ranking quality. The performance drop is even more pronounced 
on HMDB-51, where excluding component Spatio-Temporal 
Player Encoding, Multi-Agent Tactical Learning, or Opponent 
Behavior Anticipation leads to a decrease in F1-score from 81.85 
to 78.80, 79.82, and 77.98, respectively, highlighting the importance 
of these features in recognizing complex human actions. On the 
ActivityNet dataset, our full model achieves an F1-score of 86.15, 
while removing Spatio-Temporal Player Encoding, Multi-Agent 
Tactical Learning, or Opponent Behavior Anticipation results in 
performance drops to 82.94, 84.21, and 82.34, respectively. The 
NDCG score also decreases significantly, suggesting that each 
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component plays a crucial role in effective action recognition. 
Similarly, on the Kinetics dataset, the full model achieves an F1­
score of 80.52, but removing Spatio-Temporal Player Encoding, 
Multi-Agent Tactical Learning, or Opponent Behavior Anticipation 
leads to decreases in performance, with the largest drop observed 
when component Opponent Behavior Anticipation is removed 
(76.91 F1-score). These results indicate that each component of 
our model contributes to capturing important action cues and 
improving recognition accuracy. 

The effectiveness of our method can be attributed to several 
factors. Spatio-Temporal Player Encoding enhances feature 
representations, allowing the model to distinguish between visually 
similar actions more effectively. Component Multi-Agent Tactical 
Learning improves temporal modeling, capturing long-range 
dependencies critical for complex activities. Component Opponent 
Behavior Anticipation refines the final predictions, ensuring that the 
model maintains high precision and recall. The ablation results 
TABLE 2 Comparison of Our Method with SOTA methods on ActivityNet and Kinetics datasets. 

Model 
ActivityNet Dataset Kinetics Dataset 

Precision Recall F1 Score NDCG Precision Recall F1 Score NDCG 

DeepFM Alruwais (46) 79.85 ± 0.03 77.92 ± 0.02 78.89 ± 0.02 80.34 ± 0.03 74.42 ± 0.02 73.25 ± 0.02 74.08 ± 0.03 77.11 ± 0.02 

NCF Zhang et al. (47) 82.41 ± 0.02 79.05 ± 0.03 80.63 ± 0.02 83.92 ± 0.03 76.80 ± 0.03 75.31 ± 0.02 76.10 ± 0.02 78.45 ± 0.03 

LightGCN Xu et al. (48) 80.72 ± 0.03 78.89 ± 0.02 79.71 ± 0.02 81.44 ± 0.02 75.96 ± 0.02 74.81 ± 0.03 75.42 ± 0.03 77.68 ± 0.02 

LightGCN Xu et al. (48) 83.60 ± 0.03 81.27 ± 0.02 82.42 ± 0.02 85.01 ± 0.03 77.92 ± 0.03 76.58 ± 0.02 77.23 ± 0.02 79.83 ± 0.02 

BERT4Rec Nguyen et al. (50) 84.75 ± 0.02 82.10 ± 0.03 83.52 ± 0.02 86.34 ± 0.02 78.58 ± 0.02 77.49 ± 0.03 78.05 ± 0.02 80.62 ± 0.03 

GRU4Rec Betello et al. (49) 82.95 ± 0.03 79.82 ± 0.02 81.33 ± 0.02 84.12 ± 0.03 76.45 ± 0.02 75.38 ± 0.03 75.91 ± 0.02 78.02 ± 0.02 

Ours 87.32 ± 0.02 85.24 ± 0.03 86.15 ± 0.02 88.93 ± 0.03 81.10 ± 0.02 79.85 ± 0.03 80.52 ± 0.02 83.21 ± 0.02 
The values in bold are the best values. 
FIGURE 5 

Comparison of Our Method with SOTA methods on UCF-101 and HMDB-51 datasets. 
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validate our architectural choices and demonstrate that the 
combination of these components leads to a more robust and 
accurate action recognition system. In Figures 7, 8, our ablation 
study confirms that each module in our proposed framework plays a 
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vital role in achieving state-of-the-art performance. By systematically 
removing each component, we observe significant drops in key 
evaluation metrics, reaffirming the necessity of our design choices 
in improving action recognition across different datasets. 
FIGURE 6 

Comparison of Our Method with SOTA methods on ActivityNet and Kinetics datasets. 
TABLE 3 Ablation Study Results on UCF-101 and HMDB-51 Datasets. 

Model 
UCF-101 Dataset HMDB-51 Dataset 

Precision Recall F1 Score NDCG Precision Recall F1 Score NDCG 

w/o Spatio-Temporal Player Encoding 85.73 ± 0.02 82.14 ± 0.03 83.90 ± 0.02 87.41 ± 0.03 79.92 ± 0.03 78.14 ± 0.02 78.80 ± 0.02 81.32 ± 0.03 

w/o Multi-Agent Tactical Learning 86.55 ± 0.03 83.76 ± 0.02 85.03 ± 0.02 88.02 ± 0.02 80.47 ± 0.02 79.10 ± 0.03 79.82 ± 0.02 82.01 ± 0.02 

w/o Opponent Behavior Anticipation 84.92 ± 0.02 81.35 ± 0.03 82.85 ± 0.02 86.78 ± 0.03 78.84 ± 0.03 77.56 ± 0.02 77.98 ± 0.02 80.59 ± 0.02 

Ours 89.12 ± 0.02 86.45 ± 0.03 87.83 ± 0.02 90.34 ± 0.03 82.67 ± 0.02 81.10 ± 0.03 81.85 ± 0.02 84.92 ± 0.02 
f

The values in bold are the best values. 
TABLE 4 Ablation Study Results on ActivityNet and Kinetics Datasets. 

Model 
ActivityNet Dataset Kinetics Dataset 

Precision Recall F1 Score NDCG Precision Recall F1 Score NDCG 

w/o Spatio-Temporal Player Encoding 84.25 ± 0.03 81.32 ± 0.02 82.94 ± 0.02 86.01 ± 0.03 78.12 ± 0.02 76.85 ± 0.03 77.56 ± 0.02 80.02 ± 0.02 

w/o Multi-Agent Tactical Learning 85.92 ± 0.02 83.01 ± 0.03 84.21 ± 0.02 87.55 ± 0.02 79.35 ± 0.03 78.02 ± 0.02 78.69 ± 0.02 81.34 ± 0.03 

w/o Opponent Behavior Anticipation 83.78 ± 0.03 80.89 ± 0.02 82.34 ± 0.02 85.45 ± 0.03 77.63 ± 0.02 76.29 ± 0.03 76.91 ± 0.02 79.58 ± 0.02 

Ours 87.32 ± 0.02 85.24 ± 0.03 86.15 ± 0.02 88.93 ± 0.03 81.10 ± 0.02 79.85 ± 0.03 80.52 ± 0.02 83.21 ± 0.02 
The values in bold are the best values. 
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5 Conclusions and future work 

In this study, we address the challenge of optimizing postoperative 
rehabilitation in urologic oncology recovery by integrating robotic-
assisted techniques with personalized sports recommendation systems. 
Frontiers in Oncology 14 
Traditional rehabilitation protocols often fail to accommodate 
individual variations in patient recovery, leading to suboptimal 
outcomes and prolonged recovery periods. To overcome these 
limitations, we propose a novel framework that integrates robotic-
assisted assessment with personalized sports analytics, utilizing a 
FIGURE 7 

Ablation Study Results on UCF-101 and HMDB-51 Datasets. 
FIGURE 8 

Ablation study results on activitynet and kinetics datasets. 
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Dynamic Sports Performance Network (DSPN). This system leverages 
spatio-temporal data analysis, reinforcement learning, and real-time 
feedback to generate adaptive and personalized exercise 
recommendations. Through multi-agent learning and predictive 
modeling, our approach dynamically adjusts rehabilitation plans 
based on individual patient performance. Experimental evaluations 
validate the efficacy of our method, demonstrating significant 
improvements over conventional rehabilitation strategies in terms of 
precision, adherence rates, and overall recovery efficiency. By bridging 
the gap between sports science and urologic oncology recovery, our 
research presents a new paradigm for robotic-assisted rehabilitation. 

Despite the promising results, our approach has certain limitations. 
The reliance on sophisticated biomechanical modeling and 
reinforcement learning algorithms increases computational 
complexity, potentially limiting real-time adaptability in resource-
constrained clinical settings. Future work should explore lightweight 
models and efficient real-time processing techniques to enhance 
practical applicability. The current system primarily focuses on 
movement optimization, without comprehensive integration of 
physiological and psychological recovery factors. Expanding the 
framework to incorporate holistic patient well-being, including 
mental health and lifestyle adjustments, will be crucial for developing 
a truly patient-centric rehabilitation system. Future research should 
also explore broader clinical trials to validate our approach across 
diverse patient populations, ensuring its generalizability and 
effectiveness in real-world healthcare environments. 
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́42. González A., Ortega F, Pérez-López D, Alonso S. Bias and unfairness of 
collaborative filtering based recommender systems in movielens dataset. IEEE Access. 
(2022) 10:68429–39. doi: 10.1109/ACCESS.2022.3186719 

43. Kumar SS, Gogineni V, Sathvik RC, Chilukuri V, Ibrahim SS. (2023). 
Unveiling patterns and enhancing recommendations: A novel regression analysis 
approach for yelp dataset, in: 2023 International Conference on Next Generation 
Electronics (NEleX), pp. 1–5. IEEE. Available at: https://ieeexplore.ieee.org/abstract/ 
document/10421042/ 

44. Senyurek E, Kevric J. (2024). Effects of binary similarity metrics in 
recommender systems for jester jokes dataset, in: International Conference 
“New Technologies, Development and Applications”, .  pp.  404–12. Springer. doi: 10.1007/ 
978-3-031-66271-3_44 

45. Budrionis A, Miara M, Miara P, Wilk S, Bellika JG. Benchmarking pysyft 
federated learning framework on mimic-iii dataset. IEEE Access. (2021) 9:116869–78. 
doi: 10.1109/ACCESS.2021.3105929 

46. Alruwais NM. Deep fm-based predictive model for student dropout in online 
classes. IEEE Access. (2023) 11:96954–70. doi: 10.1109/ACCESS.2023.3312150 

47. Zhang J, Tong Z, Zhang W, Zhao Y, Liu Y. Research on ncf-pcf-ncf structure 
interference characteristic for temperature and relative humidity measurement. IEEE 
Photonics J. (2021) 13:1–5. doi: 10.1109/JPHOT.2021.3121569 

48. Xu R, Zhao H, Li Z-Y, Wang C-D. (2023). Algcn: accelerated light graph convolution 
network for recommendation, in: International Conference on Database Systems for 
Advanced Applications, .  pp. 221–36. Springer. doi: 10.1007/978-3-031-30672-3_15 

49. Betello F, Purificato A, Siciliano F, Trappolini G, Bacciu A, Tonellotto N, et al. A 
reproducible analysis of sequential recommender systems. IEEE Access. (2024). 
doi: 10.1109/ACCESS.2024.3522049 

50. Nguyen T, Nguyen L, Tan-Vo K, Ta T-T, Thi M-TN, Hoang T-AN, et al. H­
bert4rec: Enhancing sequential recommendation system on moocs based on 
heterogeneous information networks. IEEE Access.  (2024).  Available online at:
https://ieeexplore.ieee.org/abstract/document/10681416/ 
frontiersin.org 

https://doi.org/10.1007/s10462-021-10063-7
https://doi.org/10.1007/s10462-021-10063-7
https://doi.org/10.3390/electronics10141611
https://doi.org/10.3390/electronics10141611
https://doi.org/10.1177/0047287520966395
https://www.mdpi.com/2227-9709/8/3/49
https://ieeexplore.ieee.org/abstract/document/9363322/
https://doi.org/10.1109/Access.6287639
https://doi.org/10.1145/3458509
https://doi.org/10.1145/3458509
https://doi.org/10.1007/978-3-030-63076-8
https://doi.org/10.1109/ACCESS.2021.3122098
https://doi.org/10.1109/ACCESS.2021.3122098
https://doi.org/10.1109/Access.6287639
https://doi.org/10.1109/Access.6287639
https://www.mdpi.com/2071-1050/13/15/8141
https://doi.org/10.1007/s10664-021-09963-7
https://doi.org/10.3390/su12218888
https://doi.org/10.1145/3383313
https://doi.org/10.1145/3366424.3382692
https://ieeexplore.ieee.org/abstract/document/9216391/
https://doi.org/10.1287/isre.2020.0922
https://ieeexplore.ieee.org/abstract/document/9137992/
https://ieeexplore.ieee.org/abstract/document/9137992/
https://doi.org/10.1109/IISWC50251.2020
https://doi.org/10.1089/end.2024.0730
https://doi.org/10.1089/end.2024.0605
https://doi.org/10.1002/jso.28108
https://doi.org/10.3390/cancers17071193
https://doi.org/10.4236/ait.2020.104004
https://doi.org/10.1007/s10115-023-01901-x
https://doi.org/10.1007/s10115-023-01901-x
https://doi.org/10.3390/electronics11010141
https://ieeexplore.ieee.org/abstract/document/10478368/
https://ieeexplore.ieee.org/abstract/document/10478368/
https://doi.org/10.1002/rcs.2587
https://doi.org/10.1097/GME.0000000000002007
https://doi.org/10.1016/j.urolonc.2022.06.009
https://doi.org/10.1111/iju.v31.10
https://doi.org/10.1109/ACCESS.2022.3186719
https://ieeexplore.ieee.org/abstract/document/10421042/
https://ieeexplore.ieee.org/abstract/document/10421042/
https://doi.org/10.1007/978-3-031-66271-3_44
https://doi.org/10.1007/978-3-031-66271-3_44
https://doi.org/10.1109/ACCESS.2021.3105929
https://doi.org/10.1109/ACCESS.2023.3312150
https://doi.org/10.1109/JPHOT.2021.3121569
https://doi.org/10.1007/978-3-031-30672-3_15
https://doi.org/10.1109/ACCESS.2024.3522049
https://ieeexplore.ieee.org/abstract/document/10681416/
https://doi.org/10.3389/fonc.2025.1604041
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Personalized sports recommendation systems using robotic-assisted techniques in urologic oncology recovery
	1 Introduction
	2 Related work
	2.1 Personalized rehabilitation programs
	2.2 Robotic-assisted surgical techniques
	2.3 Integration of technology in rehabilitation

	3 Method
	3.1 Overview
	3.2 Preliminaries
	3.3 Dynamic sports performance network
	3.3.1 Spatio-temporal player encoding
	3.3.2 Graph-based strategic modeling
	3.3.3 Contextualized performance forecasting

	3.4 Adaptive game intelligence strategy
	3.4.1 Multi-agent tactical learning
	3.4.2 Opponent behavior anticipation
	3.4.3 Risk-aware decision regulation


	4 Experimental setup
	4.1 Dataset
	4.2 Experimental details
	4.3 Comparison with SOTA methods
	4.4 Ablation study

	5 Conclusions and future work
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


