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Multiparametric MRI-based
radiomics for preoperative
prediction of parametrial
invasion in early-stage
cervical cancer
Chongshuang Yang1†, Man Li2†, Xin Yi3, Lin Wang1,
Guangxian Kuang1, Chunfang Zhang1, Benyong Yao1,
Zhihong Qin1, Tianliang Shi1* and Qiang Jiang1*

1Department of Radiology, Tongren People’s Hospital, Tongren, Guizhou, China, 2Department of
Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China,
3Department of Cardiology, Affiliated Hospital of North China University of Science and Technology,
Tangshan, Hebei, China
Objective: The aim of this study was to evaluate the performance of radiomics

based on multiparametric magnetic resonance imaging (MRI) for the

preoperative prediction of parametrial invasion (PMI) in cervical cancer (CC).

Materials and methods: This retrospective study included 110 consecutive

patients with International Federation of Obstetrics and Gynecology (FIGO)

stage IB–IIA CC. Patients were randomly divided into a training and a testing

cohort in an 8:2 ratio. The region of interest (ROI) was manually delineated.

Radiomics features were extracted separately from T2-weighted imaging (T2WI),

diffusion-weighted imaging (DWI), apparent diffusion coefficient (ADC), and

contrast-enhanced T1-weighted imaging (T1C). Feature selection was

performed using the correlation coefficient, recursive feature cancellation, and

the least absolute shrinkage and selection operator algorithm. Radiomics models

based on single-sequence, dual-sequence, and multi-sequence combinations

were then constructed. Model performance was assessed using receiver

operating characteristic (ROC) curve analysis. The DeLong test was used to

compare the area under the curve (AUC), supplemented by net reclassification

improvement and comprehensive discrimination improvement measures.

Results: A total of 2,264 radiomics features were initially extracted. After feature

selection, 7, 10, 6, and 8 valid features were retained from T1C, T2WI, ADC, and

DWI sequence, respectively. A total of 15 radiomics models were developed,

namely, 4 single-sequence models, 6 double-sequence models, and 5 multi-

sequence models. All models showed good classification performance for PMI in

both training and testing cohorts, with an AUC ranging from 0.755 to 1.000 in the

training cohort and from 0.758 to 0.917 in the testing cohort. Among them, the
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T1C+ADC+DWI model demonstrated the best diagnostic performance,

significantly outperforming all other models (p < 0.05), with the highest AUC in

both training and testing cohorts (training: 1.000, testing: 0.917).

Conclusion: Radiomics based onmultiparametric MRI can effectively predict PMI

status in patients with early-stage CC, offering valuable support for individualized

treatment planning and clinical decision-making.
KEYWORDS

cervical cancer, magnetic resonance imaging, radiomics, parametrial invasion,
multiparameters
1 Introduction

Cervical cancer (CC) is the most common malignancy of the

female reproductive system (1). Parametrial invasion (PMI) refers

to the spread of cancer cells beyond the cervix into the surrounding

parametrium. PMI is a key factor in the International Federation of

Obstetrics and Gynecology (FIGO) staging system, which plays an

important role in determining treatment strategies (2). Surgery is

typically recommended for patients with CC without PMI (stage

IIA and below), while concurrent chemoradiotherapy is the

preferred approach for patients with PMI (stage IIB and above)

(3). Therefore, accurate pre-treatment assessment of PMI is of great

clinical significance for personalized treatment planning in CC.

Magnetic resonance imaging (MRI) is the preferred imaging

modality for the diagnosis, staging, and treatment evaluation of CC,

and it has been incorporated into the FIGO staging system as a

recommended assessment tool (4). However, MRI-based evaluation

of PMI by the radiologist has a relatively high false-positive rate,

particularly in cases with large tumor or indistinct tumor

boundaries caused by compression or inflammation (5, 6).

Radiomics combines image processing and big data analysis

with medical imaging, enabling the large-scale extraction of

quantifiable image features from lesions and the generation of

imaging biomarkers that reflect subtle characteristics of tumors.

This approach facilitates comprehensive analysis of the associations

between imaging data and genetic, pathological, and clinical

information (7). Radiomics has been applied to predict lympho-

vascular space invasion (LVSI) (8), deep stromal invasion (9), and

lymph node metastasis (10) in CC. Recently, several studies (11–13)

have demonstrated that MRI-based radiomics offers significant

advantages in predicting PMI in CC. However, to date, no studies

have reported the use of multiparametric MRI-based radiomics for

PMI prediction. Therefore, in this study, we aimed to develop

radiomics models based on multiparametric MRI to predict PMI

status preoperatively and support personalized treatment

decision-making in patients with early-stage CC.
02
2 Materials and methods

This study was approved by the Ethics Committee of Tongren

People’s Hospital on 23 May 2024, exempting the subjects from

informed consent.
2.1 Patient collection

This study retrospectively analyzed the preoperative MRI images

and clinicopathological data of patients with CC with FIGO stage

IB1–IIA who underwent radical resection in our hospital fromMarch

2020 to October 2024. The inclusion criteria were as follows: (1)

Patients were pathologically diagnosed with CC and had a clearly

documented PMI status. (2) Patients had not received radiotherapy

or chemotherapy before MRI scanning. (3) Patients underwent

scanning with routine MRI, diffusion-weighted imaging (DWI),

and contrast-enhanced T1-weighted imaging (T1C). The exclusion

criteria were as follows: (1) MRI images that did not meet the

requirements for tumor segmentation. (2) The time interval

between MRI scanning and surgery was more than 2 weeks. The

overall workflow for this study is shown in Figure 1.
2.2 Image acquisition

MRI scanning was performed on a Philips Ingenia 3.0 T MR

machine. A total of four types of MRI images were used in this study,

namely, axial T2-weighted imaging (T2WI), DWI, apparent diffusion

coefficient (ADC), and T1C. The parameters of MRI scanning were as

follows: T2WI: repetition time (TR)/echo time (TE) = 2,500/70 ms,

field of view (FOV) = 23 × 36 cm, matrix = 264 × 320, slice thickness/

spacing = 5/1 mm. T1WI: TR/TE = 485/8 ms, FOV = 32 × 28 cm,

matrix = 300 × 377, slice thickness/spacing = 5/1 mm. DWI: TR/TE =

3,960/73 ms, FOV = 23 × 22 cm, matrix = 68 × 78, slice thickness/

spacing = 3.3/0.33 mm, b-values were 0 and 800 s/mm2.
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After conventional pelvic MRI scanning, the patient was kept in the

same position, and a contrast agent (0.1 mmol/kg) was injected

through the elbow vein. Multislice dynamic contrast-enhanced

images covering the lesion tissue were acquired, with delayed images

obtained at 2 and 5 min post-injection. The scanning parameters for

contrast-enhanced sequences were consistent with those of T1WI.

After scanning, the ADC images were automatically reconstructed.
2.3 Manual segmentation and image
preprocessing

2.3.1 Manual segmentation
The regions of interest (ROIs) were manually segmented slice by

slice on axial T1C images using ITK-SNAP software (University of

Pennsylvania Image Computing and Science Laboratory, version

3.6.0). Two radiologists with over 5 years of work experience

independently performed the delineation. Inter-observer agreement

was assessed by calculating the Dice similarity coefficient, which

yielded a value of 0.8566 ± 0.0442, demonstrating good consistency.

For cases with low agreement (Dice < 0.7), the final ROI was reviewed

and adjudicated by a senior radiologist with more than 15 years of

experience to ensure segmentation accuracy and reproducibility.

2.3.2 Image preprocessing
To eliminate intensity inhomogeneity commonly present in MR

images, we first applied the N4 bias field correction method to all

sequences. Subsequently, an adaptive normalization procedure was

performed for each image to remove extreme voxel values (above

the 99th percentile and below the 1st percentile), thereby

minimizing the influence of outliers. Next, the intensity values

were normalized to a range of 0 to 1 using min–max normalization
Frontiers in Oncology 03
to ensure data consistency and comparability across patients. For

multi-sequence image analysis, the T1C sequence was used as the

reference image, while T2WI, DWI, and ADC sequences were

designated as moving images. These were spatially aligned to the

T1C sequence using the symmetric normalization (SyN) algorithm,

which integrates both affine and non-linear (deformable)

transformations and employs mutual information as the

optimization criterion. This registration process ensures spatial

correspondence across sequences, laying a robust foundation for

subsequent multi-parametric data fusion and analysis.
2.4 Radiomics feature extraction and
feature selection

2.4.1 Feature extraction
This study was conducted using the uAI Research Portal

(United Imaging Intelligence, China, Version: 20240430), which

is built on the Python programming language (version 3.7.3, https://

www.python.org) and incorporates the widely used PyRadiomics

package (https://pyradiomics.readthedocs.io/en/latest/index.html).

Our study involved four sequences: T1C, T2WI, ADC, and DWI,

and extracted 14 shape features, 18 first-order statistical features

that describe the distribution of voxel intensities, and 72 texture

features that characterize the spatial gray-level distribution of the

pixel neighborhoods. To further expand the feature set, we applied

24 different filtering processes to the original images, including but

not limited to mean filtering, Gaussian filtering, logarithmic

filtering, and wavelet transformation. Subsequently, we extracted

an additional 432 first-order statistical features and 1,728 texture

features from these filtered images. In total, 2,264 radiomics features

were extracted from each sequence.
FIGURE 1

The overall workflow for this study.
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2.4.2 Feature selection
Feature selection involves identifying the most discriminative

features from the original feature set to reduce dimensionality. For

the 2,264 radiomics features, z-score normalization was applied to

normalize the features. Subsequently, the correlation coefficient

between each feature and the presence or absence of PMI was

calculated, retaining only those with a significance level of p < 0.05.

Following this, a recursive feature eliminationmethod was employed to

iteratively remove features. This method employed a support vector

machine (SVM) as the base estimator and iteratively removed

redundant features. In each iteration, the model performance of the

feature subset was evaluated via 5-fold cross-validation until the

number of remaining features reached the predefined threshold.

Finally, to further optimize feature selection, the least absolute

shrinkage and selection operator (LASSO) was applied to identify the

subset of features most strongly associated with the existence of PMI.
2.5 Classification model building

Based on the radiomics features selected from four sequences

(T1C, T2WI, ADC, and DWI), four single-sequence models were

constructed. By combining radiomics features from two to four

sequences and performing feature selection again using LASSO, six

dual-sequence models, four triple-sequence models, and one four-

sequence model were subsequently developed. In total, 15 models

were constructed. For each model, we evaluated the area under the

curve (AUC), sensitivity, specificity, accuracy, precision, and F1

score. We also generated receiver operating characteristic (ROC)

curves, calibration curves, and decision curves. Ultimately, we

selected the best-performing model for predicting PMI in CC by

comparing the diagnostic performance of all models.
2.6 Statistical analyses

The data were imported into the statistical analysis module of

the uAI Research Portal software for correlation analysis, in which

the differences in continuous variables and quantitative data in

patients with positive and negative PMI were compared using either

the t-test or the Mann–Whitney U test, depending on the data

distribution. Categorical variables and the incidence of PMI were

compared using the chi-square test or Fisher’s exact test. A p-value

< 0.05 was considered statistically significant. The diagnostic

performance of the models was evaluated using ROC analysis.

The DeLong test was used to compare AUC, and the analysis was

supplemented by net reclassification improvement (NRI) and

integrated discrimination improvement (IDI) measures.
3 Results

3.1 Characteristics of patients

A total of 110 patients aged 38–68 years were included in this

study, with a median age of 52 years. Among the 110 enrolled
Frontiers in Oncology 04
patients, 60 were positive for PMI and 50 were negative. According

to the ratio of 8:2 (random seed = 20), patients were randomly

assigned to the training cohort (n = 88) and the testing cohort (n =

22). The clinical characteristics of the patients are shown in Table 1.

In the training cohort, a significant difference was observed in LVSI

status between the PMI-positive and PMI-negative groups (p <

0.001). There were no significant differences in age, tumor size,

pathological type, and degree of differentiation between the two

groups (p > 0.05).
3.2 Single modality features selection

A total of 2,264 radiomics features were extracted from the

ROIs of each sequence. Then, the correlation coefficient (p < 0.05),

recursive feature elimination, and LASSO methods were used

sequentially to screen the features (as shown in Figure 2). In the

recursive feature elimination process, we selected the top 10 features

for further analysis. In the end, 7, 10, 6, and 8 valid features were

selected from T1C, T2WI, ADC, and DWI, respectively.
3.3 Multi-modality feature selection

In the process of multi-sequence joint modeling, features from

multiple sequences are concatenated, and feature selection is

performed again using the LASSO method. Taking the T1C+ADC

+DWI model as an example, 21 key features were retained after

LASSO screening analysis, as shown in Figures 2, 3A. These features

include the first-order statistics, grayscale co-occurrence matrix

(GLCM), grayscale run length matrix (GLRLM), gray-level size

zone matrix (GLSZM), and neighboring gray-tone difference matrix

(NGTDM). The Rad-scores of the screened features in the training

and testing cohorts are shown in Figures 3B, C, respectively.
3.4 Performance of radiomics models

The diagnostic performance of each radiomics model is shown

in Table 2. All models demonstrated good classification

performance for distinguishing positive and negative PMI in both

the training and testing cohorts, with AUCs ranging from 0.755 to

1.000 in the training cohort and from 0.758 to 0.917 in the testing

cohort. Among the four single-sequence models, the ADC model

achieved the highest AUC in both the training and testing cohorts

(training: 0.977; testing: 0.833). Among the six dual-sequence

combination models, the T1C+ADC model had the highest AUC

(training: 0.993; testing: 0.917). Among the combined models with

three or more sequences, the T1C+ADC+DWI model

demonstrated the strongest diagnostic performance, with an AUC

of 1.000 in the training cohort and 0.917 in the testing cohort.

Therefore, the T1C+ADC+DWI model was identified as the

optimal model (Figures 4A, B).

Next, we compared the diagnostic capability of the T1C+ADC

+DWI model with the other 14 models (as shown in Table 3). In the

training cohort, the diagnostic capability of the T1C+ADC+DWI
frontiersin.org
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TABLE 1 The general clinical information of patients.

Characteristics

Training cohort (n = 88) Testing cohort (n = 22)

PMI-negative
(n = 40)

PMI-positive
(n = 48)

p
PMI-negative

(n = 10)
PMI-positive

(n = 12)
p

Age 54.05 ± 10.04 56.52 ± 9.71 0.245 57.80 ± 8.97 52.92 ± 10.03 0.247

Tumor size (mm) 31.75 ± 12.88 32.44 ± 13.95 0.812 30.60 ± 6.33 33.00 ± 11.60 0.566

Type (%)

0.777 0.6766

SCC 35 (87.50) 41 (85.417) 8 (80.00) 8 (75.00)

AC 5 (12.50) 7 (14.583) 2 (20.00) 4 (25.00)

Degree of
differentiation (%)

0.676 0.576

High 8 (20.00) 7 (14.583) 1 (10.000) 3 (25.00)

Middle 26 (65.00) 31 (68.750) 6 (60.000) 7 (58.33)

Low 6 (15.00) 10 (16.67) 3 (30.000) 2 (16.67)

LVSI (%)

<0.001 0.198

Positive 36 (90.00) 21 (43.75) 7 (70.00) 4 (25.00)

Negative 4 (10.00) 27 (56.25) 3 (30.00) 8(75.00)

FIGO staging

<0.505 <0.852

I 15 (37.50) 23 (47.92) 3 (30.00) 5 (41.67)

IA 19 (47.50) 17 (35.41) 6 (60.00) 6 (50.00)

IIB 6 (15.00) 8 (16.67) 1 (10.00) 1 (8.33)
F
rontiers in Oncology
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AC, adenocarcinoma; FIGO, International Federation of Gynecology and Obstetrics; PMI, parametrial invasion; SCC, squamous cell carcinoma; LVSI, lymphovascular space invasion.
FIGURE 2

Radiomics features screened from single-modality and multi-modality.
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model was significantly different from all other models (integrated

NRI score > 0 and either NRI p-value < 0.05 or IDI p-value < 0.05).

In the testing cohort, the diagnostic performance of the T1C+ADC

+DWI model also differed significantly from all models (integrated

NRI score > 0 and either NRI p-value < 0.05 or IDI p-value < 0.05)

except for the T1C+T2 model (NRI p-value = 0.0717; IDI p-value

= 0.4114).

Then, we continued to compare the T1C+T2 model with all

other models (as shown in Table 4). In the training cohort, the

diagnostic performance of the T1C+T2 model was not higher than

that of most models (NRI score ≤ 0) except for the T1C, T2, T1C

+DWI, and T2+ADC models (integrated NRI score > 0 and either

NRI p-values < 0.05 or IDI p-values < 0.05). Therefore, the T1C+T2

model could not be considered an optimal model.

Finally, we believe that the radiomics model based on the T1C

+ADC+DWI sequences is the best model. The calibration curves of

the radiomics model based on the T1C+ADC+DWI sequences

showed good agreement over a wide probability range between
Frontiers in Oncology 06
the training and testing cohorts (Figures 4C, D). The decision

curves show that the radiomics model based on the T1C+ADC

+DWI sequences provides a greater net benefit in both the training

and testing cohorts (Figures 4E, F).
4 Discussion

PMI is widely recognized as a risk factor for CC and has a direct

impact on the prognosis of patients (14). Therefore, accurate

preoperative evaluation of PMI is crucial. Although the disruption

of the low-intensity cervical interstitial ring on T2WI can serve as a

radiological indicator of PMI, the assessment largely depends on the

radiologist’s experience and involves subjective interpretation. By

contrast, radiomics can quantitatively extract high-dimensional

features that reflect underlying biological information related to

genes, proteins, and the tumor microenvironment, which are

invisible to the naked eye (15). Compared with traditional visual
FIGURE 3

(A) Combination of selected radiomic features. (B, C) show the Rad-score distribution for the training and testing cohorts, respectively.
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assessment, radiomics offers a more objective and detailed

evaluation of tumor pathology. In the present study, we

retrospectively collected preoperative T2WI, ADC, DWI, and

T1C images from patients with CC. Radiomics features were

extracted and screened from each imaging modality, and

predictive models were constructed based on single-sequence,

double-sequence , and mult i - sequence combinat ions .
Frontiers in Oncology 07
The diagnostic performance of each model in predicting PMI

status was then systematically compared.

Firstly, our study found that all models demonstrated good

classification performance for predicting PMI status in CC in both

the training and testing cohorts, with AUCs ranging from 0.842 to

1.000 in the training cohort and from 0.755 to 0.917 in the testing

cohort. Several previous studies have reported the predictive
TABLE 2 Performance of the radiomics models in the training and testing cohorts.

Model Method AUC Sensitivity Specificity Accuracy Precision F1 score

Training cohort (n = 88)

T1C YeoJohnson_transformer >> SGD 0.755 (0.675–0.834) 0.562 0.950 0.739 0.931 0.701

T2 Quantile_transformer >> Logistic 0.814 (0.719–0.909) 0.771 0.800 0.784 0.822 0.796

ADC L2_normalization >> Random Forest 0.977 (0.954–1.000) 0.896 0.950 0.920 0.956 0.925

DWI L1_normalization >> Random Forest 0.983 (0.964–1.000) 0.958 0.900 0.932 0.920 0.939

T1C+T2 BoxCox_transformer >> SGD 0.842 (0.764–0.919) 0.833 0.850 0.841 0.870 0.851

T1C+ADC L2_normalization >> Random Forest 0.993 (0.982–1.000) 0.979 0.975 0.977 0.979 0.979

T1C+DWI Z_score_scaler >> QDA 0.872 (0.799–0.944) 0.792 0.825 0.807 0.844 0.817

T2+ADC Min_max_scaler >> Logistic 0.883 (0.812–0.953) 0.812 0.825 0.818 0.848 0.830

T2+DWI Z_score_scaler >> AdaBoost 1.000 (1.000–1.000) 0.979 1.000 0.989 1.000 0.989

ADC+DWI L2_normalization >> Random Forest 0.982 (0.962–1.000) 0.917 0.900 0.909 0.917 0.917

T1C+T2+ADC Quantile_transformer >> Logistic 0.916 (0.858–0.973) 0.833 0.850 0.841 0.870 0.851

T1C+T2+DWI Z_score_scaler >> SVM 0.997 (0.992–1.000) 0.958 0.950 0.955 0.958 0.958

T1C+ADC+DWI L2_normalization >> XGBOOST 1.000 (1.000–1.000) 1.000 1.000 1.000 1.000 1.000

T2+ADC+DWI Z_score_scaler >> AdaBoost 1.000 (1.000–1.000) 0.979 1.000 0.989 1.000 0.989

T1C+T2+ADC+DWI Z_score_scaler >> Gaussian Process 1.000 (0.998–1.000) 1.000 0.975 0.989 0.980 0.990

Testing cohort (n = 22)

T1C YeoJohnson_transformer >> SGD 0.779 (0.605–0.953) 0.583 0.900 0.727 0.875 0.700

T2 Quantile_transformer >> Logistic 0.758 (0.535–0.981) 0.833 0.700 0.773 0.769 0.800

ADC L2_normalization >> Random Forest 0.833 (0.632–1.000) 0.750 1.000 0.864 1.000 0.857

DWI L1_normalization >> Random Forest 0.775 (0.561–0.989) 0.750 0.900 0.818 0.900 0.818

T1C+T2 BoxCox_transformer >> SGD 0.775 (0.592–0.958) 0.750 0.800 0.773 0.818 0.783

T1C+ADC L2_normalization >> Random Forest 0.917 (0.753–1.000) 0.750 1.000 0.864 1.000 0.857

T1C+DWI Z_score_scaler >> QDA 0.775 (0.572–0.978) 0.583 0.800 0.682 0.778 0.667

T2+ADC Min_max_scaler >> Logistic 0.825 (0.640–1.000) 0.750 0.800 0.773 0.818 0.783

T2+DWI Z_score_scaler >> AdaBoost 0.838 (0.667–1.000) 0.750 1.000 0.864 1.000 0.857

ADC+DWI L2_normalization >> Random Forest 0.875 (0.704–1.000) 0.583 1.000 0.773 1.000 0.737

T1C+T2+ADC Quantile_transformer >> Logistic 0.783 (0.579–0.988) 0.750 0.800 0.773 0.818 0.783

T1C+T2+DWI Z_score_scaler >> SVM 0.825 (0.643–1.000) 0.833 0.800 0.818 0.833 0.833

T1C+ADC+DWI L2_normalization >> XGBOOST 0.917 (0.753–1.000) 0.917 1.000 0.955 1.000 0.957

T2+ADC+DWI Z_score_scaler >> AdaBoost 0.812 (0.616–1.000) 0.750 1.000 0.864 1.000 0.857

T1C+T2+ADC+DWI Z_score_scaler >> Gaussian Process 0.883 (0.721–1.000) 0.750 0.900 0.818 0.900 0.818
fr
AUC, area under the curve; ADC, apparent diffusion coefficient; DWI, diffusion-weighted imaging; T2WI, T2-weighted imaging; T1C, contrast-enhanced T1-weighted imaging.
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performance of radiomics and deep learning models for PMI in CC,

with AUCs ranging from 0.73 to 0.91 (11, 16), which is consistent

with our findings. These results indicate that MRI-based radiomics

can serve as a non-invasive biomarker for predicting PMI in CC,

thereby helping to optimize treatment decisions.

Moreover, our study demonstrated that among the 15

radiomics models, the radiomics model based on T1C+ADC

+DWI sequences achieved the best performance in predicting

PMI in CC, with AUCs of 1.000 and 0.917 in the training and
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testing cohorts, respectively. This finding is consistent with Huang

et al. (17), who showed that multiparametric MRI-based radiomics

models outperform single-sequence models in predicting LVSI in

CC. From a biological perspective, the superior performance of the

T1C+ADC+DWI model may be attributed to the complementary

information captured by the three sequences. T1C reflects tumor

perfusion and neovascularization, which are closely related to

tumor aggressiveness and stromal infiltration (18). ADC

quantifies water diffusion within tissue and indirectly reflects
FIGURE 4

ROC curves, calibration curves, and decision curves of each radiomics model in training and testing cohorts. (A, B) ROC curves for the training and
testing cohorts; (C, D) calibration curves for the training and testing cohorts; (E, F) decision curves for the training and testing cohorts.
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tumor cellularity and microstructural integrity. DWI further

enhances tissue contrast based on the diffusion of water

molecules, aiding in the identification of tumor heterogeneity

(19). This combination allows for a more comprehensive

assessment of tumor biology, including microangiogenesis, blood

supply, cellular density, and tissue structure, all of which are highly

relevant to PMI. Interestingly, the model based on four sequences

(T1C+T2WI+ADC+DWI) did not yield significantly better

performance, suggesting that simply adding more sequences does

not necessarily enhance predictive power. Instead, an optimal

combination of informative and complementary sequences may

be more effective for radiomics-based prediction of PMI in CC.
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There are some limitations to this study. Firstly, this was a

single-center study with a relatively small sample size. The model

was developed and validated within the same cohort, which may

limit the generalizability of the findings to broader clinical settings.

Although the current results are encouraging, external validation

using independent, multi-center datasets with larger and more

diverse patient populations is necessary to confirm the robustness

and clinical applicability of the model. Future research will focus on

addressing this limitation. Secondly, this study was retrospective in

nature, and selection bias was inevitable. Thirdly, although

pathological type, degree of differentiation, LVSI (20), deep

stromal invasion, and lymph node metastasis (21) are recognized
TABLE 3 Performance comparison between the T1C+ADC+DWI model and all other models in both the training and testing cohorts.

Group Old model New model AUC p-value NRI score NRI p-value IDI score IDI p-value

Training cohort

T1C T1C+ADC+DWI 0 0.4875 0 0.449 0

T2 T1C+ADC+DWI 0.0001 0.4292 0 0.6985 0

ADC T1C+ADC+DWI 0.0484 0.1542 0.0059 0.4951 0

DWI T1C+ADC+DWI 0.0759 0.1417 0.0107 0.4888 0

T1C+T2 T1C+ADC+DWI 0.0001 0.3167 <0.001 0.2664 0.0007

T1C+ADC T1C+ADC+DWI 0.2008 0.0458 0.1541 0.4249 0

T1C+DWI T1C+ADC+DWI 0.0005 0.3833 0 0.4189 0

T2+ADC T1C+ADC+DWI 0.0012 0.3625 <0.01 0.6596 0

T2+DWI T1C+ADC+DWI 1 0.0208 0.3122 0.4957 0

ADC+DWI T1C+ADC+DWI 0.0877 0.1833 0.0031 0.467 0

T1C+T2+ADC T1C+ADC+DWI 0.0038 0.3167 <0.001 0.5436 0

T1C+T2+DWI T1C+ADC+DWI 0.2479 0.0917 0.0414 0.0623 0.0723

T2+ADC+DWI T1C+ADC+DWI 1 0.0208 0.3122 0.4957 0

T1C+T2+ADC+DWI T1C+ADC+DWI 0.4795 0.025 0.3112 0.4034 0

Testing cohort

T1C T1C+ADC+DWI 0.2974 0.4333 0.0332 0.2221 0.2724

T2 T1C+ADC+DWI 0.1118 0.3833 0.0205 0.553 0

ADC T1C+ADC+DWI 0.5555 0.1667 0.2963 0.4461 <0.01

DWI T1C+ADC+DWI 0.0927 0.2667 0.0630 0.5338 0

T1C+T2 T1C+ADC+DWI 0.2848 0.3667 0.0717 0.1621 0.4114

T1C+ADC T1C+ADC+DWI 1 0.1667 0.1213 0.4404 0

T1C+DWI T1C+ADC+DWI 0.2472 0.5333 0.0041 0.3546 0.0123

T2+ADC T1C+ADC+DWI 0.1891 0.3667 0.0272 0.4702 0

T2+DWI T1C+ADC+DWI 0.3483 0.1667 0.1213 0.4083 0

ADC+DWI T1C+ADC+DWI 0.7455 0.3333 0.0143 0.433 <0.001

T1C+T2+ADC T1C+ADC+DWI 0.277 0.3667 0.0272 0.4757 0

T1C+T2+DWI T1C+ADC+DWI 0.2406 0.2833 0.0581 0.2888 0.0081

T2+ADC+DWI T1C+ADC+DWI 0.257 0.1667 0.1213 0.4173 0

T1C+T2+ADC+DWI T1C+ADC+DWI 0.5712 0.2667 0.0630 0.4578 0
AUC, area under the curve; ADC, apparent diffusion coefficient; DWI, diffusion-weighted imaging; T2WI, T2-weighted imaging; T1C, contrast-enhanced T1-weighted imaging; NRI, net
reclassification improvement; IDI, integrated discrimination improvement.
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pathological predictors of PMI in CC, these variables are only

available through postoperative pathological examination and

therefore were not included in the preoperative radiomics model.

Fourthly, the ROIs in this study were manually delineated by

experienced radiologists. Manual segmentation is time-consuming

and subject to intra- and inter-observer variability, which may affect

the reproducibility and clinical applicability of radiomics analysis.

Although the Dice similarity coefficient was calculated to assess

inter-observer agreement (mean Dice = 0.8566 ± 0.0442), intraclass

correlation coefficient (ICC) analysis—which more directly

evaluates the reproducibility of radiomic features—was not

performed. In future work, we plan to incorporate ICC analysis
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to enhance the reliability of feature extraction and also to integrate

automated or semi-automated segmentation tools to improve

segmentation consistency and operational efficiency.
5 Conclusion

In conclusion, radiomics based on multiparametric MRI

demonstrates excellent performance in predicting PMI in patients

with early-stage CC. This noninvasive approach shows great

promise for individualized preoperative assessment and may

assist clinicians in optimizing surgical strategies while avoiding
TABLE 4 Performance comparison between the T1C+T2 model and all other models in both the training and testing cohorts.

Group Old model New model AUC p-value NRI score NRI p-value IDI score IDI p-value

Training cohort

T1C T1C+T2 0.0309 0.1708 0.0322 0.1826 0.0228

T2 T1C+T2 0.4753 0.1125 0.0805 0.4321 0

ADC T1C+T2 0.0003 −0.1625 0.0511 0.2286 0.0031

DWI T1C+T2 0.0002 −0.175 0.0294 0.2224 0.0019

T1C+ADC T1C+T2 0.0001 −0.2708 0.0002 0.1584 0.0344

T1C+DWI T1C+T2 0.3844 0.0667 0.4099 0.1524 0.0234

T2+ADC T1C+T2 0.2065 0.0458 0.584 0.3931 0

T2+DWI T1C+T2 0.0001 −0.2958 <0.001 0.2292 0.0031

ADC+DWI T1C+T2 0.0002 −0.1333 0.1332 0.2005 0.0083

T1C+T2+ADC T1C+T2 0.007 0 1 0.2772 0

T1C+T2+DWI T1C+T2 0 −0.225 0.0008 −0.2041 0.0020

T1C+ADC+DWI T1C+T2 0.0001 −0.3167 <0.001 −0.2664 0.0007

T2+ADC+DWI T1C+T2 0.0001 −0.2958 0.0003 0.2292 0.0040

T1C+T2+ADC+DWI T1C+T2 0.0001 −0.2917 <0.001 0.1369 0.0480

Testing cohort

T1C T1C+T2 0.963 0.0667 0.7195 0.0599 0.7547

T2 T1C+T2 0.8695 0.0167 0.9224 0.3909 0.0147

ADC T1C+T2 0.5256 −0.2 0.2473 0.2839 0.0745

DWI T1C+T2 1 −0.1 0.6747 0.3717 0.0494

T1C+ADC T1C+T2 0.1559 −0.2 0.2473 0.2782 0.0857

T1C+DWI T1C+T2 1 0.1667 0.4344 0.1925 0.2714

T2+ADC T1C+T2 0.6199 0 1 0.308 0.0570

T2+DWI T1C+T2 0.6537 −0.2 0.4049 0.2461 0.2329

ADC+DWI T1C+T2 0.4593 −0.0333 0.8873 0.2709 0.1543

T1C+T2+ADC T1C+T2 0.8939 0 1 0.3136 0.0169

T1C+T2+DWI T1C+T2 0.6708 −0.0833 0.7202 0.1267 0.5127

T1C+ADC+DWI T1C+T2 0.2848 −0.3667 0.0717 −0.1621 0.4114

T2+ADC+DWI T1C+T2 0.8047 −0.2 0.4049 0.2552 0.2190

T1C+T2+ADC+DWI T1C+T2 0.3048 −0.1 0.6021 0.2957 0.0708
AUC, area under the curve; ADC, apparent diffusion coefficient; DWI, diffusion-weighted imaging; T2WI, T2-weighted imaging; T1C, contrast-enhanced T1-weighted imaging; NRI, net
reclassification improvement; IDI, integrated discrimination improvement.
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overtreatment or undertreatment. With further validation and

integration into clinical workflows, radiomics models have the

potential to contribute meaningfully to precision medicine and

improve clinical decision-making in CC management.
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