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Multimodal ultrasound radiomics 
containing microflow images for 
the prediction of central lymph 
node metastasis in papillary 
thyroid carcinoma 
Jiangyuan Ben1,2†, Qiying Yv1†, Pengfei Zhu2, Junhao Ren2, 
Pu Zhou2, Guifang Chen2 and Ying He1,2* 

1Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, and Medical 
School of Nantong University, Nantong, China, 2Department of Ultrasound, Affiliated Tumor Hospital 
of Nantong University, Nantong, Jiangsu, China 
Objectives: This study aimed to construct a model by applying radiomics and 
machine learning (ML) to multimodal ultrasound images (including grayscale, 
elastography and microflow images) along with clinical data to predict central 
lymph node metastasis (CLNM) in patients with papillary thyroid cancer (PTC). 

Methods: A cohort of 213 patients who underwent thyroidectomy accompanied 
by lymph node dissection (LND) and were pathologically diagnosed with PTC 
postoperatively was enrolled and randomized to the training cohort (n = 170) or 
testing cohort (n = 43). Radiomics features were extracted from multimodal 
images and subsequently screened via the least absolute shrinkage and selection 
operator (LASSO). The same methods were applied to screen clinical features. 
Nine ML algorithms were used to construct clinical models, radiomics models 
and fusion models. Model performance was assessed via receiver operating 
characteristic curves (ROC), decision curve analysis (DCA), and Delong test. 
Finally, the optimal model was interpreted and visualized via Shapley additive 
explanation (SHAP). 

Results: In each modality, 1561 features were extracted from the ultrasound 
images. Sixteen features were ultimately retained, including 6 grayscale features, 
6 elastography features, and 4 microflow features. From the clinical features, 
including gender, age, traditional ultrasound signs and serological indicators, 2 
relevant features were selected. Among the prediction models, the fusion model 
constructed by Multilayer Perceptron (MLP) algorithm showed the best 
diagnostic performance, outperforming the other models in both the training 
cohort (AUC = 0.886) and the testing cohort (AUC = 0.873). 
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Conclusions: The fusion model based on clinical data and multimodal ultrasound 
radiomics has better predictive ability and net clinical benefit for CLNM in patients 
with PTC, confirms the diagnostic value of microflow images for CLNM, and can 
help to evaluate patients’ preoperative lymph node status and make the correct 
decision on the surgical procedure. 
KEYWORDS 

papillary thyroid cancer, multimodal ultrasound, microflow, elastography, lymph node 
metastasis, machine learning, radiomics 
 

1 Introduction 

The incidence of thyroid cancer is steadily increasing globally. 
According to the latest epidemiological data, there were more than 
821,000 new cases of thyroid carcinoma worldwide in 2022, making 
it the seventh most common cancer in terms of overall incidence 
(1). Papillary thyroid carcinoma (PTC), which is the main 
pathological type of thyroid carcinoma, has the best overall 
prognosis (2). However, the incidence of cervical lymph node 
metastasis in PTC can be as high as 40–90% (3–6) Cervical

lymph node metastasis is one of the major risk factors that 
increases the recurrence rate and decreases the survival rate of 
patients with PTC (7). Therefore, prophylactic central lymph node 
dissection (pCLND) is usually considered for PTC patients in China 
and some other Asian–Pacific countries to reduce the risk 
of reoperations. 

Whether routine pCLND is an overtreatment has become one 
of the major controversies in PTC treatment (8). In clinical practice, 
pCLND often leads to complications such as laryngeal recurrent 
nerve injury, hypoparathyroidism and chyle leakage. According to 
the American Thyroid Association guidelines, thyroidectomy 
without pCLND can be considered for small, noninvasive, 
clinically node-negative PTCs and most follicular carcinomas (3). 
Hence, accurate preoperative assessment of cervical lymph node 
metastasis, especially central lymph node metastasis (CLNM), is 
crucial for surgical decision-making. 

Currently, the preoperative assessment of cervical lymph nodes 
in patients with PTC relies on imaging techniques (mainly 
ultrasound) and fine needle aspiration (FNA). According to 
previous studies, due to the anatomical structure of the central 
neck, conventional ultrasound has a sensitivity of less than 55% in 
the preoperative diagnosis of CLNM, which is inferior to that of 
lateral lymph node metastasis (LLNM) (9, 10). Some metastatic 
lymph nodes lack typical malignant features, which may lead to 
false-negative diagnoses. FNA is an invasive test with limited 
accuracy that may be affected by the size of metastatic lesions and 
operators’ technical expertise, and therefore is not currently the 
preferred clinical method for evaluating CLNM (11, 12). Not all 
lymph nodes can be definitively diagnosed by FNA. Some patients 
yield non-diagnostic samples due to inadequate sampling, while 
02 
others require further evaluation for indeterminate cytology results, 
including repeat FNA, molecular testing, or diagnostic excision. In 
addition, FNA may lead to certain adverse outcomes, such as 
hematoma formation and tumor cell seeding (13, 14). In recent 
years, multimodal ultrasound diagnosis, which combines 
ultrasound grayscale patterns, ultrasound Doppler patterns, 
ultrasound elastography patterns, and ultrasound microflow 
patterns, has been gradually promoted (15). Multimodal 
ultrasound offers a new perspective for disease diagnosis. Wu 
et al. and Li et al. demonstrated that elastography images and 
microflow images correlate with malignancy and LNM in PTC, but 
did not use a quantitative approach to analyze multimodal images 
(16, 17). 

Radiomics allows quantitative features to be extracted from 
medical images for more precise analysis of lesions, which is in line 
with the trend toward precision medicine (18). The application of 
radiomics to multimodal ultrasound images has been reported to be 
effective in improving the diagnostic performance of ultrasound. 
Liu et al. applied radiomics to grayscale and Doppler images of 
endometrial cancer patients to create a multimodal ultrasound 
radiomics model for predicting LNM (19). However, there are no 
studies on the use of multimodal ultrasound to predict CLNM in 
thyroid cancer patients. 

In our study, radiomics and machine learning were applied to 
multimodal ultrasound images, including grayscale images, 
elastography images and microflow images. Finally, multimodal 
ultrasound radiomics features were combined with clinical features 
to construct a machine learning (ML) model for the preoperative 
prediction of CLNM in PTC patients. 
2 Materials and methods 

2.1 Patients and data collection 

This study conducted a comprehensive review of medical 
records from February 2023 to June 2024 at the Affiliated Tumor 
Hospital of Nantong University. All patients with resectable 
papillary thyroid carcinoma (PTC) underwent pCLND according 
to current guidelines. The inclusion criteria were as follows: (1) 
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first-time thyroid surgery and CLND, (2) postoperative pathological 
diagnosis of PTC, (3) complete clinical data and (4) thyroid 
ultrasound at our institution within 1 week before surgery. We 
excluded patients who (1) had distant metastases or other 
malignancies, (2) had skip metastases, (3) whose multimodal 
ultrasound images were incomplete, or (4) had undergone 
previous interventional therapy. The inclusion process is shown 
in Figure 1. 

Finally, 213 patients with PTC who met specific criteria were 
included in the study. Basic clinical data, including age, lesion 
characteristics on ultrasound, and preoperative serological data, 
were collected. Patient data were randomly divided into a training 
set (n=170) and a testing set (n=43). The clinical baseline 
characteristics showed no significant differences between the 
training and validation sets, demonstrating their comparability. 
Cervical lymph node status was determined on the basis of 
postoperative pathology results. 

The research adhered to the principles of the Declaration of 
Helsinki. All procedures were performed in accordance with 
Frontiers in Oncology 03 
established institutional protocols and regulatory standards. Given 
the retrospective nature of the investigation, the ethics committee 
granted a waiver for informed consent (approval identifier: 2024­
097-07). Prior to the review, patients’ medical records were 
anonymized to remove any identifying information. 
2.2 US image acquisition 

Preoperative US images were acquired by a certified physician 
with more than 20 years of experience in thyroid ultrasound using a 
SAMSUNG (RS85) instrument equipped with a 3–12 MHz linear 
probe. The parameters of the ultrasound machine were fixed 
according to the routine requirements of thyroid ultrasound to 
obtain standard thyroid images. The specific parameters, including 
scanning depth sufficient to fully visualize the thyroid gland, 
resolution  and  frequency  adequate  to  meet  diagnostic  
requirements for radiologists, and other clinically relevant 
specifications, were determined based on the Chinese guidelines 
FIGURE 1 

Flowchart of patient enrollment, including inclusion and exclusion criteria. 
frontiersin.org 

https://doi.org/10.3389/fonc.2025.1604951
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ben et al. 10.3389/fonc.2025.1604951 
for the diagnosis and management of thyroid nodules and 
differentiated thyroid cancer (Second edition), along with 
previous relevant studies (20–22). For all PTC patients, 
multimodal US images displaying the lesion at its maximum 
diameter, including grayscale, elastography and microflow images, 
were acquired. All conventional ultrasound features were uniformly 
evaluated by a single radiologist with 20 years of experience in 
thyroid diagnosis, who was blinded to the pathological results, to 
eliminate inter-observer variability. 
2.3 Ultrasound image segmentation and 
radiomics feature extraction 

ITK-SNAP (version 3.8.0) was used to segment the ultrasound 
images manually. The region of interest (ROI) was independently 
segmented by radiologist 1, who has more than 10 years of 
experience in thyroid ultrasound. The radiologist outlined the 
entire tumor area along the lesion boundaries on grayscale, 
elastography and microflow images. After accurate segmentation 
of the ROIs, 1561 distinctive features were extracted from each 
modality using the PyRadiomics open-source tool (available at 
https://www.example.com/en/latest/index.html). 

Two weeks later, 50 images of randomly selected cases were 
redrawn by radiologists 1 and 2, both of whom have more than 10 
years of experience in thyroid ultrasound, and the features were 
then extracted again via the method described above. In order to 
evaluate inter- and intra-observer segmentation consistency, 
intragroup correlation coefficient (ICC) tests were performed 
within groups using radiomics features obtained at different times 
by radiologist 1 and between groups using radiomics features 
obtained by radiologists 1 and 2. Radiomics features with ICC 
values greater than 0.75 are considered to be stable features. We 
extracted the stable features from the images in the training cohort, 
and then these features were filtered by an independent t test after 
Z-score normalization. Subsequently, redundant features with 
thresholds above 0.9 in the Pearson correlation analysis were 
removed. The identified features are analyzed via the least 
absolute shrinkage and selection operator (LASSO), and the most 
important features are selected for CLNM prediction. 
2.4 Establishment of the radiomics model 

Nine ML algorithms—Logistic Regression (LR), Naive Bayes 
Classifier (NaiveBayes), Support Vector Machine (SVM), Random 
Forest Classifier (RandomForest), Extremely Randomized Trees 
(Extra Trees), Extreme Gradient Boosting (XGBoost), Light 
Gradient Boosting Machine (LightGBM), Adaptive Boosting 
(AdaBoost), and Multilayer Perceptron (MLP)—were utilized to 
analyze the radiomics features obtained through LASSO screening. 
For each modality, the model with the highest area under the curve 
(AUC) and its corresponding algorithm, which is deemed most 
Frontiers in Oncology 04
suitable for that modality, are retained. The three algorithms 
identified from the unimodal ultrasound radiomics model 
selection were then applied to the construction of three 
multimodal ultrasound radiomics models, resulting in a total of 
nine models. Among these, the model exhibiting the highest AUC 
was selected as the definitive multimodal ultrasound radiomics 
model (R model), and the corresponding algorithm was then used 
to construct the clinical radiomics model (C-R model). The analysis 
process of radiomics is illustrated in Figure 2. 
2.5 Establishment of the clinical model 

Z-score normalization was also utilized on clinical features, and 
these features were subsequently filtered by independent t tests or 
Mann-Whitney U test. After removing redundant features with 
thresholds above 0.9 in the Pearson correlation analysis, the 
identified features were analyzed via LASSO, and the most 
important features were selected for CLNM prediction. Similar to 
the construction of the ultrasound radiomics model, nine 
algorithms were utilized to develop the clinical model (C model), 
and then the model with the highest AUC and its corresponding 
algorithm were selected. 
2.6 Establishment of the clinical radiomics 
model 

All features, including multimodal ultrasound radiomics 
features and clinical features, underwent the same screening 
process as described above. The two algorithms most suitable for 
the R model and C model were applied to the construction of 
construct the C-R model, and the optimal model was selected. 
The mind map for the model construction in this study is 
depicted in Figure 3. We employed the DeLong test to 
compare the R-model, the C-model, and the C-R model. 
Decision curve analysis (DCA) was used to calculate and 
compare the net benefits at various threshold probabilities for 
both the training and validation cohorts, thereby assessing the 
clinical utility of the three models. 
2.7 Interpretability of the optimal model 

SHAP (Shapley additive explanation) was used to dissect the 
contribution of individual variables to the optimal model. SHAP 
addresses the inherent ‘black box’ nature of ML models by 
calculating the average marginal contribution to quantify each 
feature’s impact on the prediction (23, 24). By analyzing the 
importance of each feature and ranking them in descending order 
according to their respective SHAP values, the study identified key 
predictors, thereby improving the understanding of the complex 
relationship between CLNM and radiomics features. 
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FIGURE 3 

Mind map for the model construction in this study explaining the process of selecting algorithms and modalities. 
FIGURE 2 

Radiomics analysis flowchart showing the various steps involved in radiomics research and examples of each step. 
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2.8 Statistics 

Statistical analyses were conducted using Python (version 3.7), R 
(version 4.2.0), and IBM SPSS Statistics 26.0 (IBM Corp, Armonk, 
NY, USA). Categorical variables and continuous variables are 
expressed as numbers and percentages and mean ± standard 
deviations, respectively. Independent t test were used to compare 
normally distributed continuous variables, whereas Mann–Whitney 
U test was employed to assess categorical variables. The AUC was 
calculated to compare the diagnostic performance of the models. The 
DeLong test was used to compare the differences between the models. 
3 Results 

3.1 Patient characteristics 

This study enrolled a total of 213 patients with PTC, comprising 124 
positive  patients  and 89 negative patients.  There were no statistically  
significant differences between the training and validation groups in 
terms of age, gender, TSH, T3, T4, FT3, FT4, Tg, TgAb, TPOAb, size, 
margin, macrocalcification, microcalcification, orientation, C-TIRADS, 
multifocality and CLNM. The statistical summary of the basic clinical 
characteristics is presented in Table 1. The training and testing cohorts 
demonstrated comparable baseline characteristics. 
Frontiers in Oncology 06
3.2 Radiomics model 

The 27 unimodal ultrasound radiomics models constructed using 
nine algorithms based on three individual modalities are presented in 
Table 2. For the grayscale model (G model), elastography model (E 
model), and microflow model (M model), the optimal algorithms are 
MLP, LightGBM, and AdaBoost, respectively. 

Considering that the diagnostic approach in clinical practice 
relies primarily on grayscale ultrasound combined with other 
modalities, three combinations were applied to construct 
multimodal ultrasound radiomics models, including grayscale & 
elastography (G-E model), grayscale & microflow (G-M model), 
and grayscale & elastography & microflow (G-E-M model). 

The multimodal ultrasound models were constructed using the 
three algorithms above (MLP, LightGBM, and AdaBoost), and MLP 
achieved the highest AUC in all three multimodal ultrasound 
models. The G-E-MLP model achieved an AUC of 0.824 (95% 
CI, 0.764–0.884) in the training cohort and an AUC of 0.801 (95% 
CI, 0.655–0.947) in the testing cohort. The G-M-MLP model 
achieved an AUC of 0.833 (95% CI, 0.774–0.893) in the training 
cohort and an AUC of 0.815 (95% CI, 0.668–0.962) in the testing 
TABLE 1 The clinical and descriptive semantic features of patients 
with PTC. 

Parameters 
Training 
cohort 
(N= 170) 

Testing 
cohort 
(N= 43) 

P-value 

Age 44.50 ± 12.39 44.86 ± 13.48 0.203 

Gender 0.772 

Male 35 (20.6%) 8 (18.6%) 

Female 135 (79.4%) 35 (81.4%) 

TSH 2.03 ± 1.17 1.63 ± 0.92 0.226 

T3 1.83 ± 0.38 1.88 ± 0.47 0.140 

T4 107.62 ± 24.72 107.63 ± 19.33 0.923 

FT3 4.96 ± 1.40 5.00 ± 1.19 0.986 

FT4 16.67 ± 5.69 16.71 ± 2.51 0.373 

Tg 30.68 ± 66.71 31.23 ± 45.56 0.701 

TgAb 180.50 ± 616.70 99.71 ± 214.09 0.147 

TPOAb 39.07 ± 92.29 35.83 ± 95.57 0.675 

Size 1.08 ± 0.74 1.02 ± 0.59 0.461 

Margin 0.901 

Smooth 43 (25.3%) 11 (25.6%) 

Irregular 32 (18.8%) 9 (20.9%) 

Fuzzy 65 (38.2%) 14 (32.6%) 

(Continued) 
TABLE 1 Continued 

Parameters 
Training 
cohort 
(N= 170) 

Testing 
cohort 
(N= 43) 

P-value 

ET 30 (17.6%) 9 (20.9%) 

Macrocalcification 0.605 

Negative 110 (64.7%) 26 (60.5%) 

Positive 60 (35.3%) 17 (39.5%) 

Microcalcification 0.218 

Negative 77 (45.3%) 15 (34.9%) 

Positive 93 (54.7%) 28 (65.1%) 

Orientation 0.241 

Horizontal 74 (43.5%) 23 (53.5%) 

Longitudinal 96 (56.5%) 20 (46.5%) 

C-TIRADS 0.969 

4A 11 (6.5%) 3 (7.0%) 

4B 59 (34.7%) 14 (32.6%) 

4C 54 (34.7%) 14 (32.6%) 

5 12 (7.1%) 2 (4.7%) 

6 34 (20.0%) 10 (23.3%) 

Multifocality 0.448 

Negative 104 (61.2%) 29 (67.4%) 

Positive 66 (38.8%) 14 (32.6%) 
 
fr
TSH, thyroid-stimulating hormone; T3, triiodothyronine; T4, thyroxine; FT3, free 
triiodothyronine; FT4, free thyroxine; Tg, thyroglobulin; TgAb, thyroglobulin antibody; 
TPOAb, thyroid peroxidase antibody; Size, the maximum diameter of the tumor as displayed 
on grayscale ultrasound images; C-TIRADS, Chinese thyroid imaging reporting and data system. 
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TABLE 2 Performance of the unimodal ultrasound radiomics models. 

Model 
AUC (95% CI) ACC SEN SPE 

Modality Group Algorithm 

Grayscale Training Cohort LR 0.794 (0.727 - 0.860) 0.735 0.742 0.726 

NaiveBayes 0.780 (0.711 - 0.849) 0.706 0.649 0.781 

SVM 0.710 (0.633 - 0.787) 0.671 0.577 0.795 

RandomForest 0.744 (0.674 - 0.815) 0.647 0.526 0.808 

ExtraTrees 0.763 (0.696 - 0.830) 0.694 0.794 0.562 

XGBoost 0.747 (0.682 - 0.812) 0.665 0.485 0.904 

LightGBM 0.776 (0.708 - 0.844) 0.688 0.608 0.795 

AdaBoost 0.794 (0.731 - 0.858) 0.647 0.402 0.973 

MLP * 0.813 (0.749 - 0.878) 0.741 0.660 0.849 

Testing Cohort LR 0.782 (0.635 - 0.930) 0.698 0.667 0.750 

NaiveBayes 0.728 (0.562 - 0.894) 0.698 0.667 0.750 

SVM 0.671 (0.482 - 0.861) 0.721 0.741 0.687 

RandomForest 0.773 (0.639 - 0.907) 0.651 0.444 1.000 

ExtraTrees 0.623 (0.452 - 0.794) 0.535 0.333 0.875 

XGBoost 0.711 (0.569 - 0.853) 0.605 0.444 0.875 

LightGBM 0.773 (0.629 - 0.917) 0.651 0.593 0.750 

AdaBoost 0.615 (0.437 - 0.792) 0.512 0.556 0.437 

MLP * 0.799 (0.653 - 0.944) 0.767 0.741 0.812 

Elastography Training Cohort LR 0.792 (0.725 - 0.859) 0.741 0.711 0.781 

NaiveBayes 0.733 (0.659 - 0.807) 0.653 0.495 0.863 

SVM 0.785 (0.717 - 0.853) 0.724 0.701 0.753 

RandomForest 0.769 (0.699 - 0.839) 0.700 0.701 0.699 

ExtraTrees 0.715 (0.640 - 0.789) 0.553 0.247 0.959 

XGBoost 0.743 (0.679 - 0.807) 0.671 0.515 0.877 

LightGBM * 0.800 (0.735 - 0.866) 0.712 0.598 0.863 

AdaBoost 0.768 (0.704 - 0.832) 0.618 0.392 0.918 

MLP 0.760 (0.690 - 0.831) 0.700 0.598 0.836 

Testing Cohort LR 0.736 (0.564 - 0.908) 0.767 0.889 0.562 

NaiveBayes 0.758 (0.596 - 0.921) 0.698 0.704 0.687 

SVM 0.727 (0.556 - 0.898) 0.767 0.926 0.500 

RandomForest 0.765 (0.610 - 0.920) 0.651 0.630 0.687 

ExtraTrees 0.760 (0.615 - 0.906) 0.488 0.222 0.937 

XGBoost 0.579 (0.413 - 0.745) 0.488 0.407 0.625 

LightGBM * 0.775 (0.624 - 0.927) 0.698 0.704 0.687 

AdaBoost 0.653 (0.495 - 0.811) 0.395 0.037 1.000 

MLP 0.706 (0.528 - 0.884) 0.698 0.778 0.562 

(Continued) 
F
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cohort. The G-E-M-MLP model was selected as the optimal R 
model, with an AUC of 0.860 (95% CI, 0.806–0.914) in the training 
cohort and an AUC of 0.859 (95% CI, 0.747–0.970) in the testing 
cohort. In the training set, the accuracy, sensitivity, and specificity 
were 0.771, 0.763, and 0.781, respectively, whereas in the testing set, 
the accuracy, sensitivity, and specificity were 0.791, 0.815, and 
0.750, respectively, as shown in Table 3. The ROC curves and 
decision curves are shown in Figure 4. 
3.3 Clinical model 

The C models were constructed using nine different algorithms. 
Among them, the clinical model built with the XGBoost algorithm 
demonstrated the best performance, achieving an AUC of 0.751 (95% 
CI, 0.679–0.823) in the training cohort and an AUC of 0.684 (95% CI, 
0.523–0.845) in the testing cohort. In the training set, the accuracy, 
sensitivity, and specificity were 0.659, 0.577, and 0.767, respectively, 
while in the testing set, the accuracy, sensitivity, and specificity were 
0.558, 0.407, and 0.812, respectively, as shown in Table 4. The  factors  
ultimately included in the C model are shown in Figure 5, and  the ROC  
curves and decision curves are shown in Figure 4. 
Frontiers in Oncology 08
3.4 Clinical radiomics model 

The R-C model was constructed using MLP, which is most 
suitable for the R model, and XGBoost, which is most suitable for 
the C model. The performances of the optimal R model, the optimal 
C model, and the R-C models are shown in Table 4. Ultimately, the 
R-C-MLP model demonstrated the best performance in both the 
training and testing cohorts, with AUCs of 0.886 (95% CI, 0.837– 
0.935) and 0.873 (95% CI, 0.766–0.979), respectively. In the training 
set, the accuracy, sensitivity, and specificity were 0.800, 0.794, and 
0.808, respectively, while in the testing set, the accuracy, sensitivity, 
and specificity were 0.837, 0.889, and 0.750, respectively. Figure 4 
presents the ROC curves and DCA, illustrating the comparative 
analysis of the R model, C model, and R-C model as assessed by the 
Delong test. Additionally, the calibration curve in Figure 4 
illustrates the model’s goodness-of-fit. 

We conducted a comprehensive calculation of the overall and 
individual Shapley values for the R-C model to enhance its 
interpretability and facilitate its clinical application. For the 
overall visualization, Figure 6 presents the feature weight map 
and SHAP Beeswarm plot. For individual visualization, Figure 7 
illustrates two typical cases, displaying the SHAP force plots. In 
TABLE 2 Continued 

Model 
AUC (95% CI) ACC SEN SPE 

Modality Group Algorithm 

Microflow Training Cohort LR 0.751 (0.678 - 0.823) 0.682 0.639 0.740 

NaiveBayes 0.718 (0.641 - 0.795) 0.659 0.536 0.822 

SVM 0.742 (0.668 - 0.816) 0.676 0.629 0.740 

RandomForest 0.782 (0.714 - 0.851) 0.682 0.536 0.877 

ExtraTrees 0.705 (0.634 - 0.777) 0.576 0.289 0.959 

XGBoost 0.715 (0.645 - 0.785) 0.588 0.330 0.932 

LightGBM 0.757 (0.687 - 0.828) 0.659 0.485 0.890 

AdaBoost * 0.792 (0.728 - 0.857) 0.682 0.660 0.712 

MLP 0.742 (0.669 - 0.815) 0.688 0.732 0.630 

Testing Cohort LR 0.655 (0.478 - 0.833) 0.674 0.630 0.750 

NaiveBayes 0.736 (0.555 - 0.918) 0.767 0.815 0.687 

SVM 0.660 (0.486 - 0.833) 0.651 0.630 0.687 

RandomForest 0.721 (0.548 - 0.894) 0.628 0.519 0.812 

ExtraTrees 0.616 (0.432 - 0.800) 0.558 0.519 0.625 

XGBoost 0.733 (0.567 - 0.899) 0.465 0.259 0.812 

LightGBM 0.641 (0.475 - 0.808) 0.558 0.444 0.750 

AdaBoost * 0.811 (0.666 - 0.956) 0.651 0.630 0.687 

MLP 0.650 (0.463 - 0.838) 0.698 0.815 0.500 
 

AUC, area under the curve; ACC, accuracy; CI, confidence interval; SEN, sensitivity; SPE, specificity; LR, Logistic Regression; NaiveBayes, Naive Bayes Classifier; RandomForest, Random Forest 
Classifier; SVM, Support Vector Machine; ExtraTrees, Extremely Randomized Trees; XGBoost, Extreme Gradient Boosting; LightGBM, Light Gradient Boosting Machine; MLP, Multilayer 
Perceptron; AdaBoost, Adaptive Boosting; “ * ” denotes the algorithm that was ultimately selected. 
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addition, the Pearson correlations of the features included in the 
final model are shown in Figure 8. 
4 Discussion 

We developed and tested three types of models, including R 
models, C models and R-C models, for predicting the risk of 
developing CLNM in patients with PTC. The R models include 
unimodal, bimodal and trimodal ultrasound radiomics models, of 
which the trimodal ultrasound radiomics model trained using MLP 
yielded the best prediction. Compared with previous models, the 
optimal R model incorporates features from grayscale images, 
elastography images, and microflow images, while the R-C model 
further integrates clinical features, resulting in a greater AUC in 
both cohorts (25–28) Significantly, the novelty lies in the ability to 
assess the probability of CLNM risk preoperatively and 
noninvasively on the basis of comprehensive and detailed 
multimodal ultrasound image features. Compared with previous 
models, we included more ultrasound modalities and more precise 
ultrasound image features for prediction. The results fully 
demonstrate the significant clinical application value of ML 
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models constructed by combining multimodal ultrasound 
radiomics features with clinical features in the  preoperative
assessment of CLNM in PTC patients. These models provide 
clinicians with more comprehensive and personalized imaging 
in fo rmat ion ,  which  i s  c ruc i a l  f o r  the  se l e c t ion  o f  
treatment strategies. 

The R-C-MLP model demonstrated superior sensitivity in both 
the training (0.794) and validation (0.889) cohorts, significantly 
outperforming conventional ultrasound methods (sensitivity ≈0.55) 
for detecting CLNM. With accuracy exceeding 0.80 in both datasets, 
these results strongly support the clinical applicability of this model. 
After inputting each patient’s imaging data into the model, it 
generates an easy-to-interpret predicted probability of CLNM risk 
(as shown in Figure 7), which provides direct guidance for 
subsequent treatment planning. This model can serve as a 
diagnostic reference for radiologists, enabling either active 
monitoring or thermal ablation for patients predicted to have low 
CLNM risk. Furthermore, the model’s outcomes provide evidence-
based guidance for clinicians’ therapeutic decision-making, 
facilitating personalized surgical approaches tailored to individual 
patients — a significant advancement over the current uniform 
pCLND protocol applied to all cases. 
TABLE 3 Performance of the multimodal ultrasound radiomics models. 

Model 
AUC (95% CI) ACC SEN SPE 

Modality Group Algorithm 

G-E Training Cohort LightGBM 0.769 (0.700 - 0.839) 0.665 0.588 0.767 

AdaBoost 0.799 (0.736 - 0.863) 0.682 0.515 0.904 

MLP * 0.824 (0.764 - 0.884) 0.747 0.701 0.808 

Testing Cohort LightGBM 0.612 (0.437 - 0.788) 0.535 0.481 0.625 

AdaBoost 0.644 (0.473 - 0.814) 0.488 0.222 0.937 

MLP * 0.801 (0.655 - 0.947) 0.744 0.704 0.812 

G-M Training Cohort LightGBM 0.809 (0.743 - 0.875) 0.747 0.763 0.726 

AdaBoost 0.801 (0.738 - 0.865) 0.724 0.804 0.616 

MLP * 0.833 (0.774 - 0.893) 0.771 0.845 0.671 

Testing Cohort LightGBM 0.813 (0.676 - 0.949) 0.767 0.815 0.687 

AdaBoost 0.640 (0.461 - 0.819) 0.605 0.630 0.562 

MLP * 0.815 (0.668 - 0.962) 0.791 0.926 0.562 

G-E-M # Training Cohort LightGBM 0.764 (0.693 - 0.835) 0.653 0.557 0.781 

AdaBoost 0.821 (0.758 - 0.883) 0.729 0.711 0.753 

MLP * 0.860 (0.806 - 0.914) 0.771 0.763 0.781 

Testing Cohort LightGBM 0.714 (0.556 - 0.872) 0.581 0.407 0.875 

AdaBoost 0.737 (0.570 - 0.904) 0.605 0.556 0.687 

MLP * 0.859 (0.747 - 0.970) 0.791 0.815 0.750 
 

G-E, grayscale & elastography; G-M, grayscale & microflow; G-E-M, grayscale & elastography & microflow; AUC, area under the curve; ACC, accuracy; CI, confidence interval; SEN, sensitivity; 
SPE, specificity; LightGBM, Light Gradient Boosting Machine; AdaBoost, Adaptive Boosting; MLP, Multilayer Perceptron; “ # ” denotes the modality that was ultimately selected; “ * ” denotes the 
algorithm that was ultimately selected. 
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4.1 Prediction performance of clinical 
features 

As the primary imaging method for determining CLNM, 
ultrasound typically uses the diameter of the lymph nodes and 
Frontiers in Oncology 10 
changes in internal echogenicity as criteria for abnormal detection 
(29). However, CLN images are susceptible to interference from neck 
anatomy. Consequently, the misdiagnosis rate is high for patients 
with LNM who do not exhibit obvious abnormalities, necessitating 
more sensitive predictive methods in clinical practice. In this study, 
FIGURE 4 

The ROC curves, DCA, Delong and Calibration curves for the R model, C model, and R-C model in both the training and testing cohorts. (A) ROC 
curves in the training cohort. (B) ROC curves in the testing cohort. (C) DCA in the training cohort. (D) DCA in the testing cohort. (E) The training 
cohort Delong. (F) The testing cohort Delong. (G) Calibration curves in the training cohort. (H) Calibration curves in the testing cohort. ROC, receiver 
operating characteristic; DCA, decision curve analysis. 
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the conventional ultrasound feature ultimately incorporated into the 
model was the maximum diameter of the tumor. Figure 5 illustrates 
that a larger maximum tumor diameter is a contributing factor to 
CLNM, which aligns with findings from previous research (30, 31). In 
the vast majority of patients with PTC, the risk of LNM increases with 
increasing tumor size. Thus, tumor size indirectly reflects LNM. 
Gender is an important factor in the development of PTC. The 
percentage of women with PTC is significantly higher than that of 
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men. While previous studies have shown that male gender is one of 
the factors contributing to the development of CLNM in patients 
with PTC (32, 33), which was also demonstrated in this study 
(Figure 5). The optimal C model established on the basis of tumor 
size and gender yielded AUC values of 0.751 and 0.684 for the 
training and testing cohorts, respectively (Table 4). However, the 
diagnostic performance is not sufficient to meet the requirements for 
clinical diagnostic applications. 
FIGURE 5 

The factors included in the C models. 
TABLE 4 Performance of the optimal R model, the optimal C model, and the R-C models. 

Model 
AUC (95% CI) ACC SEN SPE 

Modality Group Algorithm 

R Training Cohort MLP 0.860 (0.806 - 0.914) 0.771 0.763 0.781 

Testing Cohort MLP 0.859 (0.747 - 0.970) 0.791 0.815 0.750 

C Training Cohort XGBoost 0.751 (0.679 - 0.823) 0.659 0.577 0.767 

Testing Cohort XGBoost 0.684 (0.523 - 0.845) 0.558 0.407 0.812 

R-C # Training Cohort XGBoost 0.826 (0.765 - 0.887) 0.694 0.557 0.877 

MLP * 0.886 (0.837 - 0.935) 0.800 0.794 0.808 

Testing Cohort XGBoost 0.654 (0.481 - 0.827) 0.581 0.556 0.625 

MLP * 0.873 (0.766 - 0.979) 0.837 0.889 0.750 
R, radiomics; C, clinical; R-C, radiomics &clinical; AUC, area under the curve; ACC, accuracy; CI, confidence interval; SEN, sensitivity; SPE, specificity; XGBoost, Extreme Gradient Boosting; 
LightGBM, Light Gradient Boosting Machine; MLP, Multilayer Perceptron; “ # ” denotes the modality that was ultimately selected; “ * ” denotes the algorithm that was ultimately selected. 
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FIGURE 6 

(A) The feature weight map presents all features and (B) the SHAP beeswarm plot visualizes feature impacts on prediction probability, where red and 
blue colors respectively indicate positive and negative directional influences. SHAP, Shapley Additive Explanations. 
FIGURE 7 

Two (A, B) local SHAP plots visually demonstrates the contribution of the features to the predicted probability for specific cases, with red and blue 
colors representing positive and negative influences, respectively. SHAP, Shapley Additive Explanations. 
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4.2 Prediction performance of R models 
and R-C models 

With the advent of radiomics, traditional imaging can be 
transformed into high-dimensional data for image analysis, 
thereby better quantifying lesion characteristics that are 
indistinguishable to the naked eye (34, 35) and  reducing  the
subjectivity of diagnostic physicians (36, 37). Radiomics has been 
widely applied in various diseases, such as predicting tumor staging, 
tissue typing, and genetic status (38–40). This study incorporates 
microflow images, a novel technology not yet widely used in clinical 
practice, along with commonly used grayscale images and 
elastography images. The experimental results show that the R­
MLP model performs well, with AUCs for the training and testing 
cohorts being 0.860 and 0.859, respectively, both exceeding those of 
the clinical model (Figure 4). 

To further enhance diagnostic efficiency, a R-C-MLP model was 
developed by integrating clinical features with multimodal ultrasound 
radiomics features, achieving areas under the ROC curve of 0.886 and 
0.873 for the training and testing cohorts, respectively. The inclusion 
of clinical features effectively improved the model’s accuracy, 
sensitivity, and specificity (Table 4), reflecting the role of clinical 
features in the noninvasive assessment of CLNM. The Delong test 
indicated that the differences between the R-C-MLP model and the 
C-MLP model in the training and testing cohorts were statistically 
significant, demonstrating that ultrasound radiomics can significantly 
contribute to the clinical diagnosis of CLNM (Figure 4). Moreover, 
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the calibration curve presented in Figure 4 further validates the 
predictive good fit of the R-C-MLP model. 
4.3 Interpretation of the R-C MLP model 

The MLP algorithm was eventually adopted in the construction 
of the fusion model. To explain the R-C MLP model, this study 
utilized SHAP to visualize the importance of model features and 
calculated SHAP values via game theory methods. SHAP values 
allocate the probability of model output to each feature, helping to 
understand the contribution of each feature to the prediction 
results, thereby making the model’s predictions more transparent 
and interpretable. The final model incorporated eighteen features, 
including 6 grayscale image features, 6 elastography image features, 
4 microflow image features, and 2 clinical features. The weight of 
each feature in the model is shown in Figure 6A. The SHAP values 
of these features for each case are presented in Figure 6B. The 
visualization of Pearson correlation revealed that the correlations 
between grayscale features and elastography features, as well as 
between grayscale features and microflow features, were relatively 
low (below 0.5) (Figure 8). This finding indicates that elastography 
and microflow modalities can provide supplementary information 
to conventional grayscale ultrasound. 

Furthermore, of the two bimodal models, the predictive 
performance of the G-M model was superior to that of the G-E 
model (Table 3), suggesting that although elastography is the more 
FIGURE 8 

The heatmap of Pearson correlation for the features used in the R-C model. Lighter hues and smaller dot sizes indicate weaker feature correlations. 
frontiersin.org 

https://doi.org/10.3389/fonc.2025.1604951
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ben et al. 10.3389/fonc.2025.1604951 
commonly used technique in clinical diagnostics today, microflow 
may have comparable or greater potential application. According to 
previous studies, the microflow patterns of thyroid nodules is 
associated with their malignancy (17). Moreover, several studies 
have demonstrated that the distribution and morphology of 
microvessels within tumor lesions are closely associated with 
tumor aggressiveness and microenvironment (41, 42). Ultrasound 
microflow imaging can visualize microvessels, providing a 
convenient method for assessing intratumoral microvasculature 
and offering new insights into tumor pathophysiology. In 
contrast, ultrasound elastography only reflects tissue stiffness 
changes and cannot provide additional information related to 
tumor progression. Therefore, models incorporating ultrasound 
microflow images may yield superior predictive performance. 

In the R-C MLP model, the microflow feature logarithm_ 
firstorder_Maximum_Microflow had the highest weight, indicating 
its significant contribution to the model’s outcomes  (Figure 6A). 
Additionally, the microflow feature wavelet_HHH_ngtdm_ 
Contrast_Microflow also exhibited a relatively high weight. The 
feature logarithm_firstorder_Maximum_Microflow quantifies the 
gray-level distribution characteristics of an image. In microflow 
images, a higher value of this feature indicates richer microvascular 
distribution within the lesion. The feature wavelet_HHH_ngtdm_ 
Contrast_Microflow enhances fine structural details and measures 
local contrast in the image. For microflow images, an elevated value of 
this feature may suggest more complex microvascular morphology in 
the lesion. Our study revealed that higher values of these two features 
correlate with an increased risk of CLNM, implying that lesions with 
more abundant microflow and more complex microflow morphology 
are more likely to exhibit metastatic spread — a finding consistent with 
previous research (17). The results demonstrated that microflow 
ultrasound can provide a completely new perspective to complement 
conventional ultrasound in the preoperative diagnosis of CLNM. 
Moreover, the feature wavelet_HLH_glszm_ZoneEntropy_Elastography 
from elastography images also contributed significantly to the model 
performance. Higher values of this feature indicate greater 
heterogeneity in tissue elasticity distribution, reflecting calcification 
patterns and stiffness variations. Our findings demonstrated that 
intratumoral elasticity heterogeneity is significantly associated with 
an increased risk of CLNM, which aligns consistently with prior 
published studies (9). 
4.4 Limitations and research prospects 

This study has several limitations. It should be noted that the 
retrospective, single-center design of this study lead to a potential 
selection bias that may influence our results. Since microflow 
imaging technology has not yet been widely applied in clinical 
settings, obtaining standardized images of all three modalities 
simultaneously is challenging in practice. Therefore, our study 
was limited by a relatively small sample size, and conducting 
multi-center research currently presents significant practical 
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challenges. Although internal validation showed that the model 
has stable diagnostic performance, future multi-center prospective 
studies are needed to further validate the model’s generalizability, 
particularly its reproducibility across different regions, devices, and 
operators. We hope that with the increasing clinical adoption of 
microflow ultrasound imaging, multicenter studies with larger 
sample sizes can be conducted in the future. 

In addition, although this study has used SHAP to perform a 
visual analysis of the model, users still need to undergo training in 
data interpretation before implementing the proposed model in 
clinical practice, so that clinicians can better accept the prediction 
results. Moreover, the clinical relevance of the selected features and 
their biological significance in relation to CLNM development 
could not be thoroughly investigated within the scope of the 
current study. For future research, we intend to increase 
the sample size to enable a more in-depth investigation of the 
correlation between radiomics features and cellular pathology. 

With the rapid advancement of artificial intelligence 
technologies, an increasing number of novel models are being 
applied to medical image analysis (43–45). Moving forward, we 
plan to explore additional methodologies to further refine and 
enhance the interpretability of our current model. 
5 Conclusion 

In conclusion, this study proposes a fusion model based on 
clinical and multimodal ultrasound radiomics features, which has 
high accuracy in predicting CLNM in PTC patients. This model 
included grayscale ultrasound, elastography ultrasound and 
microflow ultrasound. Our findings confirm that microflow 
images can be used as a basis for preoperative assessment of 
CLNM, and may be included in the diagnostic criteria along with 
conventional ultrasound in the future. This model will provide 
clinicians with more comprehensive and personalized imaging 
information, enabling noninvasive assessment of CLNM status, 
which is highly important for the selection of treatment strategies. 
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