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Epithelial cells with high TOP2A
expression promote cervical
cancer progression by regulating
the transcription factor FOXM1
Wei Sun1,2, Lu Chen1 and Xiaoling Feng1*

1Department of Gynecology II, First Affiliated Hospital of Heilongjiang University of Chinese Medicine,
Harbin, China, 2Siping City Central People's Hospital, Siping, China
Background: Cervical cancer (CC) remains a major malignancy threatening

women’s health, with high-grade squamous intraepithelial lesions playing a

critical role in the progression toward CC. Exploring the molecular

characteristics of epithelial cells (EPCs) as high-stage intraepithelial neoplasia

evolves into CC is essential for the development of effective targeted drugs for

cervical cancer. Single-cell RNA sequencing technology can fully understand the

immune response at each molecular level, providing new ideas and directions for

the precise treatment of CC.

Methods: Single-cell RNA sequencing was employed to comprehensively map

EPCs characteristics. The differentiation trajectory of EPCs was inferred using

Slingshot, while enrichment analysis highlighted the biological functions of EPCs.

Cellchat visualized cell-cell interactions, and SCENIC was used to infer

transcription factor regulatory networks in EPCs. CCK-8, colony formation,

and EDU experiments were used to verify cell proliferation changes. Scratch

assays and transwell assays were used to verify cell migration and invasion.

Results: A distinct EPCs subpopulation with high TOP2A expression was

identified, predominantly originating from tumor tissues. This subpopulation

exhibited disrupted mitosis and cell cycle regulation, along with features of

high proliferation, high energy metabolism, and matrix plasticity. It played a key

role in shaping the tumor microenvironment via the LAMC1-(ITGA3-ITGB1)

signaling pathway. FOXM1, a key transcription factor in this cell subpopulation,

significantly inhibited the proliferation and invasion of cervical cancer cells.

Conclusion: Through in-depth analysis of EPCs, this study provides promising

insights and potential therapeutic targets for precision targeted treatment

strategies for CC.
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1 Introduction

Cervical cancer (CC) ranks among the most prevalent

gynecological malignancies and is the fourth leading cause of

cancer-related deaths in women, marked by high morbidity and

mortality rates (1–3). Despite significant improvements in survival

rates and quality of life for early-stage patients through a combined

treatment approach of surgery, radiotherapy, and chemotherapy,

some patients still experience drug resistance or disease progression.

With the advancement of modern medicine, finding new targets for

malignant tumors has become a hot issue in immunotherapy,

precision therapy and reversing tumor immune resistance (4–7).

Immunotherapy and targeted therapies offer promising alternatives

for patients with recurrent or metastatic CC, with the potential to

deliver more precise and effective treatment options (8).

In the progression of CC, cervical intraepithelial neoplasia

(CIN) represents a critical turning point. While most low-grade

CIN lesions can regress spontaneously, high-stage intraepithelial

neoplasia (HSIL) poses a significantly higher risk of malignant

transformation. Thus, investigating the core molecular mechanisms

underlying the progression from HSIL to CC is essential for

advancing early prevention strategies for cervical cancer (9–11).

The tumor microenvironment is a protective chamber that

maintains the occurrence and development of tumors. Epithelial

cells (EPCs), as the most common origin of tumor cells, play a vital

role in tumor progression. As a type of stromal cells, EPCs are also

able to support and maintain chronic inflammatory states and

immune resistance in the tumor microenvironment. Therefore,

treatment targeting EPCs may provide a promising approach for

immune resistance in cervical cancer.

Multi-omics technologies technology has been widely used in

cancer cell biology and molecular biology related research (12–20)

especially in the field of immune resistance (8, 14, 20–27). This study

used Single-cell RNA sequencing(scRNA-seq) to deeply explore the

map characteristics of EPCs during CC progression, explained the

biological characteristics of EPCs from the level of transcriptional

regulatory network, and identified key pathogenic EPCs

subpopulations. Our research provides potential cell vectors and

molecular targets for the precise targeted treatment of CC, and

provides a practical idea for the development of CC anti-tumor drugs.

2 Methods

2.1 Data source

Single-cell sequencing data were obtained by accessing the

ArrayExpress (https://www.ebi.ac.uk/biostudies/arrayexpress) database

with CC number E-MTAB-12305. The research data were derived

from public databases, so no ethical approval was required.
2.2 Data quality control

The raw data were imported into R software (version 4.3.2)

using Seurat R package for analysis. The DoubletFinder function
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(28–30) was used to perform strict quality control on the scRNA-

seq data to filter low-quality cells and remove potential doublet

cel ls . The quality control standards were as follows:

300<nFeature<6000; 500<nCount<50000; 0<pMT<25; 0<pHB<5.

The data were normalized using the NormalizeData function

(31–35). The FindVariable Features function was used to find

highly variable genes (36–40). The ScaleData R package was used

for standardization processing of the data. Principal component

analysis (PCA) (41–43) was performed on the data, and the top 30

principal components were selected. The harmony R package (44,

45) was used to remove batch effects.
2.3 Cell identification

The cells were clustered using the FindClusters function and the

FindNeighbors function (28, 46), and the cells were annotated

according to the CellMarker database (http://xteam.xbio.top/

CellMarker/) and cell-typical markers. The FindAllMarkers

function was used to find differentially expressed genes in

different cell subpopulations.
2.4 InferCNV

Taking ECs as reference, the inferCNV algorithm was used to

calculate the copy number variation of EPCs.
2.5 Enrichment analysis

Gene ontology (GO)enrichment analysi (47–52) of differentially

expressed genes was performed using ClusterProfiler R package (51,

53, 54). Gene set enrichment analysis (GSEA)was performed by

downloading GSEA software from the GSEA website (http://

software.broadinstitute.org/gsea/msigdb).
2.6 Slingshot analysis

The getlineage function in the Slingshot R package is used to

infer cell differentiation lineages (55–57). The getCurves function is

used to calculate the cell expression levels of different lineages

within the fitting time.
2.7 CellChat analysis

CellChat R package (58–60) was used to infer the interactions

between cells. The identifyCommunicationPatterns algorithm is

used to count the number of communication patterns, and the

netVisual_diffInteraction algorithm is used to calculate the

difference in the strength of communication between cells. Circle

plots, violin plots, layer plots, and heat maps are used to visualize

the communication between cells.
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2.8 Scenic analysis

The activity of transcription factors in EPCs subsets was

assessed using the SCENIC package in Python (version 3.7). The

GRNBoost2 algorithm was used to infer co-expression modules

between transcription factors and target genes. The RcisTarget

algorithm was used to analyze the genes in each co-expression

module to help identify enriched motifs. The AUCell score was used

to evaluate the activity of transcription factors in EPCs.
2.9 Cell transfection

HeLa cell lines and SiHa cell lines were propagated in MEM

medium. Cells were seeded at 50% density in 6-well plates and then

transfected with FOXM1-specific knockdown constructs (si-

FOXM1–1 and si-FOXM1-2) and negative control constructs (si-

NC). Transfection was performed using Lipofectamine

3000RNAiMAX (Invi t rogen , USA) according to the

manufacturer’s instructions. siRNA sequences: si-1: AAGAA

GAAAUCCUGGUUAA; si-2: ACUAUCAACAAUAGCCUAU.

qRT-PCR primers: F: AAACCTGCAGCTAGGGATGT; R:

AGCCCAGTCCATCAGAACTC.
2.10 CCK-8 assay

After being plated in 96-well plates, the cells were cultured for a

full day. After adding 10 mL of CCK-8 labeling reagent to each well,

the wells were left in the dark for two hours. Using an enzyme

marker, absorbance at 450 nm was used to measure cell viability.
2.11 Transwell assay

After the cells were starved for twenty-four hours, the cell

suspension was combined with Matrigel and introduced onto the

Costar plate’s upper chamber. The lower chamber was filled with

the serum-containing media. The cells were fixed with 4%

paraformaldehyde and stained with crystal violet following a 48-

hour incubation period.
2.12 Wound healing assay

The cell monolayer in each well of a six-well plate was

consistently scratched using a sterile 200 mL pipette tip, and

scratch photos were recorded after 0 and 48 hours of incubation.

Scratch width was measured using Image-J software.
2.13 5-Ethynyl-2’-deoxyuridine
proliferation assay

After adding the EdU working solution, the cells were incubated

for two hours. Following a PBS wash, the cells were fixed using 4%

paraformaldehyde solution, permeabilized and quenched using a
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solution containing 0.5% Tr and 2 mg/ml glycine, and stained using

1X Apollo solution and Hoechst staining reaction solution.
2.14 Statistical analysis

All data were processed using R or Python. P< 0.05 was

considered statistically significant.
3 Results

3.1 Single-cell transcriptome profiles
during CC progression

To explore the evolution of transcriptome features during CC

development, we performed scRNA-seq analysis on 9 samples from

normal cervix (NAT), HSIL and cervical cancer (Tumor), and

finally identified 85,591 high-quality cells, as shown in Figure 1A.

Using known cell type marker genes (Figure 1B), we finally

identified 10 types of cells in these samples, including T cells and

NK cells, ECs, fibroblasts, smooth muscle cells (SMCs), EPCs, B

cells, plasma cells, mast cells (MCs), neutrophils and myeloid cells

As shown in Figure 1C, EPCs are the main cell type present in

tumor samples, accounting for 65.3%, and are mainly in the G2M

and S phases of the cell cycle, with active cell replication and

vigorous proliferation (Figure 1D). Figure 1E confirms this result. In

addition, we also looked at the number of molecules and total

number of genes detected in different cell types, and the results

showed that EPCs had higher nCount-RNA and nFeature-RNA

expression (Figure 1F). This suggests that EPCs have higher cell

activity and rich gene expression diversity.
3.2 EPCs are heterogeneous during CC
progression

As the precursor of tumor cells, the molecular characteristics of

EPCs during cancer evolution are crucial to reveal the origin and

development of tumors. Therefore, we conducted an in-depth

exploration of the characteristics of EPCs during CC progression.

First, we used inferCNV to analyze EPCs to view their copy number

variations (Figure 2A). Next, we re-clustered EPCs and identified 6

EPCs subtypes: C0 SPRR1B+ EPCs, C1 IGFBP7+ EPCs, C2MUC5B

+ EPCs, C3 TOP2A+ EPCs, C4 CFAP126+ EPCs, and C5 PTPRC+

EPCs (Figure 2B). Figure 2C shows the expression of the top 5

marker genes of the 6 EPCs subtypes and different groups. The

expression levels of the named genes of the 6 EPCs subtypes are

shown in bar graphs and UMAP graphs (Figures 2D, E). It is worth

mentioning that we found that C3 TOP2A+ EPCs had the highest

expression of G2M and S phase cell cycle phase scores (Figure 2F),

which means that this EPCs subpopulation has active proliferation

and may play an important role in the rapid progression of tumors.

In-depth analysis found that C3 TOP2A+ EPCs tend to be

distributed in tumor samples (Figure 2G), suggesting that this

EPCs subpopulation may be tumor-related EPCs.
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3.3 C3 TOP2A+ EPCs are the key EPCs
subset for CC progression

To verify the above results, we used Slingshot to infer the

differentiation trajectory of EPCs. As shown in Figure 3A, in the
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differentiation lineage 1 of EPCs, C3 TOP2A+ EPCs are located at

the end of the differentiation trajectory, which is consistent with the

results of Figure 2G, that is, the PCs subpopulation is tumor-

associated EPCs and is of key significance in the evolution of CC.

While in lineage 2, C4 CFAP126+ EPCs are located at the end.
FIGURE 1

scRNA-seq characterizes the cellular landscape of CC. (A) Dimensionality reduction clustering diagram of 85,591 high-quality cells. From top to
bottom, the sample sources, sample groups (HSIL, NAT and tumor) and cell types (T cells and NK cells, ECs, fibroblasts, SMCs, EPCs, B cells, plasma
cells, MCs, neutrophils and myeloid cells) of all cells wereshown. (B) Top 5 marker genes of 10 cell types. The bubble size represents the Fraction of
cells in group, and the bubble color represents the average expression level. (C-E) The proportion of 10 cell types in different samplegroups (HSIL,
NAT and tumor) and different cell cycle phases (G1, G2M and S). (F) nCount-RNA and nFeature-RNA expression in 10 celltypes. nFeature_RNA: The
number of different genes detected in each cell. nCount_RNA: The total number of all RNA molecules sequenced in each cell.
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FIGURE 2

Heterogeneity profile of EPCs within CC. (A) inferCNV is used to infer the copy number variation level of EPCs. (B) Clustering and faceting diagrams
of the six EPCs subtypes. (C) Expression levels of the top 5 markers of the six EPCs subtypes in different EPCs subtypes and sample source groups.
The bubble size represents the expression percentage, and the bubble color represents the zscore. (D, E) The bar graph and umap graph show the
expression levels of the named genes of the six EPCs subtypes. (F) G2M.score and S.score of the six EPCs subtypes. (G) Ro/e of the six EPCs
subtypes in different sample groups (HSIL, NAT and tumor) and different cell cycle phases (G1, G2M and S).
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Figures 3B, C show the differences in the expression levels of the

named genes of the six EPCs subtypes over time, among which

TOP2A is mainly expressed at the end of lineage 1.
3.4 C3 TOP2A+ EPC regulates mitosis and
energy metabolism

To further explore the biological characteristics of C3 TOP2A+

EPCs, we performed differential gene analysis and enrichment

analysis on different subtypes of EPCs (Figures 4A, B). As shown

in the figure, C3 TOP2A+ EPCs are mainly enriched in

chromosome segregation, mitotic nuclear division, nuclear

chromosome segregation, mitotic sister chromatid segregation,

sister chromatid segregation and nuclear division-related

pathways, which are closely related to chromosome division and

mitosis. In addition, GSEA further confirmed the above findings

(Figure 4C). It is worth mentioning that with the progression of CC,

the metabolic activity of EPCs gradually increased, especially in

pathways such as riboflavin metabolism, pyruvate metabolism,

oxidative phosphorylation, and glycolysis/gluconeogenesis.

Consistent with this, the metabolic activity of these pathways was

also significantly enhanced in C3 TOP2A+ EPCs (Figure 4D).
3.5 C3 TOP2A+ EPCs interact with other
cells via the LAMC1-pathway

To reveal the crosstalk relationship between C3 TOP2A+ EPCs

and other cells, we first analyzed the number and strength of

interactions between EPCs and other cell types using cellular

communication (Figure 5A). Further research found that when

C3 TOP2A+ EPCs serve as signal senders, they have a strong

interaction with immune cells, such as T cells and NK cells, B

cells and myeloid cells, suggesting that they are closely related to the

shaping of the tumor immune microenvironment (Figure 5B).

When C3 TOP2A+ EPCs serve as signal receptors, they interact

strongly with stromal cells, such as fibroblasts and SMCs, affecting

the matrix shaping of the tumor microenvironment (Figure 5C).

This suggests that C3 TOP2A+ EPCs have significant plasticity.

Analysis found that C3 TOP2A+ EPCs interacted with other

cells mainly through the LAMININ signaling pathway, especially

the LAMC1 - (ITGA3+ITGB1) ligand receptor pair (Figures 5D-F).

In this pathway, C3 TOP2A+ EPCs mainly interact with immune

cells such as T-NK cells and myeloid cells through paracrine effects.

Finally, we used centrality scores to visualize the role of C3 TOP2A+

EPCs in this pathway (Figure 5G).
3.6 Transcription factor regulatory network
of EPCs

Transcription factors can act directly on the genome, regulate

gene transcription by binding to specific nucleotide sequences

upstream of genes, and affect the biological function of cells.
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Therefore, we used the scenic algorithm to analyze the gene

regulatory network of EPCs. Different transcription factors can

jointly regulate the expression of certain genes. Therefore, we

divided the transcription factors of EPCs into 5 modules based on

the connection specificity index: M1, M2, M3, M4 and M5

(Figure 6A). As shown in Figures 6B, C, the transcription factors

in the M4 and M5 modules may play a major regulatory role in the

biological characteristics of C3 TOP2A+ EPCs. Further analysis of

the top 5 transcription factors of different EPCs subtypes revealed

that the transcription factors of C3 TOP2A+ EPCs were FOXM1,

HOXA13, MYBL2, E2F8 and NFYB (Figures 6D, E). This is

consistent with previous studies showing that E2F8 can maintain

tumor cell proliferation and promote tumor cell migration (61, 62).

Among them, FOXM1, as an important oxidative stress response

regulator and proliferation-related factor, has a significant impact

on the progression and outcome of tumors.
3.7 FOXM1 is a potential therapeutic target
for CC

To verify the key role of FOXM1 in cervical cancer, we knocked

down FOXM1 in CC cell lines (Figures 7A, B). CCK-8 showed that

after FOXM1 knockdown, the cell viability of cervical cancer cells

decreased significantly (Figure 7C), and cell proliferation slowed

down (Figure 7D). The EDU experimental results are consistent

with this (Figure 7E). The results of the scratch experiment and

transwell experiment showed that the reduced expression of

FOXM1 significantly inhibited the migration and invasion ability

of CC cells (Figures 7F, G). Based on the above results, FOXM1 is a

key target for inhibiting the progression and invasion of CC and a

potential target for future clinical drug development.
4 Discussion

Blocking the formation of the tumor microenvironment is of

great significance for the early prevention and diagnosis and

treatment of cancer (63–65). CIN is an important turning point

in the development of CC (66, 67). We used scRNA-seq technology

to comprehensively characterize the changes in the intracellular

molecular profiles of normal tissues developing into HSIL and

eventually evolving into CC. Tumor cells (especially epithelial

malignant tumors) are usually derived from the malignant

transformation of normal epithelial cells. Epithelial cells cover the

body surface or form glands, and have polarity, tight arrangement,

and reliance on intercellular connections under physiological

conditions. Malignant epithelial cells (tumor cells) lose these

characteristics and gain invasiveness and metastasis capabilities.

Therefore, revealing the molecular biological characteristics of

epithelial cells during cancer evolution is a core hotspot for

studying tumor precision treatment strategies.

We identified a type of EPCs with high proliferation characteristics

that mainly exist in tumor tissues, and further explored the cell

interaction crosstalk and transcription factor regulatory network of
frontiersin.org
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this type of EPCs. Experiments confirmed that the transcription factor

FOXM1 is a promising target for CC treatment. This study provides

reference significance for the interception and treatment of CC, and

also provides potential targets for the development of anti-tumor drugs.
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TOP2A is a key subtype of DNA topoisomerase, and the DNA

breaks mediated by it are of great significance for the

carcinogenesis of normal cells (68). Studies have found that

TOP2A can interact with RNA Pol II on mitotic chromosomes
FIGURE 3

C3 TOP2A+ EPCs are located at the end of the EPCs differentiation trajectory. (A) Slingshot predicts two differentiation lineages of EPCs (left: lineage
1, right: lineage 2). The solid line represents the cell differentiation trajectory, and the arrow direction represents the transition of cell differentiation
from immature to mature. (B, C) Dynamic trajectory diagram of the expression levels of the six EPCs subpopulation named genes predicted by
Slingshot in the two differentiation lineages of EPCs over time (B: lineage 1, C: lineage 2).
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FIGURE 4

Heterogeneity of biological characteristics of different EPCs subgroups. (A) Differential gene analysis of 6 EPCs subtypes. The top 5 genes with
upregulated differential expression are shown above the horizontal line, and the top 5 genes with downregulated differential expression are shown
below the horizontal line. (B) GO-BP enrichment analysis of 6 EPCs subgroups. (C) GSEA results of C3 TOP2A+ EPCs. (D) Metabolic pathway
enrichment analysis of EPCs.
Frontiers in Oncology frontiersin.org08
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to restart transcription, promote the mitotic process, and ensure

cell proliferation and growth (69). In addition, this type of EPCs

subtype highly expresses cell cycle-related genes such as UBE2C,

CENPF, and MKI67 (70, 71), explaining the gene characteristics
Frontiers in Oncology 09
behind the high proliferation function of C3 TOP2A+ EPCs.

Slingshot analysis confirmed the finding that EPCs gradually

evolved from normal cells to tumor-related EPCs, which is

consistent with the sample composition in this study, that is, the
FIGURE 5

Cell interaction analysis of C3 TOP2A+ EPCs. (A) The number and weight of interactions between EPCs subtypes and other cell types. (B) Circle diagram
of the number and weight of interactions with C3 TOP2A+ EPCs as signal senders and other cell types as signal receivers. (C) Circle diagram of the
number and weight of interactions with C3 TOP2A+ EPCs as signal receivers and other cell types as signal senders. (D) A diagram of the communication
hierarchy between cell types in the LAMININ signaling pathway. (E, F) Hierarchical diagram and violin plots of communication between cell types in the
LAMC1 - (ITGA3+ITGB1) ligand receptor pathway. (G) Heat map of the centrality of communication between cells in the LAMININ signaling pathway.
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FIGURE 6

Transcription factor regulatory network of EPCs. (A) Based on the connection specificity index matrix, 5 regulatory modules of TAMs subtypes were
identified. (B) In EPCs subtypes, the regulators in different regulatory modules were ranked based on variance scores. (C) Expression of different
regulatory modules in EPCs subtypes. (D) Ranking of top 5 transcription factors in different EPCs subtypes based on regulator specificity score.
(E) Expression of top 5 key regulators FOXM1, HOXA13, MYBL2, E2F8 and NFYB of C3 TOP2A+ EPCs in all EPCs.
Frontiers in Oncology frontiersin.org10
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FIGURE 7

FOXM1 knockdown inhibits cervical cancer cell proliferation and invasion. (A, B) After FOXM1 knockdown, its mRNA and protein expression
abundance were significantly reduced. (C) CCK-8 showed changes in cervical cancer cell activity after FOXM1 knockdown. (D, E) Colony formation
and EDU showed that cell proliferation slowed down after FOXM1 knockdown. (F) Scratch assay and quantitative analysis of FOXM1 knockdown.
(G) Transwell assay and quantitative analysis of FOXM1 knockdown. (**P < 0.01, ***P < 0.001.).
Frontiers in Oncology frontiersin.org11
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development of CC goes through three stages: normal tissue,

HSIL, and tumor tissue. Combined with the results of

enrichment analysis, the rapid proliferation of malignant EPCs

in the tumor stage greatly accelerates the progression and invasion

of CC.

Studies have found that increased glycolysis and enhanced

oxidative stress response under hypoxic conditions can accelerate

the proliferation of EPCs. This provides support for the high

metabolic activity of C3 TOP2A+ EPCs and reveals the

connection between EPCs and energy metabolism in CC.

The activation of laminin and integrin-related pathways creates

favorable conditions for matrix shaping of the tumor

microenvironment and immune escape of tumor cells. Previous

studies have found that LAMC1, or laminin g1, is a biomarker for

CC prognosis (72, 73). Our study confirms this result and reveals its

intrinsic molecular mechanism for promoting the progression of

cervical cancer. LAMC1 binds to integrin (ITGA3-ITGB1)

receptors, inducing the activation of the laminin signaling

pathway, further leading to the formation of extracellular matrix,

hindering the recruitment of immune effector cells into the TME to

exert anti-cancer effects. Therefore, breaking the matrix niche and

restoring normal immune response is the only way to avoid

immune resistance and exert anti-tumor effects.

FOXM1, a forkhead box gene, plays an important role in cell

proliferation and lifespan and has been considered as a potential

target for CC treatment in recent years. FOXM1 is one of the main

transcription factors that regulates PD-L1 expression and ICI

immune response in tumors, and can increase the sensitivity of

tumor cells to immunotherapy. Studies have found that FOXM1-

mediated inactivation of inflammasome transcription can promote

the immunosuppressive microenvironment of CC and accelerate

the immune escape of cancer cells (74). Our study not only provides

single-cell and experimental evidence for the treatment of cervical

cancer with FOXM1, but also suggests that there may be a potential

connection between FOXM1 and TOP2A, but this hypothesis still

needs to be verified experimentally (75). Previous studies have

found that the co-expression of FOXM1 and TOP2A is

significantly associated with poor prognosis in patients with

colorectal cancer, bladder cancer, etc (76, 77). In addition, both

can accelerate tumor immune escape and immunosuppression. At

the same time, the close relationship between tumor proliferation

and tumor cell extracellular matrix destruction still needs further

exploration. Finally, the limited amount of sample data may lead to

the lack of universality of our study.
5 Conclusions

In summary, our study provides a comprehensive and in-depth

map of the molecular mechanism of EPCs in CC through scRNA-

seq. EPCs with high expression of TOP2A are expected to become a

key cell subpopulation for the treatment of CC in the future. On this
Frontiers in Oncology 12
basis, the development of anti-tumor drugs FOXM1 inhibitors will

also bring hope for the diagnosis and treatment of CC.
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