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Cellular senescence exerts dual roles in lung cancer pathogenesis: initially

suppressing tumorigenesis via p53/p21/p16-mediated cell cycle arrest, but

promoting malignancy through the senescence-associated secretory

phenotype (SASP). SASP secretes cytokines, proteases, and growth factors,

reshaping the tumor microenvironment (TME) to drive immune evasion,

metastasis, and therapy resistance. NF-kB activation induces APOBEC3B

mutagenesis and PD-L1 overexpression, while mTOR signaling enhances

glycolysis and OXPHOS to fuel tumor growth. Clinically, telomere attrition,

p16/p21 expression, and SASP components serve as prognostic biomarkers.

Therapeutic strategies target senescent cells and SASP. Future directions focus

on single-cell multi-omics to decode senescence heterogeneity, spatially

controlled drug delivery, and therapies targeting senescence-immune-

metabolic crosstalk. By unraveling senescence’s dual regulatory mechanisms,

this review highlights precision approaches to overcome resistance and improve

lung cancer outcomes.
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1 Introduction

Lung cancer remains the leading cause of global cancer mortality and the most prevalent

malignant tumor, with adenocarcinoma constituting its predominant histological subtype (1).

According to GLOBOCAN 2020 statistics, there were over 2.2 million new cases of lung cancer

worldwide, accounting for 11.4% of all cancer cases. The number of deaths was approximately

1.79 million, representing 18% of the total cancer mortality. Among them, lung

adenocarcinoma is the most common subtype of non-small cell lung cancer, accounting for
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about 40%–50% of NSCLC cases, with a higher incidence in women

and non-smokers (2). As the most common form of non-small cell

lung cancer (NSCLC), lung adenocarcinoma (LUAD) arises from

malignant transformation of bronchial glandular cells, pathologically

defined by glandular differentiation patterns and mucin-producing

cellular architecture (3, 4). Distinct from other NSCLC subtypes,

LUAD predominantly originates in peripheral lung structures

including distal airways and alveoli, exhibiting characteristic

histomorphological patterns such as acinar, papillary,

micropapillary, and invasive mucinous adenocarcinoma (5). Clinical

presentation often involves nonspecific respiratory symptoms—

persistent cough, hemoptysis, dyspnea, and chest pain—frequently

accompanied by constitutional manifestations like unexplained weight

loss and fatigue (6). Its indolent early-stage progression explains why

20–30% of cases are incidentally detected through routine chest

imaging (X-ray/CT), while over 60% present with locally advanced

or metastatic disease at diagnosis (7). Epidemiologically, LUAD

accounts for 40–50% of global lung cancer diagnoses, displaying

unique demographic patterns: increased incidence in never-smokers,

female predominance, higher prevalence in Asian populations, and

elevated urban versus rural rates, potentially reflecting differential air

pollution exposure (8). These epidemiological shifts, coupled with

rising adenocarcinoma incidence rates, position LUAD as a critical

driver of lung cancer’s persistent mortality burden (9). Despite the

advancements in targeted therapies and immunotherapies that have

significantly improved survival outcomes for some patients, the overall

five-year survival rate for lung cancer remains below 20% (10).

Particularly in advanced lung adenocarcinoma, issues such as drug

resistance, recurrence, and immune evasion continue to pose

significant challenges in clinical treatment, underscoring the urgent

need to elucidate their molecular mechanisms and explore novel

therapeutic strategies.

Molecular pathogenesis of LUAD centers on dysregulation of

proliferative signaling cascades mediated by driver mutations (11).

Epidermal growth factor receptor (EGFR) mutations represent the

most prevalent oncogenic drivers, occurring in 10–50% of cases

depending on population ethnicity and smoking status (12). Mutant

EGFR acquires ligand-independent tyrosine kinase activity,

constitutively activating downstream effectors including mitogen-

activated protein kinase/extracellular signal-regulated kinase

(MAPK/ERK, pro-survival signaling), phosphatidylinositol 3-kinase/

protein kinase B (PI3K/AKT, anti-apoptotic signaling), and janus

kinase/signal transducer and activator of transcription (JAK/STAT,

proliferative/invasive regulation) pathways (13). Concurrently, PI3K/

AKT/mTOR pathway hyperactivation promotes tumor metabolism

and survival through enhanced glucose utilization and protein

synthesis (14). Wnt/b-catenin signaling aberrations further

contribute by sustaining cancer stem cell populations and apoptotic

resistance (15). Moreover, kirsten rat sarcoma viral oncogene (KRAS)

mutations, rearranged during transfection gene (RET) fusions, and

ROS proto-oncogene 1 (ROS1) rearrangements represent pivotal

oncogenic drivers in LUAD. KRAS mutations constitute the most

prevalent driver mutation in EGFR-negative LUAD, notably with the

smoking-associated KRAS G12C subtype predominating, accounting

for around 13% of all NSCLC cases. By activating multiple
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downstream signaling pathways, including MAPK, PI3K/AKT, and

RalGDS, KRAS mutations facilitate tumor proliferation, migration,

and immune evasion (16). RET fusions predominantly occur in

younger LUAD patients who are either non-smokers or light

smokers, with an incidence rate of approximately 1–2%, and they

are closely linked with accelerated tumor progression. RET fusions

frequently result in fusion proteins with partner genes such as kinesin

family member 5B (KIF5B) or coiled-coil domain containing 6

(CCDC6), thereby activating the MAPK and STAT pathways. As

highly selective RET inhibitors, Selpercatinib and Pralsetinib have

demonstrated remarkable objective response rates and favorable safety

profiles in advanced RET fusion-positive LUAD, subsequently being

incorporated into the recommended first-line treatment regimens

(17). ROS1 fusion proteins propel tumor progression by engaging

signaling pathways including PI3K/AKT and JAK/STAT. Crizotinib

stands as the first approved targeted therapeutic for ROS1-rearranged

NSCLC, demonstrating an efficacy rate exceeding 70% (18).

Similarly, epigenetic mechanisms, including DNA methylation,

histone modifications and the dysregulation of non-coding RNAs

(such as microRNAs and long non-coding RNAs), play pivotal roles

in the initiation and progression of lung adenocarcinoma (19),

while epigenetic dysregulation via abnormal DNA methylation,

histone modifications, and non-coding RNA expression (miR-21

overexpression and lncRNA HOTAIR dysregulation) drives

malignant transformation without altering genomic sequences (20).

The biological continuum of aging intersects critically with

LUAD pathogenesis through cellular senescence mechanisms.

Aging involves progressive functional decline across organ

systems, mediated by hallmarks including genomic instability,

telomere attrition, epigenetic drift, and mitochondrial dysfunction

(21, 22). Cellular senescence—a permanent cell-cycle arrest

triggered by oncogenic stress, DNA damage, or tumor suppressor

activation—exerts context-dependent tumor-modulating effects

(23). While initially tumor-suppressive by halting malignant

transformation, senescent cells develop a senescence-associated

secretory phenotype (SASP) (24), releasing inflammatory

cytokines (IL-6, IL-8), growth factors (TGF-b), and proteases that

remodel the tumor microenvironment (TME) (25). SASP

components induce paracrine senescence in adjacent cells, recruit

immunosuppressive myeloid cells, and paradoxically promote

angiogenesis and metastasis through TME modulation (26, 27).

Emerging evidence positions senescence as a dual-axis regulator in

LUAD progression (28). Lin et al. developed a 16-gene senescence-

related signature (SRS) demonstrating that SASP-mediated immune

microenvironment remodeling predicts immunotherapy response and

survival outcomes (29). Complementary transcriptomic analyses of

278 senescence-associated genes revealed distinct senescence subtypes

correlated with differential immune infiltration patterns in LUAD

(30). These findings illuminate senescence as a dynamic interface

between tumor biology and immune regulation, offering novel

therapeutic targets—particularly for immunotherapy-resistant

LUAD subtypes where SASP factors may mediate immune evasion.

This review aims to systematically summarize the current

understanding of cellular senescence in lung adenocarcinoma, with

an emphasis on its dual roles in both tumor suppression and
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promotion. We particularly focus on the SASP and how it impacts

tumor progression, immune modulation, and therapy resistance.

Additionally, we discuss potential therapeutic opportunities and

challenges in this context.
2 Association of cellular senescence
with lung cancer

2.1 Telomere attrition

Telomere attrition serves as a critical nexus between cellular

aging and lung carcinogenesis, driving chromosomal instability

while paradoxically influencing tumor-suppressive and oncogenic

pathways (31). Telomeres—terminal chromosomal regions

composed of repetitive TTAGGG sequences and stabilized by

shelterin protein complexes (TRF1/TRF2, TPP1)—prevent

aberrant DNA repair by masking chromosomal ends from

damage recognition systems (32). In somatic cells, the end-

replication problem results in progressive telomere shortening

(50–200 bp per division), culminating in replicative senescence

when critical length thresholds (Hayflick limit) are breached; This

triggers DNA damage response (DDR) activation through ataxia-

telangiectasia mutated/ATM and rad3-related (ATM/ATR) kinases,

stabilizing p53 to induce p21-mediated cell cycle arrest—a

fundamental tumor-suppressive mechanism (33).

Contrasting this protective role, 85–90% of lung cancers exhibit

pathological telomerase reactivation via telomerase reverse

transcriptase (TERT, catalytic subunit) overexpression and

telomerase RNA component (TERC, RNA template) dysregulation,

enabling replicative immortality; Reactivation mechanisms include

recurrent TERT promoter mutations (C228T/C250T) and epigenetic

remodeling of telomere maintenance genes (34). Paradoxically, despite

telomerase activity, lung tumors frequently display ongoing telomere

attrition, generating chromosomal fusions and breakage-fusion-bridge

cycles that amplify oncogenic signaling through PI3K/AKT and RAS-

MAPK pathways while enhancing immune evasion via programmed

death protein 1 (PD-L1)/PD-1 axis upregulation (35). Telomere

attrition can elicit a persistent DNA damage response, thereby

activating the ATM/ATR-checkpoint kinase 1 (CHK1) pathway and

facilitating immune surveillance evasion by upregulating PD-L1

expression, ultimately promoting tumor cell immune tolerance and

progression (36). Telomere disruption and the consequent loss of

telomere-binding protein functionality can also activate cell survival

signaling via the PI3K/AKT pathway, thereby enhancing tumor cell

adaptability to oxidative stress and nutrient-poor conditions (37, 38).

Clinically, leukocyte telomere length demonstrates bidirectional

associations with lung adenocarcinoma risk: longer telomeres in

peripheral blood correlate with heightened susceptibility, potentially

reflecting inherited telomere maintenance defects or accelerated age-

related shortening (39, 40). Mechanistically, while elongated telomeres

can delay replicative senescence and extend the proliferative lifespan of

somatic cells, they may also elevate the risk of accumulating genetic

and epigenetic alterations under carcinogenic exposures, such as

tobacco smoke, thereby increasing the potential for oncogenesis
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(41). Elongated telomeres are frequently accompanied by increased

telomerase activity, which not only maintains chromosomal stability

but also interacts with oncogenic pathways, such as MYC and TERT

promoter mutations (42). This dual role positions telomere dynamics

as both a biomarker and therapeutic target. Emerging strategies

include TERT promoter inhibition using oligonucleotide antagonists

such as GRN163L, telomerase splicing modulation through NOVA1-

dependent alternative splicing blockade, and senescence-targeted

therapies that combine senolytics (navitoclax) with SASP pathway

inhibitors to mitigate pro-tumorigenic microenvironment effects, all of

which represent promising approaches to advance lung cancer

treatment (Shown in Figure 1) (43).
2.2 Carcinogenic effects of DNA damage
and mutation accumulation

The accumulation of DNA damage and mutations constitutes a

pivotal carcinogenic mechanism, driven by structural genomic

alterations from endogenous sources—including replication errors

and oxidative stress—and exogenous environmental carcinogens

such as ultraviolet radiation and chemical agents (44).Unrepaired

DNA lesions induce oncogenic transformation through point

mutations, gene amplifications, or chromosomal translocations,

which activate proto-oncogenes via gain-of-function mutations or

inactivate tumor suppressors through loss of heterozygosity and

epigenetic silencing (45). Compromised DNA repair pathways

further amplify genomic instability: for example, breast cancer

susceptibility gene 1/2(BRCA1/2) mutations disrupt homologous

recombination (HR) repair, forcing reliance on error-prone

mechanisms like non-homologous end joining, thereby

accelerating oncogenic mutation accrual, while mismatch repair

(MMR) deficiencies propagate microsatellite instability (46).

Deficiency in HR repair serves as a principal driver of genomic

instability across various tumor types. In LUAD, TP53 and KRAS

mutations are intricately associated with defects in HR repair

mechanisms. The loss of TP53 function compromises DNA

damage checkpoint control, thereby synergistically promoting

genomic instability and increased reliance on HR pathways.

Conversely, KRAS mutations elevate ROS levels, thereby

intensifying DNA damage stress and compelling tumor cells to

rely more heavily on residual HR mechanisms for survival (47, 48).

On the other hand, while MMR deficiencies are relatively

uncommon in LUAD, their presence often results in a high

tumor mutational burden (TMB), facilitating neoantigen

formation and increasing sensitivity to immune checkpoint

inhibitors (ICIs). The loss of function in core MMR genes such as

muts homolog 2 (MSH2) and muts homolog 1 (MSH1) can lead to

the upregulation of PD-L1 expression while activating the cyclic

GMP-AMP synthase-stimulator of interferon genes (cGAS-STING)

pathway, thereby inducing IFN-g signaling to enhance tumor

immunogenicity (49). PARP inhibitors obstruct the repair of

single-strand breaks, thereby compelling cells to rely on the HR

pathway to rectify DNA damage. Consequently, in tumor cells

harboring BRCA1/2 mutations, where HRR function is
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compromised, the action of PARP inhibitors leads to the

accumulation of DNA damage, triggering apoptosis—a

phenomenon known as “synthetic lethality” (50).

Emerging approaches focus on replication stress mitigation

using ATR/CHK1 inhibitors to bypass therapy resistance,

alongside novel agents disrupting DNA damage tolerance

pathways, collectively advancing precision oncology paradigms

that capitalize on repair pathway dysregulation (51, 52). ATR and

CHK1 are key kinases within the DDR network, primarily

responding to replication stress and single-stranded DNA

(ssDNA) damage. In LUAD, frequent mutations in genes such as

TP53, KRAS, and ATM result in increased reliance of tumor cells

on the ATR/CHK1 pathway (53). Ceralasertib (AZD6738), an ATR

kinase inhibitor, markedly increases apoptosis, induces G2/M

arrest, and enhances p21 expression while reducing CDC2 levels

in SNU478 and SNU869 cell lines, demonstrating enhanced

antitumor activity when combined with paclitaxel (54, 55).

Prexasertib (LY2606368) is a substrate ATP competitive selective
Frontiers in Oncology 04
inhibitor of CHK1 and checkpoint kinase 2 (CHK2). In a phase I

clinical trial involving patients with advanced squamous cell

carcinoma, prexasertib monotherapy exhibited notable antitumor

activity, with some patients achieving disease control after 3

months (56).
2.3 Mitochondrial dysfunction and cancer
cell metabolism

Mitochondrial dysfunction drives cancer metabolic

reprogramming by enabling survival advantages through energy

metabolism remodeling, oxidative stress modulation, apoptosis

evasion, and anabolic precursor synthesis (57). Although the

Warburg effect historically dominated cancer metabolism paradigms,

recent studies demonstrate that oxidative phosphorylation (OXPHOS)

sustains the survival of therapy-resistant tumor subpopulations and

metastatic cancer stem cells (58)—a phenomenon exemplified by
FIGURE 1

The Role of Cellular Senescence in Lung Cancer Progression. This figure illustrates the biological network through which cellular senescence drives
lung cancer progression. (1)Telomere Attrition: Shortening of TTAGGG sequences and TRF1/2 imbalance disrupts Shelterin complex protection,
activating ATM/ATR-mediated DDR. This induces genomic instability, leading to oncogene activation (EGFR, KRAS) and tumor suppressor inactivation
(BRCA1/2); (2)DNA Damage: Defective homologous recombination repair (BRCA1/2) and mismatch repair (MMR) accelerate malignant clonal
evolution; (3)Mitochondrial Dysfunction: MFN1/2 abnormalities elevate ROS, activating NF-kB/MAPK pathways to enhance cancer cell migration.
Simultaneously, increased OXPHOS supports cancer stem cell survival; (4)Immune Evasion: ROS and PD-L1 suppress CD8+ T cell function, while
USP30-mediated glycolytic reprogramming further weakens antitumor immunity; (5)Senescence-Associated Secretory Phenotype (SASP): Senescent
cells secrete IL-6, TNF-a, and CCL2/5, recruiting MDSCs and Tregs to create an immunosuppressive microenvironment. This synergizes with EGFR/
MAPK/AKT signaling to promote tumor growth and metastasis.
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glioblastoma stem cells that maintain immortality through

mitochondrial fusion-mediated OXPHOS enhancement and NAD+

metabolic rewiring (59).This metabolic plasticity underpins therapeutic

challenges, as lung cancers with elevated OXPHOS activity exhibit

immunotherapy resistance, prompting the development of precision

strategies like the OXPHOS inhibitor IACS-010759 to target refractory

malignancies (60).

Mitochondrial reactive oxygen species (ROS) exhibit context-

dependent oncogenic roles: mtDNA mutations or electron

transport chain defects induce ROS overproduction, activating

nuclear factor kappa-B (NF-kB) and MAPK pathways to drive

lung cancer metastasis (61), while pharmacologic ROS modulation

exerts antitumor effects. For instance, metformin suppresses ROS

via complex I inhibition to sensitize tumors to chemotherapy,

whereas pro-oxidant therapies exploit ROS overload to eliminate

cancer stem cells (62). Parallel mechanisms involve mitochondrial

regulation of apoptosis—overexpression of anti-apoptotic BCL-2

proteins (e.g., in lymphomas and breast cancers) blocks cytochrome

c-mediated apoptosome activation, a vulnerability successfully

targeted by the BCL-2 inhibitor venetoclax (63).

Mitochondrial metabolism plays a pivotal regulatory role in

shaping the tumor immune microenvironment (TIME), significantly

influencing immune evasion and antitumor immune responses (64).

Tumor cells, by enhancing oxidative phosphorylation (OXPHOS) and

aerobic glycolysis metabolism, accelerate nutrient consumption and

produce lactate, leading to glucose and oxygen scarcity in TIME and

the formation of an acidic microenvironment. This suppresses CD8+

effector T cell activity and promotes the expansion of regulatory T cells

(Tregs) and myeloid-derived suppressor cells (MDSCs), creating an

immunosuppressive niche (65). On the other hand, the proliferation

and sustained functionality of effector and memory CD8+ T cells

depend on mitochondrial OXPHOS and the tricarboxylic acid cycle

(TCA). Mitochondrial dysfunction, such as loss of membrane potential

and accumulation of reactive oxygen species (ROS), can lead to T cell

exhaustion, closely related to the upregulation of immune checkpoint

molecules like PD-1 (66). Therefore, targeting mitochondrial

metabolism to remodel TIME and enhance T cell-mediated immune

responses has become a key research direction in tumor

immunotherapy. For instance, inhibiting pyruvate dehydrogenase

kinase (PDK) can enhance TCA activity, promote acetyl-CoA

production, and lead to increased histone acetylation, thereby

boosting PD-L1 expression on tumor cells (67). In a triple-negative

breast cancer (TNBC) mouse model, combined treatment with

metformin and PD-1 antibodies significantly inhibited tumor growth

and metastasis, increased CD8+ T cell infiltration, and reduced PD-L1

expression, indicating synergistic antitumor effects of the

combination (68).
2.4 Promoting role of SASP in the
carcinogenic microenvironment

The senescence-associated secretory phenotype (SASP) drives

tumor progression through a multifaceted molecular network—

comprising cytokines (IL-6, IL-8), chemokines (CXCL1, CCL2),
Frontiers in Oncology 05
proteases (MMPs), and growth factors (VEGF, TGF-b)—that

remodels the tumor microenvironment (TME) into a pro-

carcinogenic niche (69). SASP components directly amplify

tumor proliferation and invasion: EREG/EGFR signaling

activation via the MAPK/AKT axis mediates chemotherapy-

induced progression in prostate cancer (70), while MMP1 and

MMP3 degrade extracellular matrix (ECM) components to

facilitate glioblastoma and lung cancer metastasis (71).

Concurrently, SASP reprograms cancer metabolism; IL-6-induced

STAT3 activation shifts energy production toward glycolysis while

suppressing oxidative phosphorylation (OXPHOS), thereby fueling

rapid tumor growth (72).

immune evasion (73). In KRAS-mutant lung cancer, senescent

macrophages secrete CCL2 to recruit MDSCs, while IL-10 and

TGF-b polarize tumor-associated macrophages (TAMs) toward an

immunosuppressive M2 phenotype, crippling cytotoxic T cell

activity (74). This immunosuppressive axis is reinforced by PD-

L1 upregulation: IL-6 and VEGF activate PD-L1 expression on

tumor cells, impairing NK cell function and CD8+ T cell-mediated

cytotoxicity (75). Beyond immune modulation, SASP reshapes the

stromal architecture by inducing fibrotic barriers. Cancer-

associated fibroblasts (CAFs) secrete collagen and fibronectin

under SASP influence, while lysyl oxidase (LOX)-mediated ECM

crosslinking increases tissue stiffness, activating integrin-FAK

signaling to accelerate metastasis and confer therapy resistance (76).
2.5 Regulation of immune evasion and
inflammatory response by senescence

Cellular senescence orchestrates immune evasion and chronic

inflammation in lung cancer through SASP-mediated

immunosuppression and mitochondrial dysfunction (28).SASP-

derived pro-inflammatory cytokines (IL-6, IL-8, TNF-a) and

chemokines (CCL2, CXCL1) directly suppress antitumor

immunity: IL-6 activates JAK/STAT3 signaling to upregulate PD-

L1 expression on tumor cells and dendritic cells, inducing CD8+ T

cell exhaustion (77). This mechanism corroborated by the 30%

higher PD-L1 expression prevalence in elderly lung cancer patients

compared to younger counterparts (78). Chemokine-driven

immunosuppression is exemplified in KRAS-mutant lung cancer,

where senescent cells recruit MDSCs and regulatory Tregs via CCL2

secretion, establishing an immune-privileged niche (79).

Senescent lung cancer cells further sabotage immune function

through mitochondrial hijacking. Mutant mitochondria are

transferred to T cells via tunneling nanotubes (TNTs), reducing T

cell oxidative phosphorylation activity by 60% while activating the

USP30-PD-L1 axis to amplify immune evasion—a process

demonstrating direct crosstalk between metabolic dysfunction and

checkpoint signaling (80). Concurrently, senescence-associated

chronic inflammation fuels tumor progression through genomic

destabilization: apolipoprotein B mRNA editing enzyme catalytic

subunit 3B (APOBEC3B)-mediated cytosine deamination elevates

mutation burden (2.5-fold higher in elderly patients) while NF-kB
activation sustains pro-tumorigenic cytokine release (81).
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Therapeutic inhibition of NF-kB in aged preclinical models reduces

lung tumor volume by 70%, underscoring the pathway’s centrality

in senescence-driven malignancy (82). Collectively, these

mechanisms drive immune surveillance failure and aggressive

progression within the senescent lung cancer microenvironment

(Shown in Table 1).

3 Cellular senescence and lung
cancer-related signaling pathways

3.1 Dual Roles of the p53/p21/p16
Signaling Pathway

The p53/p21/p16 axis exerts context-dependent tumor-

suppressive and oncogenic effects in lung cancer through dynamic

molecular crosstalk. Canonically, wild-type p53 activates p21

(cyclin dependent kinase Inhibitor 1A, CDKN1A) to enforce G1/

S cell cycle arrest, enabling DNA repair or apoptosis initiation (83).

This mechanism impaired in ~50% of lung cancers harboring TP53

mutations (84). Mutant p53 acquires oncogenic functions via

epigenetic remodeling, including senescence-associated

heterochromatin foci (SAHF) formation, which derepresses MYC

transcription while silencing the cyclin dependent kinase Inhibitor

2A (CDKN2A) locus encoding p16 (85).

The p21 demonstrates paradoxical roles contingent on p53 status.

In p53-wildtype tumors, p21-mediated CDK2/4 inhibition enhances

chemotherapy response (86). Conversely, mutant p53 redirects p21 to

upregulate RAD21, promoting homologous recombination repair and

cisplatin resistance (87). Microenvironmental cues further modulate
Frontiers in Oncology 06
p21 activity: EGFR-STAT3 signaling phosphorylates p21 to induce its

cytoplasmic translocation, where the p21/STAT3 complex activates

AKT-mTOR signaling to drive metastasis (88).

The p16 (CDKN2A) inactivation—primarily through promoter

hypermethylation—represents a hallmark of lung cancer progression,

enabling cell cycle dysregulation via CDK4/6-RB pathway activation

(89). Paradoxically, p16 loss upregulates telomerase (hTERT) to

immortalize tumor cells, whereas its overexpression induces

senescence, highlighting its dual regulatory capacity (90). Clinically,

p16/p21 co-expression patterns predict immunotherapy efficacy:

NSCLC patients with low p16 expression exhibit elevated PD-L1

levels but paradoxically inferior responses to PD-1 inhibitors,

suggesting p16 loss primes an immune-evasive phenotype resistant

to checkpoint blockade (91). These findings underscore the pathway’s

complexity as a therapeutic determinant in lung cancer.
3.2 Cross-talk of NF-kB in lung cancer and
cellular senescence

The NF-kB pathway functions as a molecular nexus linking

cellular senescence to lung cancer progression through dual pro-

survival and pro-inflammatory mechanisms. In senescent cells,

DNA damage triggers ATM/ATR kinase activation, which

phosphorylates the IKK complex to degrade IkBa, enabling

nuclear translocation of the p65/p50 heterodimer—a prerequisite

for SASP factor transcription (IL-6, IL-8, MMP9) that fosters a

tumor-promoting inflammatory niche (92). Lung cancer cells

amplify this cascade autonomously via TNF-a and HMGB1

secretion, creating a self-reinforcing NF-kB activation loop (93).
TABLE 1 Mechanisms of the impact of cellular senescence on lung cancer.

Senescence
Mechanism

Mechanisms Impact on Lung Cancer Signaling
Pathways/
Molecules

Therapeutic
Strategies

Telomere
Attrition

Telomere attrition activates DNA damage response,
inducing replicative senescence; telomerase
reactivation bypasses senescence, enabling
tumor immortality.

Promotes chromosomal instability; activates
oncogenic pathways PI3K/AKT, RAS-MAPK;
enhances immune evasion via PD-L1/PD-
1 axis.

p53/p21; ATM/
ATR; TERT
promoter
mutations

Telomerase inhibitors;
TERT mutation-
targeting drugs

DNA Damage
and

Mutation
Accumulation

Endogenous/exogenous DNA damage leads to
mutations in oncogenes or tumor
suppressor inactivation.

Drives malignant transformation; induces
APOBEC3B-mediated mutations;.

BRCA1/2;
PARP;
ATM/ATR

PARP inhibitors;
immune checkpoint
inhibitors; ATR/
CHK1 inhibitors.

Mitochondrial
Dysfunction

Impaired mitophagy causes ROS accumulation;
OXPHOS supports therapy-resistant cancer stem
cells; metabolic reprogramming.

Promotes metastasis; suppresses T cell
function; enhances chemoresistance.

mTOR; HIF-1a;
BCL-2 family

OXPHOS inhibitors;
Metformin (glycolysis
suppression);
BCL-2 inhibitor.

SASP Secretion SASP secretes IL-6, IL-8, MMPs and TGF-b,
remodeling the tumor microenvironment.

Recruits MDSCs/Tregs to suppress immunity;
promotes EMT and metastasis; activates
EGFR-MAPK/AKT pathways.

NF-kB; STAT3;
TGF-b/EGFR

SASP inhibitors;
PD-1 inhibitor.

Chronic
Inflammation and

NF-kB

NF-kB activation drives SASP secretion, APOBEC3B
mutations, and PD-L1 upregulation.

Enhances immune evasion; increases
genomic instability.

NF-kB/
APOBEC3B,
PD-L1/PD-1

NF-kB inhibitors;
anti-PD-L1 antibodies;
BET inhibitors.

mTOR
Pathway

Dysregulation

mTORC1 promotes glycolysis and protein synthesis;
mTORC2 activates EMT and metastasis.

Accelerates G1/S transition;
drives chemoresistance.

PI3K/AKT/
mTOR;
RhoA/ROCK

mTOR inhibitors;
MEK inhibitor;
mTORC1-
S6K1 inhibition.
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NF-kB-driven immune evasion operates through PD-L1

upregulation on tumor cells and stromal elements, suppressing CD8+

T cell cytotoxicity while recruiting myeloid-derived suppressor cells

(MDSCs) and Tregs to establish an immunosuppressive barrier—a

mechanism validated in therapy-resistant NSCLC subtypes (94).

Concurrently, NF-kB exacerbates genomic instability by elevating

APOBEC3B deaminase activity, inducing mutagenic C-to-T

transitions in driver genes (EGFR, KRAS) that accelerate clonal

evolution (95). Pro-inflammatory stimuli, such as TNF-a or IL-1b,
activate NF-kB, which then binds to the promoter region of the

APOBEC3B gene, resulting in increased transcriptional output.

Elevated levels of APOBEC3B lead to widespread cytosine

deamination in single-stranded DNA, contributing to a

hypermutator phenotype and increased intratumoral heterogeneity.

Recent studies have confirmed this axis in various cancers, including

LUAD, linking chronic inflammation to tumor evolution through NF-

kB-APOBEC3B-driven mutagenesis (96). Radiotherapy can induce

nuclear translocation of NF-kB transcription factors, such as p65, by

activating the ATM/IKK axis, thereby upregulating stemness genes like

SOX2, NANOG, and ALDH1, and promoting self-renewal and

survival of cancer stem cells (CSCs). Studies indicate that NF-kB
activation is closely related to the enrichment of CSCs following

radiotherapy, and its inhibition can significantly reverse CSC-

associated phenotypes (97, 98). Furthermore, NF-kB drives the

expression of pro-inflammatory factors such as IL-6, TNF-a, and
CXCL1/2, promoting the infiltration of immunosuppressive cells like

Tregs and MDSCs, and inducing upregulation of PD-L1. This

culminates in the formation of TIME, weakening CD8+ T cell

functionality and responsiveness to immunotherapy (99).
3.3 Regulation of the mTOR signaling
pathway in cellular senescence and tumor
development

The mTOR pathway functions as a metabolic integrator with

dichotomous roles in cellular senescence and lung cancer

progression, governed by its distinct complexes mTORC1 and

mTORC2 (100). mTORC1 hyperactivation impairs mitophagy,

causing accumulation of dysfunctional mitochondria and ROS

overproduction, which drives p21-dependent senescence (101).

Pharmacologic mTORC1 inhibition (rapamycin) reduces

senescence-associated b-galactosidase (SA-b-Gal)-positive cells by

60% and rescues mitophagy, as demonstrated in in vitro senescence

models (102). In contrast, mTORC2 exacerbates oxidative stress by

suppressing SOD2 and catalase expression via AKT-mediated

FOXO inactivation (103). Preclinical studies in lung preneoplasia

show that mTORC2-selective inhibitor PP242 restores SOD2 levels

to 80% of baseline and attenuates senescence-associated fibrosis by

blocking FOXO3a phosphorylation (104). However, during lung

cancer progression, aberrant activation of the mTOR pathway

strongly promotes tumor malignancy (105). In established lung

cancers, mTORC1 phosphorylates 4E-BP1/S6K1 to enhance

ribosome biogenesis and oncoprotein synthesis (cyclin D1, c-
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MYC), accelerating G1/S progression (106). Clinically, 65% of

lung tumors exhibit elevated p-S6K1 (indicating mTORC1

hyperactivity), correlating with poor prognosis (107). Studies

show that mTORC2 is significantly activated in EGFR-mutant

non-small cell lung cancer (NSCLC), and its functional

upregulation is closely associated with tumor invasiveness,

epithelial-mesenchymal transition (EMT), and TKI resistance

(108). Furthermore, mTORC2 can enhance tumor cell metabolic

adaptability by upregulating c-Myc and HIF-1a, thereby further

promoting survival advantage under hypoxic conditions or

treatment pressure (109). mTORC1 upregulates HIF-1a-
dependent GLUT1 and LDHA to potentiate glycolysis, while

mTORC2 enhances lipid biosynthesis via ACC activation,

fulfilling anabolic demands of proliferating tumors (110, 111).

These dual roles position mTOR as a context-dependent

regulator: constraining senescence via metabolic homeostasis in

pre-malignant states, yet driving malignancy through proliferative,

invasive, and metabolic rewiring in advanced disease. In terms of

treatment, although mTOR inhibitors such as rapamycin and its

derivatives have entered clinical trials, they are mostly selective for

mTORC1. Long-term use often induces feedback activation of the

mTORC2-AKT pathway, limiting efficacy and potentially

promoting resistance (112). Currently, rational combination

strategies, such as pairing mTOR inhibitors with EGFR-TKI, PD-

1/PD-L1 antibodies, or metabolic inhibitors, are considered key

directions in enhancing efficacy and overcoming resistance (113).
4 Cellular senescence and lung
cancer treatment

In lung cancer therapy, chemotherapy- or radiotherapy-induced

senescent cells drive treatment resistance through senescence-

associated secretory phenotype (SASP) activation. Senescent cells

within the tumor microenvironment secrete pro-inflammatory

cytokines, chemokines, and matrix remodeling enzymes, fostering

chronic inflammation and immunosuppressive signaling (114). A

key mechanism involves post-chemotherapy fibroblasts transferring

zinc ions to cancer cells via the ZRT/IRT-like protein 1-connexin 43

(ZIP1-CX43) axis, which upregulates ABCB1-mediated drug efflux

pumps to confer platinum resistance. ZIP1, as a zinc ion transporter, is

extensively involved in maintaining intracellular zinc homeostasis,

oxidative stress response, and metabolic regulation. Studies have

shown that ZIP1 is underexpressed in various tumors, including

prostate cancer and lung cancer, and is closely associated with

metabolic reprogramming and apoptosis inhibition of tumor cells

(115). Recently, studies focusing on the cooperative regulation

between ZIP1 and gap junction protein CX43 have gained attention.

ZIP1’s role in upregulating CX43 to form gap junctions between

fibroblasts and lung cancer cells, facilitating zinc transfer and leading

to chemotherapy resistance, has been highlighted (116). SASP factors

further promote immune evasion: IL-6 enhances PD-L1 expression

through STAT3 signaling to suppress CD8+ T cell activity, while CCL2

recruits MDSCs and regulatory Tregs, amplifying immunosuppression
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(116, 117). Senescent stromal cells exacerbate resistance by secreting

serine peptidase inhibitor kazal type 1 (SPINK1), which activates the

EGFR/STAT3 axis to inhibit apoptosis and stimulate metastasis (118).

SPINK1 is a serine protease inhibitor that primarily inhibits trypsin

activity under normal physiological conditions. Recent studies have

shown that SPINK1 is abnormally overexpressed in prostate,

pancreatic, and lung cancers, and is involved in regulating EGFR

pathway activity, anti-apoptosis, and tumor stemness maintenance

(119). In NSCLC, high SPINK1 expression is associated with poor

prognosis in patients. SPINK1 promotes tumor cell growth and inhibits

apoptosis bymaintaining cellular redox homeostasis through activation

of the nuclear factor erythroid 2-related factor 2 (NRF2) pathway;

SPINK1 can also enhance migration and invasion capabilities of lung

adenocarcinoma cells by upregulating the expression of matrix

metalloproteinase 12 (120, 121). This interplay between SASP

secretion, immune modulation, and metabolic remodeling

underscores the critical role of senescent cells in driving therapeutic

resistance and tumor progression in lung cancer.

Therapeutic elimination of senescent cells using senolytics has

emerged as a strategy to overcome resistance (122). The BCL-2

inhibitor Navitoclax selectively targets chemotherapy-induced

senescent lung cancer cells, demonstrating efficacy in preclinical

models (123). In KRAS-mutant tumors, combining Navitoclax with

PD-1 inhibitors elevates complete remission rates from 15% to 60%

(124). Navitoclax has demonstrated the capability to eliminate

senescent cells in clinical trials targeting idiopathic pulmonary

fibrosis and myelofibrosis, such as NCT03289771 and NCT04592885

(125, 126). However, in oncological applications, the utility of

Navitoclax is markedly constrained by dose-l imit ing

thrombocytopenia (127). Similarly, Dasatinib-Quercetin co-treatment

clears senescent fibroblasts by inhibiting SRC kinase and PI3K/AKT

signaling, restoring T cell-mediated antitumor responses (128). The

combined treatment strategy of Dasatinib-Quercetin has been validated

in managing non-cancerous age-related conditions such as chronic

kidney disease and osteoarthritis (NCT02848131) (129). In oncological

models, Dasatinib-Quercetin has shown efficacy in eliminating

chemotherapy-induced senescent cells and in retarding disease

progression (130) However, in the domain of solid tumors, this

approach remains in the early clinical stages, with long-term safety

and efficacy requiring further evaluation.

SPINK1-neutralizing monoclonal antibodies block SASP-induced

EGFR activation, synergizing with carboplatin to enhance cytotoxicity

(118). In studies of hepatocellular carcinoma, SPINK1 neutralizing

antibodies significantly downregulate VEGF and phosphorylated EGFR

levels, thereby inhibiting tumor angiogenesis and the EMT process,

subsequently delaying tumor progression (127). In a murine model of

castration-resistant prostate cancer (CRPC), SPINK1 monoclonal

antibodies markedly reduce the expression of neuroendocrine

markers such as SYN and CHGA within tumors (131). CDK4/6

inhibitors, such as Palbociclib, Ribociclib, and Abemaciclib, have

achieved significant advancements in the treatment of HR+/HER2-

breast cancer by blocking the cell cycle transition from G1 to S phase

(132). However, tumor cells may circumvent CDK4/6 inhibition by

upregulating the expression of CDK2, CCNE1, or E2F target genes,
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leading to treatment failure (133). Additionally, CDK4/6 inhibitors are

metabolized via CYP3A4 and share metabolic pathways with various

chemotherapeutic agents, which may result in abnormal drug plasma

concentrations and increase the risk of adverse effects (134). Future

directions include integrating single-cell metabolomics and spatial

transcriptomics to map SASP regulatory networks (135), enabling

precision strategies such as dual PD-1/SPINK1 checkpoint blockade

or metabolic reprogramming with agents like metformin (136).

Nevertheless, the field remains constrained by several technical

challenges. Current mass spectrometry platforms often struggle with

low metabolite abundance and limited dynamic range at the single-cell

level, potentially compromising quantification accuracy (137).

Moreover, the spatial and temporal resolution of metabolomic

analysis remains insufficient, particularly in tissue contexts with

complex microenvironments, such as lung tumors (137).

Bioinformatics pipelines for integrating single-cell metabolomics data

with transcriptomics or proteomics datasets are still under

development, limiting interpretability (138). Addressing these

bottlenecks is vital for realizing the full potential of SASP network

analysis in mechanistic and clinical research.
5 Discussion

The dual roles of cellular senescence in lung cancer—acting as a

tumor-suppressive mechanism via p53/p21/p16-mediated cell cycle

arrest while driving malignancy through SASP-mediated inflammation

—underscore its context-dependent impact on disease progression

(139). SASP factors such as IL-6, IL-8, and MMPs activate oncogenic

NF-kB and STAT3 signaling, with NF-kB upregulating APOBEC3B to

induce EGFR/KRAS mutagenesis (140, 141), and STAT3 enhancing

PD-L1 expression to suppress T cell cytotoxicity (142, 143). In NSCLC,

SASP exhibits typical pro-inflammatory characteristics, primarily

including factors such as IL-6, IL-8, CXCL1, and MMPs. These

secretions can significantly enhance tumor invasiveness and

heterogeneity by inducing EMT, promoting angiogenesis, and

activating proliferative cancer-adjacent cells (144). Additionally, SASP

can attract MDSCs and Tregs, shaping an immunosuppressive tumor

microenvironment, thereby weakening the efficacy of immune

checkpoint inhibitors (145). These mechanisms offer a therapeutic

window for targeting SASP, especially in patients undergoing

chemotherapy or radiotherapy that induces senescence, where

senolytic drugs may help reduce recurrence and increase responses

to immunotherapy (146). In contrast, SCLC is usually accompanied by

the loss of p53 and Rb pathways, making it difficult for cells to enter the

classic senescence program and hence lacking the typical SASP

phenotype (147). Nevertheless, some studies indicate that SCLC can

still exhibit atypical SASP-like phenotype post-treatment, with the

released signaling factors potentially affecting tumor plasticity and

cellular state transitions, such as neuroendocrine transdifferentiation

(148). The high mutational burden of SCLC does not correlate with

immunogenicity, possibly due in part to evasion of immune

recognition by mechanisms such as downregulation of MHC-I,

rather than relying on SASP’s constructed immunosuppressive
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network (149). Therefore, in SCLC, strategies targeting SASP have yet

to show distinct clinical advantages, but the concept of inducing

senescence or mimicking SASP to inhibit tumor activity still holds

research potential.

Concurrently, mitochondrial dysfunction in senescent cells

promotes metabolic reprogramming and ROS accumulation,

fostering cancer stem cell survival and chemotherapy resistance.

This is exacerbated by immunosenescence, exemplified by

mitochondrial transfer to T cells via tunneling nanotubes, which

cripples antitumor immunity and establishes a “metabolic-

immune” barrier (150, 151). Senescence-associated biomarkers

provide critical prognostic and therapeutic insights. Telomere

length and TERT activity stratify immunotherapy responsiveness,

with longer telomeres paradoxically correlating with poorer

outcomes (152). Combined p16/p21 expression analysis predicts

efficacy of immune checkpoint inhibitors (153), while dynamic

monitoring of SASP factors (IL-6, CCL2) and APOBEC3B

mutation burden—2.5-fold higher in elderly patients—guides

synthetic lethality strategies like PARP inhibition (154). Single-

cell sequencing has identified senescence-related gene signatures

(senescence risk score, SRS) that enable molecular subtyping for

precision therapy (155).

Therapeutic strategies targeting senescence focus on three

pillars: senolytic elimination, SASP inhibition, and metabolic

normalizat ion. Navitoclax , a BCL-2 inhibi tor , c lears

chemotherapy-induced senescent cells and synergizes with PD-1

inhibitors to boost tumor remission rates (156). JQ1, a BET

inhibitor, epigenetically suppresses the IL-6/STAT3 axis to

overcome EGFR-TKI resistance (157). Metformin reverses SASP-

driven glycolysis and enhances T cell function, improving 5-year

survival by 35% in diabetic lung cancer cohorts (158). Emerging

approaches include DR5 agonist/cFLIP inhibitor combinations

identified through multi-omics analysis and chronotherapy-

optimized mTOR inhibitors to enhance CD8+ T cell activity

(159). Despite significant progress in elucidating the role of

senescence in lung adenocarcinoma, several challenges persist.

Firstly, the heterogeneity and dynamic nature of senescent cells

complicate the identification of universal markers or therapeutic

targets. Secondly, the SASP demonstrates environment-dependent

dual roles in tumor suppression and promotion, thereby

complicating therapeutic modulation. Thirdly, the absence of

reliable and specific senescence biomarkers in clinical lung cancer

samples impedes effective patient stratification and comprehensive

treatment monitoring. Finally, although senolytics and SASP

inhibitors offer promising therapeutic avenues, their safety

profiles, efficacy, and delivery mechanisms pose challenges,

especially in combination therapies. Addressing these gaps

remains critical for the successful translation of senescence-

targeting strategies into effective clinical practice. Future research

must address senescence heterogeneity and spatiotemporal
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dynamics. Spatial transcriptomics and metabolic flux analysis can

map senescent cell niches, while AI-driven models integrating

epigenetic, microbiome, and immune datasets may predict

optimal therapeutic targets. Multidisciplinary innovations

targeting the senescence-immune-metabolic axis will be pivotal in

overcoming resistance and improving lung cancer survival.
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