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dosimetric parameters
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Introduction: Inflammatory response and nutritional status have been linked to

adverse reactions of radiotherapy. The hemoglobin, albumin, lymphocyte, and

platelet (HALP) score, associated with both inflammation and nutrition, can

effectively predict prognosis in various cancers. However, its role in predicting

radiation pneumonitis (RP) among radiotherapy patients remains unclear, and

further investigation is needed to elucidate it.

Methods: The general clinical data of lung cancer patients who underwent

radiotherapy between January 2021 and October 2024 were retrospectively

collected. RP was graded in accordance with the Common Terminology Criteria

for Adverse Events (CTCAE) version 5.0. Predictive factors for RP were identified

using LASSO and multivariate logistic regression analyses, and a nomogram was

subsequently developed based on these factors. The predictive performance of

the nomogramwas comprehensively evaluated using the area under the receiver

operating characteristic (AUROC) analyses, calibration curve, and decision

curve analysis.

Results: A total of 396 patients’ data were analyzed (development cohort: 301;

temporal validation cohort: 95). Multivariate logistic analysis revealed that the

HALP score and lung volume receiving ≥5 Gy (V5) were independent predictors

of symptomatic RP, and regarding severe RP were HALP, V5, albumin, and

hemoglobin. The AUROC values of the HALP score were 0.77 (95% CI: 0.72–

0.83) and 0.83 (95% CI: 0.76–0.90) for predicting symptomatic and severe RP.

The integrated HALP-V5 model exhibited excellent predictive ability both in
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symptomatic RP (AUROC: 0.84; 95% CI: 0.79–0.89) and severe RP (AUROC:

0.89; 95% CI: 0.83–0.94), with high predictive accuracy and clinical utility.

Conclusion: HALP can be employed as a promising independent predictor of RP

in lung cancer patients undergoing radiotherapy, and the combination of V5 can

further improve prediction accuracy.
KEYWORDS

hemoglobin, albumin, lymphocyte and platelet score, radiation-induced lung injury,
lung cancer, radiotherapy, malnutrition
1 Introduction

Lung cancer, accounting for almost 2.5 million new cases and

over 1.8 million deaths in 2022, remains the most commonly

diagnosed cancer and the leading cause of cancer death

worldwide (1). Over half of lung cancer patients are diagnosed at

advanced stages, rendering curative treatment often unfeasible (2).

In this context, radiotherapy has become an indispensable

component of multidisciplinary treatment for lung cancer. Over

70% of patients have evidence-based indications for radiotherapy

during their care, ranging from curative treatment to symptom

palliation (3). However, the development of radiation-induced lung

injury (RILI), manifested as early radiation pneumonitis (RP) and

subsequent irreversible pulmonary fibrosis, has become a critical

obstacle to effective cancer control and patient survival. Although

modern radiotherapy technologies have achieved remarkable

progress in substantially reducing radiation exposure to normal

lung tissue, the clinical incidence of RILI remains persistently high.

Current literature demonstrates considerable variability in reported

rates of RP, which can be as high as 58% (4). This substantial

discrepancy is due to the numerous risk factors and the complex

interplay of the diverse pathophysiological mechanisms involved

(5–7). Of particular clinical concern, approximately 10%–20% of

patients present RILI-related signs/symptoms of varying severity,

with potentially progressing to life-threatening complications (6).

The lack of specific clinical symptoms or early imaging changes

underscores the significance in identifying reliable biomarkers for

early prediction and diagnosis of RILI (8, 9). Although many

predictors or models for RP prediction based on diverse features

have been proposed (5–7, 10, 11), substantial challenges remain in

achieving clinical translation. Moreover, there is a paucity of clinical

medications or interventions capable of reversing pulmonary

fibrosis (4, 12). Therefore, timely and effective prediction of RILI

in its RP stage represents major challenge in thoracic radiotherapy

when achieving optimal tumor control.

The pathogenesis of RP is multifactorial interaction and

incompletely understood. The inflammatory responses triggered

by ionizing radiation, which contribute to tissue remodeling and

subsequent fibrosis, are widely recognized as a predominant factor
02
for RP development (4, 6, 13, 14). Concurrently, extensive research

demonstrates the importance of nutritional status in modulating

the adverse effects of radiotherapy (15–17). Despite the established

links among inflammation, malnutrition, and RP, the clinical utility

of inflammatory-nutritional biomarkers for RP prediction remains

inconclusive, necessitating further investigation. The hemoglobin,

albumin, lymphocytes, and platelets (HALP) score integrate

markers of systemic inflammation and nutritional status (18),

making it a promising candidate for predicting RILI. Although

individual components of the HALP score link with RP risk in prior

studies (16, 19–23), its predictive value for RP has yet to

be explored.

Thus, we conducted this study to expand the value of HALP in

predicting RP risk. Given the established predictive role of

dosimetric parameters in RP (4, 7, 24), we compared the

predictive performance of HALP with that of traditional

dosimetric factors. Additionally, we attempted to develop a

comprehensive nomogram integrating HALP and dosimetric

parameters to visually stratify RP risk. To our knowledge, this

represents the first systematic evaluation of the HALP score’s

predictive value for RP. We expect that our findings can provide

clinicians with valuable reference for identifying high-risk patients

and informing clinical decision-making.
2 Methods

2.1 Patient selection and treatment

The medical records of lung cancer patients who received

radiotherapy at Xuzhou Central Hospital (Jiangsu, China)

between January 2021 and October 2024 were retrospectively

collected from the hospital’s electronic medical records system

(development cohort: January 2021–July 2024; validation cohort:

August 2024–October 2024). Inclusion criteria were: pathologically

confirmed lung cancer (any histology); clinical staging II–IV

(American Joint Committee on Cancer, 8th edition); age ≥18

years at treatment; Eastern Cooperative Oncology Group (ECOG)

performance status ≤2; life expectancy ≥3 months; treatment with
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intensity-modulated radiotherapy (IMRT) (definitive, adjuvant, or

palliative) with/without other anti-cancer treatment; no prior

history of thoracic radiotherapy; availability of clinical, laboratory,

and dosimetric data; and at least six months of regular follow-up at

1, 3, and 6 months after radiotherapy completion. Patients with the

following conditions were excluded: other conditions known to

affect HALP levels (acute infection, hematological diseases,

autoimmune disease, severe cardiovascular, hepatic, or renal

impairment etc.); other interstitial lung diseases; incomplete data;

inadequate radiation dose (<50 Gy) or premature discontinuation

of radiotherapy; previous history of thoracic radiotherapy; or

treatment with other radiotherapy techniques. The study was

approved by the Ethics Committee of Xuzhou Central Hospital

(XZXY-LK-20231102-0184) , and informed consent was waived

because all collected information was derived from medical records

without participant interaction.

With the advantages of better conformal dose distribution and a

lower incidence of high-grade RP, IMRT has emerged as a primary

radiotherapy option for lung cancer in recent years (2, 22). To

minimize methodological bias, all enrolled patients received IMRT.

All patients underwent radiotherapy using 6-MV photon energies.

IMRT was planned using the Pinnacle 9.0 planning system and

delivered via an Elekta Synergy linear accelerator. The target area

and organs at risk are referred to the Radiotherapy and Oncology

Group (RTOG) guidelines, and all treatment plans met standard

certification requirements. The gross tumor volume, clinical target

volume, and planning target volume (PTV) were defined following

International Commission on Radiation Units and Measurements

Reports 50 and 62. The treatment plan ensured that at least 99% of

the PTV receives at least 95% of the prescribed dose, and the

maximum dose to the PTV does not exceed 105%. Stringent dose-

volume restrictions to normal tissues were as follows: lungs (lung

volume receiving ≥5 Gy [V5] ≤70%, V20 ≤30%, mean lung dose

[MLD] ≤15 Gy), heart (V30 <40%, V40 <30%), esophagus (V50

<30%), and spinal cord (maximum dose ≤45 Gy). All radiotherapy

plans were certified according to standard requirements. The total

radiotherapy dose ranged from 50–70 Gy, delivered at 1.8–2.0 Gy

per fraction, once daily, 5 fractions per week.

Concurrent chemotherapy was administered using platinum-

based doublet regimens: cisplatin or carboplatin in combination

with paclitaxel , etoposide, or pemetrexed. Sequential

chemoradiotherapy or radiotherapy alone was recommended for

patients unsuitable for concurrent chemoradiotherapy.

Additionally, consolidative immunotherapy was administered to

some patients.
2.2 Data collection and outcome
assessment

Data were obtained from medical records and the radiotherapy

system. The following information was extracted: patient

demographics (age, gender, body weight, height, smoking history,

performance status, and comorbidities), cancer type, chemotherapy

regimen, dosimetric variables (dose, V5, V20, MLD, and PTV), and
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laboratory values (albumin [ALB], absolute lymphocyte count

[ALC], hemoglobin [Hb], and platelet [PLT] count) within one

week before radiotherapy initiation. Regular follow-up

examinations, including chest CT scans, were performed at 1, 3,

and 6 months after radiotherapy. The data collection cutoff date was

October 31, 2024.

Body mass index (BMI) was calculated as weight (kg) divided by

the square of height (m) (kg/m2). The HALP score was calculated

using the formula: Hb (g/L) × ALB (g/L) × ALC (/L)/PLT (/L) (18).

Biological effective doses [BED] was calculated using previously

reported formula: BED= nd(1 + d/(a/b)), with n = number of

fractions, d = dose per fraction, and a/b = 10 Gy.

The diagnosis of RP was established based on a combination of

clinical symptoms and chest CT findings. RP severity was graded

according to the Common Terminology Criteria for Adverse Events

(CTCAE) version 5.0 (Supplementary Table S1), with grade ≥2

defined as symptomatic RP and grade ≥3 as severe RP. The

diagnostic and grading process for RP followed a three-phase

protocol: an initial independent, dual-blinded evaluation by two

researchers; resolution of disagreements through consensus with a

third specialist; and, if disagreements still remained, joint review

and finalization conducted by all three specialists.
2.3 Statistical analysis

Continuous variables were presented as median and

interquartile range (25th–75th percentile), whereas categorical

variables were reported as frequencies and percentages.

Differences between groups were analyzed using the chi-squared

or Fisher’s exact test, unpaired t-test, or Mann-Whitney U test,

depending on appropriateness. Predictive factors for RP were

selected using least absolute shrinkage and selection operator

(LASSO) regression in high-dimensional data via 10-fold cross-

validation to ascertain the optimal Lambda parameters. The

selection of preliminary screening variables was determined by

nonzero coefficients in the LASSO regression model. Only

variables selected by LASSO were eligible for the subsequent

multivariate logistic (enter method) regression and used to

develop a monogram for predicting clinical diagnoses. To avoid

the unstable and imprecise estimates of the coefficients,

multicollinearity was tested to exclude highly correlated variables

in the final multivariate logistic regression, with a variance inflation

factor (VIF) >10 among independent factors indicative of

multicollinearity. The Box-Tidwell test was employed to evaluate

the linearity assumption between continuous predictors and the

log-odds of the outcome. For variables showing a nonlinear

relationship, quadratic transformations were applied, and the

model was reconstructed accordingly. The Bootstrap resampling

method (1,000 iterations) and temporal external validation were

used to validate the nomogram. The performance of the nomogram

was evaluated using receiver operating characteristic (ROC) curve

analysis for discriminative ability, calibration curve analysis and the

Hosmer-Lemeshow goodness-of-fit test for predictive accuracy, and

decision curve analysis (DCA) for clinical utility. ROC analysis was
frontiersin.org
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also used to determine sensitivity, specificity, optimal cut-off

thresholds (via maximum Youden index), and comparisons

among various parameters. All analyses were performed using R

version 4.2.2, with statistical significance set at P <0.05.
3 Results

3.1 Patient characteristics

The study design and patient composition are illustrated in

Figure 1. Following the inclusion and exclusion criteria, 301 patients

were enrolled in the development cohort. The median age of the

patients was 67 years (60–72), with the majority being male (74.4%).

Adenocarcinoma was the most prevalent pathological type,

accounting for 39.53% of cases, followed by squamous cell

carcinoma (35.88%), small-cell lung cancer (21.26%), and other

histology (3.32%). Patients with stage II, III, and IV represented

32.89% (99), 40.53% (122), and 26.58% (80), respectively. CCRT

was administered to 133 (44.19%), sequential CRT to 144 (47.84%),

and radiotherapy alone to 24 (7.97%) patients. Immunotherapy was

administered to 74 patients (24.58%). Grades 0–4 RP were observed

in 122, 82, 56, 37, and 4 patients respectively; no RP-related deaths

occurred. Table 1 details the main characteristics and treatment

regimens of the development cohort patients. Significant differences

in the presence of emphysema, BED, V5, V20, MLD, PTV, and

HALP were observed between the non-symptomatic RP and

symptomatic RP groups. Similarly, significant differences in V5,

V20, MLD, PTV, and HALP score were noted between the non-

severe RP and severe RP groups. Compared with the non-
Frontiers in Oncology 04
symptomatic and non-severe RP groups, the symptomatic and

severe RP groups exhibited lower HALP scores and higher

dosimetric parameters, including V5, V20, MLD, and PTV,

respectively (Table 1).

Additionally, 95 patients were selected for the temporal

validation cohort. Except for MLD and V5 , no significant

differences were observed in the variables between the temporal

validation cohort and the development cohort (Table 2).
3.2 LASSO regression and multivariate
logistic analysis

The heat map indicated significant correlations among some

continuous variables (Figure 2). To address multicollinearity and

optimize model performance, LASSO regression was employed for

variable selection. Using the lambda.1se criterion, LASSO analysis

identified three variables (HALP, V5, and V20) out of the 27

variables as the most predictive features for symptomatic RP. For

severe RP, six variables (Hb, ALB, HALP, V5, V20, and MLD) were

selected (Figure 3).

Multivariate logistic analysis revealed that V5 and HALP were

independent predictive factors for symptomatic RP (Table 2). For

severe RP, ALB, Hb, HALP, and V5 emerged as independent

predictors (Table 3). No significant multicollinearity was observed

within the final models (all VIF <3) (Table 3). The Box-Tidwell test

confirmed that all continuous predictors exhibited a linear

relationship with the log-odds of the outcome , validating the

linearity assumption of the logistic regression models and

ensuring the statistical approach was appropriate.
FIGURE 1

Flowchart of patient selection.
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TABLE 1 Baseline characteristics of patients with symptomatic and severe RP in the development cohort.

Variables
Overall
(n = 301)

Symptomatic RP
(n = 97)

Non-
symptomatic
RP (n = 204)

P
Severe RP
(n = 41)

Non-severe
RP (n = 260)

P

Gender 0.349 0.125

Female 77 (25.58) 21 (21.65) 56 (27.45) 6 (14.63) 71 (27.31)

Male 224 (74.42) 76 (78.35) 148 (72.55) 35 (85.37) 189 (72.69)

Age (years) 67.00 (60.00–72.00) 68.00 (61.00–73.00) 67.00 (59.75–72.00) 0.321 68.00 (63.00–73.00) 67.00 (59.00–72.00) 0.128

BMI (kg/m²) 23.44 (21.22–25.47) 23.03 (21.22–24.38) 23.44 (21.22–25.82) 0.186 23.31 (20.55–24.38) 23.44 (21.22–25.63) 0.435

ECOG PS 0.305 0.375

0 102 (33.89) 27 (27.84) 75 (36.76) 10 (24.39) 92 (35.38)

1 138 (45.85) 48 (49.48) 90 (44.12) 21 (51.22) 117 (45.00)

2 61 (20.27) 22 (22.68) 39 (19.12) 10 (24.39) 51 (19.62)

Smoking 0.154 0.556

No 145 (48.17) 53 (54.64) 92 (45.10) 22 (53.66) 123 (47.31)

Yes 156 (51.83) 44 (45.36) 112 (54.90) 19 (46.34) 137 (52.69)

ILD 0.548 0.433

No 267 (88.70) 84 (86.60) 183 (89.71) 35 (85.37) 232 (89.23)

Yes 34 (11.30) 13 (13.40) 21 (10.29) 6 (14.63) 28 (10.77)

Emphysema 0.049 0.410

No 215 (71.43) 77 (79.38) 138 (67.65) 32 (78.05) 183 (70.38)

Yes 86 (28.57) 20 (20.62) 66 (32.35) 9 (21.95) 77 (29.62)

Histology 0.942 0.559

SCC 108 (35.88) 36 (37.11) 72 (35.29) 12 (29.27) 96 (36.92)

AC 119 (39.53) 36 (37.11) 83 (40.69) 16 (39.02) 103 (39.62)

SCLC 64 (21.26) 22 (22.68) 42 (20.59) 11 (26.83) 53 (20.38)

Other 10 (3.32) 3 (3.09) 7 (3.43) 2 (4.88) 8 (3.08)

Stage 0.610 0.671

II 99 (32.89) 31 (31.96) 68 (33.33) 13 (31.71) 86 (33.08)

III 122 (40.53) 43 (44.33) 79 (38.73) 19 (46.34) 103 (39.62)

IV 80 (26.58) 23 (23.71) 57 (27.94) 9 (21.95) 71 (27.31)

ALC (109/L) 1.78 (1.49–2.23) 1.59 (1.35–1.80) 1.90 (1.54–2.39) <0.001 1.50 (1.06–1.66) 1.85 (1.50–2.33) <0.001

Hb (g/L) 122.19 (14.97) 117.13 (13.55) 124.59 (15.04) <0.001 112.37 (12.52) 123.73 (14.75) <0.001

ALB (g/L) 40.85 (3.98) 39.66 (3.91) 41.42 (3.89) <0.001 37.77 (3.94) 41.34 (3.76) <0.001

PLT (109/L)
211.00
(167.00–253.00) 221.00 (185.00–265.00)

201.00
(156.75–246.00) 0.012

221.00
(185.00–281.00)

210.50
(165.00–250.00) 0.151

HALP 43.66 (33.09–61.47) 33.82 (24.15–40.83) 51.13 (38.06–66.49) <0.001 25.59 (21.12–34.41) 45.64 (35.28–62.80) <0.001

Treatment sequential 0.666 1.000

CCRT 133 (44.19) 42 (43.30) 91 (44.61) 18 (43.90) 115 (44.23)

SCRT 144 (47.84) 49 (50.52) 95 (46.57) 20 (48.78) 124 (47.69)

RT only 24 (7.97) 6 (6.19) 18 (8.82) 3 (7.32) 21 (8.08)

RT modality 0.905 0.758

(Continued)
F
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The HALP score achieve optimal diagnostic performance With

an AUROC value of 0.77 (95% CI: 0.72–0.83) for symptomatic RP

and 0.83 (95% CI: 0.76–0.90) for severe RP, at threshold of 40.85

(sensitivity: 71%, specificity: 75%) for symptomatic RP, and 34.53

(sensitivity: 76% , specificity: 77%) for severe RP.
3.3 Establishment and validation of the
nomogram for symptomatic RP

Based on the results of multivariate logistic regression, a

nomogram incorporating HALP and V5 was constructed (Figure 4A,

Supplementary Table S2). The HALP-V5 composite model exhibited

higher discriminative ability than any single variable, with an area

under the receiver operating characteristic curve (AUROC) of 0.84

(95% confidence interval [CI]: 0.79–0.89) (Figure 5A).

Internal validation using the bootstrap resampling method

(1,000 iterations) demonstrated the model’s stability, yielding a

comparable AUROC of 0.89 (95% CI: 0.86–0.93). Although the

AUROC (0.79; 95% CI: 0.69–0.88) of the temporal validation cohort
Frontiers in Oncology 06
(Figure 5B) was lower than that of the development cohort,

DeLong’s test did not identify a significant difference in the

AUROC between the two models (P = 0.376). This finding

suggests that the temporal validation model achieved consistent

performance, further confirming the model’s good reproducibility

Calibration was rigorously assessed using the Hosmer-

Lemeshow test and calibration plots. In both the development (c²
= 12.70, P = 0.123) and validation (c² = 9.862, P = 0.274) cohorts,

no significant discrepancies were observed between the predicted

and observed probabilities of RP. Visual inspection of the

calibration plots further demonstrated strong alignment, with

data points clustering closely around the ideal 45-degree line,

validating the model’s reliability (Figures 5C, D).

DCA showed that the nomogram offered significantly greater

net clinical benefit than “universal intervention” or “no-

intervention” strategies across a wide range of threshold

probabilities: 9.0%–99.0% in the development cohort (Figure 5E)

and 7.0%–98.0% in the validation cohort (Figure 5F). These

findings underscore the monogram’s robust performance and

clinical utility for risk stratification.
TABLE 1 Continued

Variables
Overall
(n = 301)

Symptomatic RP
(n = 97)

Non-
symptomatic
RP (n = 204)

P
Severe RP
(n = 41)

Non-severe
RP (n = 260)

P

Definity RT 151 (50.17) 49 (50.52) 102 (50.00) 19 (46.34) 132 (50.77)

Postoperative RT 109 (36.21) 36 (37.11) 73 (35.78) 15 (36.59) 94 (36.15)

Palliative RT 41 (13.62) 12 (12.37) 29 (14.22) 7 (17.07) 34 (13.08)

BED (Gy) 72.00 (72.00–72.00) 72.00 (72.00–72.00) 72.00 (72.00–72.00) 0.948 72.00 (72.00–72.00) 72.00 (72.00–72.00) 0.758

PTV (cc)
323.86
(257.00–394.24) 332.00 (289.00–453.00)

319.50
(233.62–378.85) 0.002

351.15
(289.00–453.00)

320.00
(246.25–389.00) 0.042

V5 (%) 44.00 (39.00–50.00) 50.00 (45.00–55.00) 41.00 (36.00–48.00) <0.001 54.00 (48.00–58.00) 42.00 (38.00–49.25) <0.001

V20 (%) 19.00 (16.00–22.00) 22.00 (19.00–25.00) 19.00 (16.00–20.00) <0.001 23.00 (20.00–25.00) 19.00 (16.00–21.00) <0.001

MLD (Gy) 11.00 (10.00–12.00) 12.00 (11.00–14.00) 10.00 (9.00–12.00) <0.001 13.00 (12.00–14.00) 11.00 (9.75–12.00) <0.001

Chemotherapy regimen 0.853 0.837

Paclitaxel +
carboplatin/cisplatin 121 (40.20) 41 (42.27) 80 (39.22) 19 (46.34%) 102 (39.23%)

Pemetrexed +
carboplatin/cisplatin 105 (34.88) 33 (34.02) 72 (35.29) 12 (29.27%) 93 (35.77%)

Etoposide +
carboplatin/cisplatin 51 (16.94) 17 (17.53) 34 (16.67) 7 (17.07%) 44 (16.92%)

None 24 (7.97) 6 (6.19) 18 (8.82) 3 (7.32%) 21 (8.08%)

ICI 0.636 0.870

No 227 (75.42) 71 (73.20) 156 (76.47) 30 (73.17) 197 (75.77)

Yes 74 (24.58) 26 (26.80) 48 (23.53) 11 (26.83) 63 (24.23)
frontie
Data were expressed as n (%) or median (25th–75th percentile).
AC, adenocarcinoma; ALB, albumin; ALC, absolute lymphocyte count; BED, biologically effective dose; BMI, body mass index; CCRT, concurrent chemoradiotherapy; ECOG PS, Eastern
Cooperative Oncology Group performance status; HALP, hemoglobin, albumin, lymphocyte and platelet; Hb, hemoglobin; ICI, immune checkpoint inhibitors; ILD, interstitial lung disease;
MLD, mean lung dose; PLT, platelet; PTV, planning target volume; RT, radiotherapy; SCC, squamous cell carcinoma; SCLC, small cell lung cancer; SCRT, sequential chemoradiotherapy; Vx, the
percentage of the lung volume that received more than x Gy.
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TABLE 2 Baseline characteristics of patients in the development and validation cohorts.

Variables Overall (n = 396) Development cohort (n = 301) Validation cohort (n = 95) P

Gender 1.000

Female 101 (25.51) 77 (25.58) 24 (25.26)

Male 295 (74.49) 224 (74.42) 71 (74.74)

Age (years) 67.50 (61.00–72.00) 67.00 (60.00–72.00) 68.00 (63.00–72.00) 0.216

BMI (kg/m²) 23.44 (21.25–25.52) 23.44 (21.22–25.47) 23.78 (21.51–25.91) 0.330

ECOG PS 0.971

0 133 (33.59) 102 (33.89) 31 (32.63)

1 182 (45.96) 138 (45.85) 44 (46.32)

2 81 (20.45) 61 (20.27) 20 (21.05)

Smoking 0.069

No 180 (45.45) 145 (48.17) 35 (36.84)

Yes 216 (54.55) 156 (51.83) 60 (63.16)

ILD 0.128

No 357 (90.15) 267 (88.70) 90 (94.74)

Yes 39 (9.85) 34 (11.30) 5 (5.26)

Emphysema 0.813

No 281 (70.96) 215 (71.43) 66 (69.47)

Yes 115 (29.04) 86 (28.57) 29 (30.53)

Histology 0.768

SCC 141 (35.61) 108 (35.88) 33 (34.74)

AC 153 (38.64) 119 (39.53) 34 (35.79)

SCLC 88 (22.22) 64 (21.26) 24 (25.26)

Other 14 (3.54) 10 (3.32) 4 (4.21)

Clinical stage 0.955

II 130 (32.83) 99 (32.89) 31 (32.63)

III 162 (40.91) 122 (40.53) 40 (42.11)

IV 104 (26.26) 80 (26.58) 24 (25.26)

ALC (109/L) 1.80 (1.50–2.19) 1.78 (1.49–2.23) 1.80 (1.60–2.07) 0.345

Hb (g/L) 122.29 (111.75–133.00) 122.00 (111.00–134.00) 122.00 (112.00–133.00) 0.877

ALB (g/L) 40.80 (38.00–43.73) 40.90 (38.00–43.60) 40.50 (37.70–44.10) 0.830

PLT (109/L) 211.00 (167.00–252.00) 211.00 (167.00–253.00) 211.00 (169.00–251.00) 0.938

HALP 43.97 (32.74–61.69) 43.66 (33.09–61.47) 43.98 (32.06–63.13) 0.652

Treatment sequential 0.615

CCRT 180 (45.45) 133 (44.19) 47 (49.47)

SCRT 184 (46.46) 144 (47.84) 40 (42.11)

RT only 32 (8.08) 24 (7.97) 8 (8.42)

RT modality 0.050

Definity RT 203 (51.26) 151 (50.17) 52 (54.74)

(Continued)
F
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TABLE 2 Continued

Variables Overall (n = 396) Development cohort (n = 301) Validation cohort (n = 95) P

Postoperative RT 132 (33.33) 109 (36.21) 23 (24.21)

Palliative RT 61 (15.40) 41 (13.62) 20 (21.05)

Chemotherapyregimen 0.628

Paclitaxel + platinum 160 (40.40) 121 (40.20) 39 (41.05)

Pemetrexed + platinum 133 (33.59) 105 (34.88) 28 (29.47)

Etoposide + platinum 68 (17.17) 51 (16.94) 17 (17.89)

None 35 (8.84) 24 (7.97) 11 (11.58)

BED (Gy) 72.00 (72.00–72.00) 72.00 (72.00–72.00) 72.00 (72.00–72.00) 0.226

PTV (cc) 322.62 (257.00–394.68) 323.86 (257.00–394.24) 322.00 (258.00–373.50) 0.078

V5 (%) 44.00 (38.00–50.00) 44.00 (39.00–50.00) 44.00 (37.50–50.00) 0.042

V20 (%) 19.00 (16.00–22.00) 19.00 (16.00–22.00) 19.00 (16.00–20.50) 0.092

MLD (Gy) 11.00 (10.00–12.00) 11.00 (10.00–12.00) 10.00 (10.00–11.65) 0.011

ICI 1.000

No 299 (75.51) 227 (75.42) 72 (75.79)

Yes 97 (24.49) 74 (24.58) 23 (24.21)
F
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Data were expressed as n (%) or median (25th–75th percentile).
AC, adenocarcinoma; ALB, albumin; ALC, absolute lymphocyte count; BED, biologically effective dose; BMI,body mass index; CCRT, concurrent chemoradiotherapy; ECOG PS, Eastern
Cooperative Oncology Group performance status; HALP, hemoglobin, albumin, lymphocyte and platelet; Hb, hemoglobin; ICI, immune checkpoint inhibitors; ILD, interstitial lung disease;
MLD, mean lung dose; PLT, platelet; PTV, planning target volume; RP, radiation pneumonitis; RT, radiotherapy; SCC, squamous cell carcinoma; SCLC, small cell lung cancer; SCRT, sequential
chemoradiotherapy; Vx, the percentage of the lung volume that received more than x Gy.
FIGURE 2

Correlation heat map of continuous variables. Color depth represents correlation coefficient (r value).
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3.4 Establishment and validation of the
nomogram for severe RP

The nomogram integrating HALP-V5 to predict grade ≥3 RP

achieved an AUROC of 0.89 (95% CI: 0.83–0.94) in the development

cohort (Figures 4B, 6A, Supplementary Table S2), which outperformed

the model for symptomatic RP (AUROC 0.84; 95% CI: 0.79–0.89).

Comprehensive validation confirmed the model’s robust

performance. In the temporal validation cohort, the nomogram

exhibited good discrimination with an AUROC of 0.85 (95% CI:
Frontiers in Oncology 09
0.70–0.99) (Figure 6B), showing no significant difference compared

to the development cohort (DeLong’s test, P = 0.606).

Strong calibration was observed in the model, as evidenced by

the Hosmer-Lemeshow test (development cohort: c² = 11.026, P =

0.200; validation cohort: c² = 9.048, P = 0.338) and calibration plots

(Figures 6C, D).

DCA demonstrated the nonogram’s good clinical utility

compared to blanket treatment strategies across threshold

probability of 2.0%–68.0% for the development cohort and 2.0%–

96.0% for the validation cohort (Figures 6E, F).
FIGURE 3

Selection of variables using the LASSO regression in the development cohort. (A) Selection of factors for symptomatic RP; (B) LASSO coefficients for
symptomatic RP; (C) Selection of factors for severe RP; (D) LASSO coefficients for severe RP. LASSO cross-validation curves (10-fold cross-
validation) for identifying optimal l values. The best-matching factors were selected using the lambda.1se criterion (right dotted line). Selected l
values: 0.08095848 for symptomatic RP and 0.04146035 for severe RP.
TABLE 3 Multivariate logistic regression analysis for symptomatic and severe RP in the development cohort.

Variables
Symptomatic RP Severe RP

OR (95% CI) P VIF OR (95% CI) P VIF

Hb (g/L) – – – 0.96 (0.92–0.99) 0.017 1.10

ALB (g/L) – – – 0.84 (0.74–0.94) 0.004 1.08

HALP 0.95 (0.93–0.96) <0.001 1.04 0.95 (0.91–0.98) 0.007 1.15

V5 (%) 1.11 (1.06–1.18) <0.000 1.58 1.14 (1.05–1.25) 0.002 1.88

V20 (%) 1.06 (0.96–1.18) 0.259 1.59 1.04 (0.87–1.25) 0.641 2.03

MLD (Gy) – – – 1.10 (0.78–1.53) 0.596 1.84
ALB, albumin; HALP, hemoglobin, albumin, lymphocyte, and platelet; Hb, hemoglobin; MLD, mean lung dose; RP, radiation pneumonitis; VIF, variance inflation factor; Vx, the percentage of
the lung volume that received more than x Gy.
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3.5 Comparison of AUROC between HALP
and dosimetric parameters

As shown in Table 4, comparisons of AUROC of the nomogram

with those of individual prognostic factors revealed that the

comprehensive model exhibited higher discrimination than any

single variable both in symptomatic and severe RP. The predictive

ability of the HALP score is superior to its individual components

and comparable to dosimetry parameters (V5, V20, MLD, and

PTV), indicating that its predictive ability was not inferior to that of

dosimetric parameters.
Frontiers in Oncology 10
4 Discussion

Despite considerable efforts over the past decades, no validated

biomarkers or robust prediction models have been clinically adopted

for RP (4, 12), which underscores an urgent need for reliable predictive

biomarkers in radiation oncology. Recent studies have explored the

predictive value of inflammatory and nutritional biomarkers derived

from routine blood tests, such as neutrophils, ALB, ALC, Hb, PLT,

neutrophil-to-lymphocyte ratio, monocyte-to-lymphocyte ratio, and

platelet-to-lymphocyte ratio in RP risk assessment (16, 19–21, 23, 25,

26). These findings highlight the potential of routine blood-based
frontiers
FIGURE 4

Nomogram for predicting the risk of RP. (A) Symptomatic RP; (B) Severe RP. Locate each variable’s score on the top “Points” axis; Sum all scores to
obtain the “Total Points”; Read the predicted probability on the bottom axis.
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FIGURE 5

Evaluation of the nomogram model for symptomatic RP prediction. (A) ROC curves in the development cohort; (B) ROC curves in the validation
cohort; (C) Calibration plots in the development cohort; (D) Calibration plots in the validation cohort; The x-axis is the nomogram-predicted
probability, and the y-axis is the actual conversion rate. The red solid line indicates perfect agreement between predicted and actual probabilities.
The red dotted line shows the nomogram’s performance, closer alignment with the red solid line signifies better predictive accuracy. (E) DCA in the
development cohort; (F) DCA in the validation cohort; DCA illustrates the expected net benefit per patient based on the nomogram’s prediction of
symptomatic radiation pneumonitis (RP) risk. The solid horizontal line corresponds to the scenario where no patients have symptomatic RP (the
“none” strategy), while the red line represents the prediction by the nomogram (“Nomo”). The gray line likely corresponds to the “all” strategy (all
patients considered). As the curve of the nomogram extends, the net benefit changes.
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inflammatory-nutritional biomarkers for predicting RP development.

Since its introduction, the HALP score has emerged as a prognostic

indicator for various cancers (27, 28). However, its predictive value for

RP remains understudied. Our study demonstrates that HALP can

serve as a promising tool for identifying RP risk, suggesting that

elevated inflammation and poor nutritional status are associated with
Frontiers in Oncology 12
increased RP risk. This discovery underscores the clinical potential of

pre-radiotherapy interventions targeting nutritional optimization and

inflammatory modulation to forestall RP development.

The predictive capacity of HALP for RP can be interpreted

through its components, where HALP is calculated from Hb, ALB,

ALC, and PLT in peripheral blood (18). Serum ALB and Hb, as
FIGURE 6

Evaluation of the nomogram model for the prediction of severe RP. (A) ROC curves in the development cohort; (B) ROC curves in the validation
cohort; (C) Calibration plots in the development cohort; (D) Calibration plots in the validation cohort; (E) DCA in the development cohort; (F) DCA in
the validation cohort.
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fundamental plasma proteins with diverse physiological functions,

have been established as reliable prognostic indicators across

various cancers (29, 30). While ALB has demonstrated prognostic

value for radiotherapy-related toxicities (17), its predictive utility

for RP remains controversial (16, 31). Similarly, conflicting

evidence exists regarding the correlation between Hb and RP risk

(16, 23). Our study revealed that Hb and ALB exhibited acceptable

AUROC for both symptomatic and severe RP (AUROC >0.6).

Thus, their predictive role should be acknowledged, and further

investigation is warranted. ALC, another component of the HALP

score, exhibits a close pathophysiological relationship with RP.

Lymphopenia, affecting approximately 70% of thoracic cancer

patients receiving radiotherapy (32), is linked with a poor

prognosis (19, 33). Although radiation-induced lymphocytic

alveolitis has been consistently documented (34), current evidence

regarding ALC’s role in RP prediction presents conflicting

perspectives. While some studies, including animal experiments,

suggest an inverse correlation between lymphocyte counts and RP

risk (19, 20), others show no significant intergroup differences in

lymphocyte levels between RP and non-RP groups (25, 26). Our

results tentatively support reduced ALC levels as a risk factor for

RP, though this association did not achieve statistical independence.

Notably, the limited AUROC values (ALB: 0.63; ALC: 0.69; Hb:

0.61) caution against overinterpreting the clinical application value

of these individual biomarkers. Contrary to previous reports linking

thrombocytopenia to elevated RP risk (22, 35), our analysis failed to

demonstrate a significant association between PLT and RP.

Considering the current evidence regarding the predictive roles

of its components , the predictive capability of the HALP score for

RP is easily understandable. The superior predictive performance of

the HALP score compared to its individual components (AUROC:

0.77 versus 0.59–0.69) highlights the clinical advantage of

multidimensional inflammation-nutrition assessments over

unidimensional parameter analysis.
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The relationship among inflammation, RP, and nutritional

status is intricate and interactive. Ionizing radiation triggers

inflammatory reactions, which contribute to tissue remodeling

and subsequent fibrosis (6). In this respect, RP can be regarded as

acute lung tissue inflammation resulting from radiation exposure

(4, 6, 36). Inflammatory conditions can exacerbate disease-related

malnutrition and impair nutritional intervention response.

Conversely, nutrition also influences the body’s inflammatory

response (37). Malnutrition is known to worsen treatment-related

toxici t ies (e .g . , mucosit is , esophagit is) and diminish

radiotherapeutic efficacy (15–17). Most radiotherapy-related

toxicities frequently exacerbate nutritional deficits and contribute

to malnutrition (38). Given the current understanding of the

interactions among radiotherapy, inflammation, and RP, the

utility of inflammatory-nutritional biomarkers to predict RP risk

may vary significantly. Numerous inflammatory cytokines have

been reported to be associated with RILI development (8, 39).

However, most of these studies are limited to experimental research

and lack clinical significance. Indeed, no clinically implementable

biomarker, including cytokines, proteins, or other serum markers,

has been standardized for RP prediction in routine practice (6).

The impact of nutritional status on RP risk remains poorly

studied. Only one study, which used the subjective general

assessment (SGA) as a nutritional indicator, indicated that SGA

was a significant predictor of RP in lung cancer patients (13).

However, SGA is subjective and lacks quantitative biochemical

measurements, making it prone to bias and yielding unreliable

results. In contrast, our analysis leverages objective hematological

parameters, allowing for a more accurate and comprehensive

assessment of the predictive value of nutritional status in

RP development.

As an inflammatory-nutritional indicator, the HALP score may

be the first to focus on its predictive value for RP, although its

importance has been widely reported in the prognosis of various
TABLE 4 Comparison of predictive variables between nutritional and dosimetric parameters for symptomatic and severe RP in the
development cohort.

Variables
Symptomatic RP Severe RP

AUC (95% CI) Sensitivity Specificity Cutoff AUC (95% CI) Sensitivity Specificity Cutoff

ALC (109/L) 0.69 (0.63–0.76) 0.28 0.37 1.77 0.74 (0.66–0.82) 0.20 0.40 1.73

Hb (g/L) 0.65 (0.58–0.71) 0.40 0.31 118.50 0.73 (0.65–0.81) 0.20 0.37 119.50

ALB (g/L) 0.63 (0.56–0.70) 0.48 0.29 39.45 0.75 (0.67–0.84) 0.32 0.24 38.45

PLT (109/L) 0.59 (0.52–0.66) 0.82 0.37 175.50 0.57 (0.47–0.67) 0.78 0.36 181.50

HALP 0.77 (0.72–0.83) 0.71 0.75 40.85 0.83 (0.76–0.90) 0.76 0.77 34.53

PTV (cc) 0.61 (0.54–0.68) 0.95 0.24 228.24 0.60 (0.51–0.69) 0.98 0.20 228.24

V5 (%) 0.76 (0.70–0.82) 0.60 0.82 49.50 0.81 (0.74–0.89) 0.73 0.75 49.50

V20 (%) 0.75 (0.69–0.82) 0.57 0.83 21.50 0.81 (0.75–0.87) 0.88 0.57 19.50

MLD (Gy) 0.73 (0.67–0.80) 0.69 0.69 11.50 0.80 (0.73–0.86) 0.80 0.63 11.50

Nomogram 0.84 (0.79–0.89) 0.74 0.84 0.39 0.89 (0.83–0.94) 0.83 0.81 0.14
fron
ALB, albumin; ALC, absolute lymphocyte count; HALP, hemoglobin, albumin, lymphocyte, and platelet; Hb, hemoglobin; MLD, mean lung dose; PLT, platelet; PTV, planning target volume; RP,
radiation pneumonitis; Vx, the percentage of the lung volume that received more than x Gy.
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cancers. Notably, the HALP score demonstrated better predictive

discrimination compared with some major dosimetric parameters,

including V5, V20, and MLD, which have well-established

correlations with RILI development (4, 7, 24). A recent meta-

analysis showed that machine learning models incorporating

multimodal characteristics exhibit 75% accuracy in predicting

moderate-to-severe RP (40). Notably, our HALP-V5 model

demonstrated better predictive performance for RP (AUROC

>0.8), with good reproducibility and predictive accuracy. Across a

broad range of threshold probabilities for symptomatic RP

(Figure 5E), the DCA demonstrates that the HALP-V5 model

serves as a dependable tool for its full-cycle clinical management.

However, the clinical utility of severe RP is suboptimal from DCA

results in development cohort (Figure 5F), possibly due to the low

number of RP patients and outliers.

Compared with the previously developed models incorporating

multi-modal features (10, 11, 40), the components of HALP-V5

model can be easily calculated from pre-radiotherapy routine

assessment parameters (HALP and V5) without any additional

examinations. From a clinical translation perspective, the predictive

value of the HALP score and the HALP-V5 composite model for RP

has certain clinical application potential. According to the cutoff of

the model, patients in high-risk group (HALP <40.85 or V5

>49.5%) were more likely to develop symptomatic RP compared

with those in low-risk group. By accurately estimating the

probability of RP through the HALP-V5 model, clinicians should

pay more attention to variations in clinical symptoms and chest CT

scans and rationally adjust the radiation dose and fractionation

regimens before radiotherapy implementation, thereby reducing the

risk of concurrent RP. The nomogram facilitates visual evaluation

but is not suitable for direct calculation of RP predicted probability;

thus, we provide a calculation formula to address this limitation

(Supplementary Table S2). Here we use an example to illustrate the

formula: assuming that a patient has a HALP of 50 and a V5 of 50%,

the corresponding probability for symptomatic RP is 37.44%.

Although current evidence for routine nutritional intervention in

lung cancer is limited (41), our findings support the recommendation

for nutritional education and counseling prior to radiotherapy to

prevent RP. Improving nutritional status may be a relatively simple

and low-cost way to control RP in radiotherapy patients compared

with other contributing RP factors. Further research is needed into the

potential of nutritional interventions in reducing the incidence of RILI

in malnourished patients receiving radiotherapy.

However, several limitations should be noted when interpreting

our findings. First, the inherent limitations of the single-center

retrospective nature with a small sample size make the study

susceptible to selection and information bias, depressing statistical

power and rendering assessment difficult. Second, the lack of spatial/

domain external validation may hinder a comprehensive assessment of

the model’s generalizability and overfitting risk, thereby undermining

its practical application. Third, the multifactorial process of RP

development (5–7) necessitates rigorous control of potential

confounders. Unanalyzed confounders, particularly lung function,

which has been shown to correlate with both nutritional status and

the development of symptomatic RP (42, 43), may compromise the
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robustness of the results. Well-designed, multicenter prospective

studies with sufficient sample sizes are needed to further validate our

findings. The model should be continuously optimized and adjusted in

consideration of clinical practice, such as patient individual differences

and variations in radiation equipment, to ensure its clinical

applicability and reliability in real-world settings.
Conclusion

This study established the HALP score as an independent

predictor for both symptomatic and severe RP, with superior

predictive capability over dosimetric parameters. When HALP is

integrated with V5, the HALP-V5 composite model achieves

outstanding discriminative performance. Pre-radiotherapy

calculation of the HALP score can be employed as a simple

supplementary for predicting RP. Radiotherapy dose constraints

should be imposed for high-risk patients (low HALP levels) while

permitting dose escalation in low-risk cohort.
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