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Introduction 

A recent study in Nature introduces VG161, a multi-armed oncolytic herpes simplex 
virus, as a novel therapeutic strategy for hepatocellular carcinoma (HCC) that has 
progressed beyond standard treatments (1). In a first-in-human phase 1 trial, Shen et al. 
demonstrate that VG161 exhibits a favorable safety profile, induces significant tumor 
responses, and reshapes the tumor immune microenvironment in patients with advanced, 
treatment-refractory HCC. 
The potential of oncolytic virotherapy in HCC 

HCC remains one of the most aggressive and difficult-to-treat solid tumors, accounting 
for over 800,000 deaths annually worldwide (2). Most HCC cases are diagnosed at 
advanced stages, particularly in regions with high hepatitis B virus (HBV) prevalence 
(3). Historically, first-line treatment relied on multikinase inhibitors such as sorafenib and 
lenvatinib, which offered limited response rates and modest survival benefits. 

In recent years, immunotherapy has reshaped the therapeutic landscape. Immune 
checkpoint inhibitors targeting PD-1 or PD-L1, such as nivolumab and pembrolizumab, 
showed initial promise, particularly in second-line settings, but overall response remained 
suboptimal due to the immunosuppressive tumor microenvironment typical of HCC. The 
approval of atezolizumab combined with bevacizumab has since become a new first-line 
standard, demonstrating significant improvements in overall and progression-free survival 
over sorafenib. Other strategies, including dual checkpoint blockade (e.g., durvalumab and 
tremelimumab) and emerging cellular therapies, are being actively pursued. However, 
many patients still experience disease progression or are ineligible for immunotherapy due 
to underlying liver dysfunction or autoimmune contraindications. These limitations 
underscore the need for novel agents that can both remodel the immune environment 
and provoke systemic anti-tumor responses. VG161, with its multi-armed design and 
localized delivery, represents a distinctive immuno-oncology platform that may address 
these gaps (4). 
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Oncolytic virotherapy is an approach that has gained traction in 
recent years. Oncolytic viruses (OVs) are engineered to 
preferentially infect and destroy tumor cells while sparing normal 
tissue (5). Their therapeutic benefits extend beyond direct oncolysis; 
by releasing tumor-associated antigens and danger-associated 
molecular patterns, they can transform immunologically “cold” 
tumors into “hot” immune-infiltrated lesions (6). This 
multifunctionality makes them appealing candidate therapies for 
cancers like HCC, where immune exclusion poses a significant 
barrier to effective treatment (7). Earlier efforts using oncolytic 
viruses, such as JX-594 (pexastimogene devacirepvec), established 
safety and proof of concept in liver cancer but were ultimately 
limited by modest clinical efficacy, underscoring the need for more 
potent and immunologically active constructs (8). 
VG161: a multi-armed oncolytic virus 

VG161 exemplifies this next generation of oncolytic virotherapy 
(9). Built on an HSV-1 backbone, VG161 has been genetically 
engineered to encode four immunostimulatory molecules: 
interleukin-12 (IL-12), interleukin-15 (IL-15), IL-15 receptor 
alpha (IL-15Ra), and a PD-1–PD-L1-blocking fusion protein 
(10). These components serve distinct yet complementary roles in 
the anti-tumor immune response. IL-12 promotes Th1 polarization 
and enhances cytotoxic T lymphocyte (CTL) activity. IL-15 
supports memory T cell and NK cell proliferation, while IL-15Ra 
extends IL-15 half-life and enhances its biological effects. The PD-
1–PD-L1-blocking fusion protein inhibits immune checkpoints 
locally within the tumor, mitigating T cell exhaustion. 

To improve tumor selectivity and reduce toxicity, the viral 
genome includes a deletion of ICP34.5, a neurovirulence gene, 
which enhances safety. The overall design aims to transform the 
tumor into an immune-reactive environment while preserving the 
core mechanism of oncolytic lysis. Compared to JX-594, VG161 
incorporates multiple immunostimulatory transgenes—including 
cytokines and a checkpoint inhibitor—and is designed to more 
effectively remodel the tumor microenvironment while maintaining 
tumor-selective oncolysis (Table 1). The clinical relevance of this 
multi-armed construct was investigated in a first-in-human phase 1 
trial, summarized below. 
Clinical and mechanistic insights from 
the phase 1 trial 

The multicenter phase 1 trial (NCT04806464) enrolled 44 
patients with advanced primary liver cancer, all of whom had 
failed at least two prior lines of systemic therapy. Forty patients 
with HCC were included in the efficacy analysis. VG161 was 
administered intratumorally across dose-escalation and dose-
expansion cohorts. The treatment was generally well-tolerated. 
The most frequent adverse events included pyrexia and transient 
cytopenias, such as decreased lymphocyte and platelet counts, while 
liver function remained stable and no immune-related adverse 
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events were seen during follow-up. No dose-limiting toxicities 
occurred, and the maximum tolerated dose was not reached. 

Clinically, VG161 demonstrated an objective response rate 
(ORR) of 17.7% and a disease control rate (DCR) of 64.7% in this 
heavily pretreated population. Multiple patients showed significant 
tumor necrosis, and one case notably transitioned from 
unresectable to resectable disease. Interestingly, non-injected 
lesions often exhibited more pronounced regression than the 
directly treated sites, suggesting a systemic immunologic 
mechanism reminiscent of the abscopal effect. 

Mechanistic exploration using single-cell RNA sequencing 
(scRNA-seq), spatial transcriptomics, and T cell receptor 
sequencing (scTCR-seq) revealed significant remodeling of the 
tumor immune landscape. Post-treatment samples exhibited 
increased infiltration of CD8+ T cells and NK cells, along with 
expansion of T cell clonotypes. Spatial transcriptomics identified 
enhanced cell-cell communication in non-injected lesions, 
particularly among immune populations, suggesting that VG161 
can induce a systemic immune response from localized 
administration (Figure 1). 

Multiplex immunofluorescence corroborated these findings, 
demonstrating increased CD3+ and CD8+ T cell presence after 
VG161 treatment. Notably, the immunologic transformation was 
more evident in non-injected lesions, raising the possibility that 
innate antiviral responses triggered by local viral replication—such 
as type I interferon signaling—may transiently suppress immune 
cell infiltration or function at the injection site, due to early-phase 
antiviral immunity, despite the virus’s overall immunostimulatory 
effects. Nevertheless, the overall pattern was consistent with broad 
immune activation and a shift from a “cold” to a “hot” 
tumor phenotype. 
Precision and future utility 

In parallel with assessing clinical safety and efficacy, the 
investigators also sought to identify potential predictive biomarkers 
to guide patient selection. Recognizing the importance of personalized 
TABLE 1 Key features of VG161 and JX-594. 

Feature VG161 (HSV-1) JX-594 (Pexa-
Vec, Vaccinia) 

Viral 
backbone 

Herpes simplex virus type 1 
(HSV-1) 

Vaccinia virus 

Key 
transgenes 

IL-12, IL-15, IL-15Ra, PD-1/ 
PD-L1 blocker 

GM-CSF 

Tumor 
selectivity 

ICP34.5 deletion 
Thymidine kinase 
(TK) inactivation 

Delivery 
route 

Intratumoral Intratumoral or intravenous 

Immune Cytokine release, GM-CSF-mediated 
activation checkpoint blockade immune priming 

Clinical ORR 17.7%, systemic T cell/NK Safe, but limited efficacy in 
trial outcome activation (phase 1) HCC (phase 1/2) 
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approaches in immunotherapy, the investigators developed a 
transcriptomic biomarker model, ViroPredict 1.0, to identify 
patients most likely to benefit from VG161. Using baseline tumor 
RNA-seq data, they performed least absolute shrinkage and selection 
operator (LASSO) Cox regression and identified five genes—SEZ6, 
AKR1C1, LILRA5, NCKAP5, and SETD9—associated with 
therapeutic outcomes. The resulting risk score stratified patients into 
high- and low-benefit groups, with significant differences in 
progression-free and overall survival. 

This model was further validated in The Cancer Genome Atlas 
(TCGA) liver cancer dataset, where it failed to predict survival in 
patients not treated with VG161, confirming its specificity for 
oncolytic virotherapy. This approach marks a significant advance 
toward precision oncolytic therapy and could eventually guide 
selection of therapy in clinical settings. 

VG161 also demonstrated compatibility with concurrent 
antiviral treatment. Given the high prevalence of HBV in the 
HCC population, it is clinically important that antiviral agents 
like entecavir did not interfere with VG161 replication or 
therapeutic efficacy. This confirms the feasibility of using VG161 
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in HBV-positive patients without requiring modification of existing 
antiviral regimens. 
Discussion 

The results of this phase 1 trial place VG161 at the forefront of 
innovation in the treatment of advanced HCC. By combining direct 
tumor lysis with potent immune modulation, VG161 addresses key 
challenges that have limited the success of immunotherapy in this 
malignancy. Its ability to induce systemic immune responses, even 
from localized administration, opens the door to broader clinical 
utility and combination strategies. 

One of the most compelling findings was the apparent 
immunological shift in the tumor microenvironment after VG161 
treatment. Through scRNA-seq and spatial transcriptomics, the 
study demonstrated increased immune infiltration, heightened TCR 
clonality, and enhanced immune signaling. These findings support 
the hypothesis that VG161 not only disrupts tumor cells but also 
acts as an in situ immunological “re-education” agent. 
FIGURE 1 

Genomic map of VG161 and the roles of its various components play in anti-tumor immune responses. VG161 was constructed by modifying expanded 
sections of the prototypic HSV-1 genome, whose UL region is flanked by inverted repeats RL and US region by inverted repeats RS. IL-12 drives Th1 
polarization and boosts CTL activity; IL-15 expands memory T/NK cells, with IL-15Ra stabilizing IL-15 and amplifying its effects. Concurrently, a 
PD-1–PD-L1-blocking fusion protein locally inhibits tumor immune checkpoints to reduce T cell exhaustion. Generated with BioRender. 
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Challenges remain in optimizing delivery, especially for deep-seated or 
multifocal tumors that are difficult to access via intratumoral injection. 
Future development may involve engineering systemic delivery vectors or 
using cell-based carriers to enhance tumor targeting. For example, 
mesenchymal stem cells and T cells have been investigated as delivery 
vehicles for OVs due to their tumor-homing capacity. Encapsulation
strategies using liposomes or polymeric nanoparticles may also help 
shield viruses from neutralizing antibodies in circulation and improve 
systemic biodistribution. In addition, the phase 1 trial’s small sample size, 
lack of a control group, and preliminary nature of the biomarker model 
should be acknowledged when interpreting the results. Additionally, the 
integration of VG161 into earlier lines of treatment, such as in the 
neoadjuvant setting or in combination with checkpoint blockade, could 
further expand its clinical impact. Combination strategies may be 
particularly useful in enhancing systemic immune responses, especially 
in immune-excluded tumors. 

The development of ViroPredict 1.0 provides a foundation for 
tailoring treatment to those most likely to benefit, addressing a 
major hurdle in the clinical adoption of OVs. Its validation in future 
trials will be critical, and further refinement may include integration 
with spatial or single-cell signatures. 

This study also highlights an important aspect of global health equity. 
Given that a large proportion of HCC cases worldwide are HBV-related, 
a therapy like VG161 that retains efficacy in HBV-positive patients and is 
compatible with standard antiviral treatment holds significant potential 
for widespread clinical application, particularly in Asia and sub-Saharan 
Africa. However, the cost and accessibility of transcriptomic biomarkers 
such as ViroPredict 1.0 may present challenges in low-resource settings, 
and ethical considerations regarding biomarker-based patient selection 
should be carefully considered. 

In conclusion, VG161 represents a new generation of oncolytic 
immunotherapy that integrates tumor-selective viral lysis with targeted 
immune activation. Rather than functioning solely as a cytolytic agent, 
VG161 is designed as a programmable immune modulator—capable of 
reshaping the tumor microenvironment, eliciting systemic immune 
responses, and enabling patient stratification through predictive 
biomarkers. These combined features suggest that VG161 is not just a 
therapeutic candidate, but a platform with the potential to redefine the 
clinical application of oncolytic virotherapy in solid tumors. 
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