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Development and validation of
hybrid machine learning
approach for predicting survival
in patients with cervical cancer:
a SEER-based population study
Anjana Eledath Kolasseri and Venkataramana B. *

School of Advanced Sciences, Vellore Institute of Technology, Vellore Tamil Nadu, India
Background: Accurate survival prediction in cervical cancer is crucial for

personalized therapy, particularly in high-risk groups where early intervention

might enhance results. The study aims to create a hybrid survival model that

integrates Cox Proportional Hazards (CoxPH) with Elastic Net regularization and

Random Survival Forest (RSF) to improve prediction accuracy and interpretability.

Methods: Data from the SEER database (2013–2015) were pre-processed

through normalization and encoding. RSF recorded non-linear interactions

between covariates, while the CoxPH Elastic Net Regularization model

provided linear interpretability and identified key variables. Model parameters

were optimized using cross-validation, and final performance was assessed on

an independent test set using metrics including C-index, Integrated Brier Score

(IBS), AUC-ROC, and calibration plots.

Results: The hybrid model outperformed the individual models with an

Integrated Brier Score (IBS) of 0.13 and a concordance index (C-index) of 0.82.

With an AUC-ROC of 0.84, the model provided robust calibration and

classification performance on the independent test set, effectively separating

between individuals at high and low risk.

Conclusion: The hybrid model provides a promising tool for personalized risk

stratification in cervical cancer based on survival probability. Further testing in

varied clinical categories is recommended to confirm its efficiency in

precision oncology.
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1 Introduction

Cervical cancer (CC) is one of the most common types of cancer

that affect women all over the world, especially in developing

countries, and is still a major cause of cancer-related deaths (1).

Despite developments in screening and immunization programs, it

remains a significant health burden, particularly in areas with

restricted access to healthcare facilities (2). The prognosis of

cervical cancer is highly dependent on timely diagnosis and

treatment, with tumor stage, lymph node involvement, metastasis,

and socioeconomic status all having major roles in patient survival

(3). As a result, the analysis of survival is critical in interpreting the

impact of these variables and predicting outcomes in cervical cancer

patients. Accurate survival projections can inform treatment

decisions and enable doctors to personalize therapy to improve

patient outcomes (4).

To address this, various kinds of statistical models for analyzing

survival data have been designed, including the Cox Proportional

Hazards (Cox PH) model, which is popular due to its interpretability

and theoretical approach. The Cox model is a semi-parametric

model that follows the proportional hazards assumption, making it

adaptable to situations in which the hazard ratio between groups

remains constant throughout the time interval (5). However, this

assumption may not always be valid in complicated illnesses such as

cervical cancer, where the link between variables and survival may

differ drastically between phases of the disease (6). More flexible

modeling techniques are needed to account for the intricate

relationships between tumor stage, lymph node involvement,

treatment methods, and patient demographics like age and

socioeconomic status. This is where machine learning algorithms,

specifically Random Survival Forests (RSF), have shown their

effectiveness. RSF is a non-parametric approach that can capture

complex, non-linear relationships without assuming anything about

the hazard function (7). Nevertheless, RSF models often lack

transparency, leading to challenges in interpreting their predictions

in a clinical environment (8).

A hybrid method that combines traditional models with

machine learning techniques is important due to the complex

nature of cervical cancer survival data (9). In this research, we

suggest a mixed model that combines the Cox and RSF models to

enhance survival forecasts’ precision and explanatory power. The

combination method utilizes RSF’s adaptability to capture non-

linear relationships while preserving the interpretability of Cox

models, giving important hazard ratios and parametric insights.

Our goal is to overcome the limitations of each method by

combining these models. This hybrid method is utilized on an

extensive dataset of cervical cancer patients to offer improved and

detailed survival forecasts while maintaining results that are

understandable for clinical decision-making.

This article discusses creating, executing, and confirming a

hybrid model to enhance survival predictions and determine key

predictors of patient outcomes in cervical cancer.
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2 Materials and methods

2.1 Data sources and inclusion criteria

The study analyzed cervical cancer data from the Surveillance,

Epidemiology, and End Results (SEER) database, National Cancer

Institute (https://seer.cancer.gov/), a free US cancer registry from

2013 to 2015. We obtained access to the SEER database files, and all

writers conformed to SEER database policies during the search

procedure. Individual informed consent was not essential because

personal information was not utilized in this investigation.

According to SEER data use standards, IRB permission was not

required for this study since it used de-identified, publicly available

data from the SEER program.

The inclusion period was chosen to provide an adequate follow-

up time for survival analysis, with a minimum of five years from

diagnosis to assess outcomes. The study consisted of patients who

had been diagnosed with primary cervical cancer using the

International Classification of Diseases for Oncology, Third

Edition (ICD-O-3) codes. To maintain the integrity of the

analysis, only patients who provided complete data on essential

clinical and therapy characteristics were included.

The variables in this study include a wide variety of clinical,

therapeutic, demographic, and socioeconomic aspects, which are

critical for understanding cervical cancer survival outcomes. The

clinical factors include T stage (tumor size and extent), N stage

(lymph node involvement), M stage (presence or absence of distant

metastases), and Overall Stage (Localized, Regional, or Distant).

Treatment-related variables include whether the patient received

radiation therapy (binary: 1 = received, 0 = not received) and

chemotherapy (binary: 1 = received, 0 = not received), as well as

months from diagnosis to treatment, which measures the time

between diagnosis and treatment start. Also, Patients who lived

longer than 60 months from diagnosis were considered alive (10).

Demographic characteristics include age (at the time of

diagnosis), race (White, Black, and Other, which includes

American Indian/Alaskan Native and Asian/Pacific Islander), and

marital status (Married, Single, Divorced, or Widowed). Household

Income is used to determine socioeconomic level, with categories

including <$50,000, $50,000-$74,999, and $75,000+. The outcome

variables are Survival Months, which represent the number of

months the patient lived after diagnosis, and Vital Status, a

binary variable that shows whether the patient died (1) or was

alive (0) after the research period.

Cases with missing or limited data for clinical, therapeutic, or

survival factors were excluded. This was done to ensure accurate

and relevant survival analysis, as missing data might result in bias.

The chosen date (2013-2015) corresponds to a period when modern

treatment options, such as advanced radiation techniques and

combination chemoradiotherapy, were more standardized, giving

a meaningful backdrop for assessing current survival results in

cervical cancer patients.
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2.2 Data preprocessing

Data pretreatment stages included managing missing values,

normalizing continuous variables, and encoding categorical

characteristics. Multiple imputations were used to decrease bias

while retaining statistical power in missing data, particularly in

demographic characteristics like age and tumor size. Basic

techniques that relied on the type of attribute were used to

impute missing values: the mode for categorical variables and the

mean for continuous variables. Furthermore, rows with excessive

missingness across multiple features were excluded from the

analysis. Simple imputation was considered adequate because of

the low percentage of missing data and the model’s strong

validation on independent test data, even though there are more

advanced imputation techniques available. Continuous features,

such as tumor size and patient age, were standardized to have a

mean of zero and a standard deviation of one, which is crucial for

the proper implementation of regularization methods such as

Elastic Net (11). Categorical variables, such as treatment type,

were one-hot encoded before being included in the model. The

dataset was randomly divided into training (70%) and independent

test sets (30%) to guarantee that model performance could be

assessed on unknown data.
3 Model development

3.1 Cox proportional hazards model with
elastic net regularization

The Cox Proportional Hazards (Cox PH) model is commonly

used in survival analysis to obtain the connection between variables

(such as patient age, tumor size, and therapy type) and time to an

event (e.g., death or disease progression) (12). Elastic Net

regularization was used in the Cox PH model to handle high-

dimensional data with many covariates and accomplish feature

selection by shrinking coefficients for less significant variables (13).

Elastic Net regularization enhances interpretability by focusing on

the most relevant variables, making the model especially beneficial

when feature selection is important. It improves stability by

reducing overfitting, particularly when the dataset contains

multiple confounders.

3.1.1 Elastic net regularization
It combines L1 (Lasso) and L2 (Ridge) penalties. L1

regularization aids in feature selection by reducing some

coefficients to zero, removing unimportant characteristics. L2

regularization reduces coefficients without eliminating any

variables, reducing multicollinearity and increasing model

robustness to overfitting (14). The mixing parameter (alpha),

which defines the balance between L1 and L2 penalties, and the

regularization strength (lambda), were improved using 5-fold cross-

validation on the training set. This ensures that the model doesn’t

overfit or underfit the data (15, 16).
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Risk Score Generation: The Cox PH Elastic Net Regularization

model gives a risk score for each patient, which represents their

relative hazard. These risk ratings enable the algorithm to rank

patients based on their likelihood of having the event, with higher

scores indicating more risk.
3.2 Random survival forest

Random Survival Forest (RSF) is a nonparametric ensemble

approach that combines the conventional random forest algorithm

with survival analysis (7). RSF is very effective at dealing with

complicated, non-linear correlations between variables and survival

outcomes, making it a useful addition to Cox PH’s linearity (17).

RSF is adaptable to high-dimensional data and can simulate

covariate interactions without explicit specification (18). RSF

calculates the time-dependent survival probability for each

patient. These probabilities describe the possibility of living

beyond a specific time point, and they can account for complex

relationships between factors that Cox PH may not capture. Also, it

determines variable significance measures to determine the relative

relevance of each covariate in predicting survival. This is especially

beneficial for discovering important prognostic features in

complex datasets.

RSF improves the hybrid model by enabling greater flexibility in

modeling non-linear interactions and managing high-dimensional

data with large covariate interactions (18). It helps Cox PH by

detecting patterns that a linear model may overlook, such as

complex relationships between treatment modalities and patient

characteristics (19).
3.3 Hybrid model (combining Cox PH with
elastic net regularization and random
survival forest)

To develop the hybrid model, the predictions from Cox PH with

Elastic Net Regularization and Random Survival Forest were

combined to get the strengths of both approaches. To improve

prediction accuracy, all models were combined using a custom

ensemble approach. This was performed using a linear regression

weighting procedure that compared each model’s prediction to its

actual predicted value. The weighting coefficients were then used to

weight the ensemble prediction, which is an average result. The

custom ensemble was predicted to obtain better results than any

other approach, and it was easy to implement and adapt to model

changes (20).

A weighted average of the risk scores from the two models was

obtained. The final weights for the hybrid model (70% CoxPH

Elastic Net Regularization, 30% RSF) were identified through grid

search optimization. Multiple weight combinations (in 10%

increments) were evaluated using 5-fold cross-validation, and the

combination yielding the highest average concordance index (C-

index) on the validation folds was selected. It ensured performance-

based weight allocation. The last hybrid prediction was:
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Hybrid Prediction 

=  w1 �  Cox PH Risk Score  +  w2  � RSF Survival Probability

w1,w2 are the weights applied to each model. These weights

were calculated using 5-fold cross-validation to balance the

contributions of both models and reduce prediction error.

While Cox PH Elastic Net Regularization detects linear

relationships and selects significant variables, RSF captures

nonlinear interactions and is more adaptable to modeling

complicated data. By integrating both models, the hybrid model

achieves the interpretability and robustness of Cox PH while

maintaining the flexibility and prediction accuracy of RSF.
3.4 Model evaluation and validation

3.4.1 Cross validation
On the training set, the individual models (Cox PH Elastic Net

Regularization model and RSF) as well as the hybrid model were

tested using 5-fold cross-validation. During cross-validation, the C-

index was produced to measure each model’s ability to rank patients

based on survival risk (21). The Integrated Brier Score (IBS) was

calculated as well to obtain the overall predictive accuracy of

survival probability (22).

3.4.2 Performance metrics
Concordance Index: The C-index evaluates the models’

discriminative abilities by comparing predicted risk scores to

survival times. Higher values suggest improved discriminatory

performance. It varies from 0.5 (no better than random chance)

to 1.0 (perfect prediction). In clinical research, a C-index greater

than 0.7 is considered to be good, but values greater than 0.8

indicate high discriminative performance (23).

Integrated Brier score: The Integrated Brier Score (IBS) assesses

the overall accuracy of predicted survival probabilities over time,

accounting for both discrimination and calibration. It ranges

between 0 (perfect prediction) and 0.25 for binary outcomes with

a 50% occurrence rate. Lower IBS values suggest improved model

performance, and values less than 0.2 are generally considered

acceptable in clinical survival models (22).

Calibration Plots: Calibration plots were created to compare

predicted survival probability with observed survival rates over

several periods. Well-calibrated models will produce predictions

that are closely aligned with the 45-degree line (24).

Mean Absolute Error (MAE): MAE calculates the average

absolute error between predicted and observed survival periods. It

measures the total variance in survival time forecasts, with lower

MAE values showing higher prediction accuracy (25).

Mean Squared Error (MSE): MSE measures the squared

difference between predicted and actual survival times. MSE is a

more sensitive measure to larger errors than MAE since it penalizes

larger deviations more strongly. Lower MSE values indicate higher

prediction accuracy, particularly when avoiding significant

prediction errors (25).
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Survival Accuracy: Survival accuracy is the proportion of patients

accurately identified as “event” or “censored” at time intervals. It

examines the model’s classification performance in survival cases,

evaluating accuracy at time points such as 1, 3, and 5 years after

diagnosis. Higher survival accuracy means that the model performed

better at properly categorizing survival status over time (26).

3.4.3 Independent test set evaluation
Following cross-validation, the resulting hybrid model was

evaluated on an independent test set (30% of the data) that was

excluded from model development. The independent test set gave

an unbiased assessment of model generalization. The test set was

evaluated on C-Index, IBS, MAE, MSE, survival accuracy, and

calibration plots.

3.4.4 Statistical software and implementation
All analyses were conducted using R (version 4.0) and Python

(version 3.8).
4 Results

The final cohort included 3810 cervical cancer patients, with a

median age of 27.93 years and a median survival period of 59.05

months. Table 1 summarizes all 14 of the important attributes that

were selected, including the objective “Survival months,” and

consists of both continuous (numeric) and categorical (discrete)

variable types. The primary event (death) affected 30% of the

cohort, with the remaining patients being censored at the

conclusion of the research.
4.1 Model performance on training and
validation sets

The data was divided into 80% for training and 20% for testing.

Predictive models were fitted using cross-validation and evaluated

on the train data for accuracy, recall, F1-measure, sensitivity,

and specificity.

The Cox PH model, with Elastic Net regularization, was tested

for its ability to predict survival outcomes. Cross-validation was

used to find the optimal penalty parameter, lambda (0.11), that

reduced prediction error while balancing feature selection and

model complexity. The chosen lambda allowed the model to keep

significant characteristics while regularizing others, lowering the

risk of overfitting. The Cox model was assessed on the test dataset

using Mean Absolute Error (MAE), Mean Squared Error (MSE),

and Survival Accuracy. The MAE, which measures the average

deviation between predicted survival risk scores and observed

outcomes, was rather low, indicating that the model provided

reliable predictions. The MSE was somewhat greater, indicating

exposure to outliers or significant errors. Finally, survival accuracy,

as tested at a probability threshold, demonstrated that the Cox

model correctly identified survival outcomes in many test cases.
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These findings suggest that the Cox Elastic Net Regularization

model is most successful when the connection between predictors

and survival outcomes is especially linear. However, the model’s

ability to capture complicated, non-linear patterns found in high-

dimensional clinical data may be limited, highlighting the importance

of complementing modeling techniques. Table 2 displays the non-

zero coefficients for the important prognostic variables in the Cox PH

with Elastic Net Regularization model. It chose a minimal group of

predictors from the entire variable set, keeping only those that

contributed significantly to the prediction of survival risk. Variables

with coefficients reduced to zero were omitted from the final model.

Among the retained features, T stage 4 exhibited the highest

positive coefficient (0.354), showing a substantial link to increased risk.

Similarly, M stage 1 (coefficient = 0.253) and N stage 1 (0.116) were

also related to an increased probability of death, which is consistent

with clinical predictions for metastatic dissemination. A negative

coefficient (-0.244) was found for Stage: Localized, showing a

protective impact as compared to more advanced stages. Married

(coefficient = -0.064) and having a family income of more than $75,000

(-0.082) were shown to be linked with decreased risk, whereas

household income less than $44000(0.133), which shows the

importance of socio-demographic variables in cervical cancer

survival. The variable “risk score”, generated internally by the model,
Frontiers in Oncology 05
had the highest coefficient (0.762), reflecting the combined linear

contribution of all retained features to the overall survival risk estimate.

The RSF model was developed to capture non-linear interactions

and interactions between variables that the Cox model may not

effectively handle. To improve the RSF model, we performed

hyperparameter tuning on critical parameters such as the number of

trees, the number of variables chosen at each split, the minimum node

size, and the splitting procedure. The log-rank splitting algorithm was

utilized, which is specifically designed for survival analysis and allows

the model to make divides based on survival times. After adjustment,

the RSF model performed well on the test dataset. The MAE was

comparable to that of the Cox model, indicating that the RSF model

produced somewhat accurate predictions. Notably, the RSF model has

a lowerMSE than the Coxmodel, suggesting less significant deviations

in its predictions. This shows that the RSF was better at handling cases

with complicated interactions between variables because it was less

influenced by outliers. The survival accuracy was slightly lower than

that of the Cox model, implying that the Cox model classified survival

outcomes more accurately.

The results of the RSF model demonstrate its ability to identify

non-linear correlations between variables, which are common in

clinical datasets. However, the model’s versatility may come at a

cost of interpretability, as RSF does not give a clear framework for

understanding how specific predictors affect survival. Table 3 shows

the 5 most significant prognostic factors for the RSF. The top
TABLE 2 Variables having non-zero coefficients from the Cox PH model
with elastic net regularization.

Variables Cox PH with Elastic Net
Regularization Co-efficients

TstageT4 0.354

MstageM1 0.253

Household income (<$44000) 0.133

NstageN1 0.116

Tumor size 0.0011

Stage (Localized) -0.244

Marital status (Married) -0.064

Household income (>$75000) -0.082

Overall Risk score 0.762
Variables with coefficients reduced to zero were omitted from the final model.
TABLE 1 Description of selected clinical, demographic, and treatment
variables used for analysis.

No. Attribute Description Type

1 Age Age at time of diagnosis. Numeric

2 Stage Stage of tumor – based on T, N,
and M.

Categorical

3 T stage AJCC component describing
tumor size.

Categorical

4 N stage AJCC component describing lymph
node involvement.

Categorical

5 M stage AJCC component describing tumor
dissemination to other organs

Categorical

6 Radiation
Therapy

Indication of whether the patient has
received radiation therapy

Categorical

7 Chemotherapy Indication of whether the patient has
received chemotherapy

Categorical

8 Race Race of the individual Categorical

9 Marital status Indication of the marital status of
the individual

Categorical

10 Household
income

Indication of household income of
the individual

Categorical

11 Tumor size Measurement of tumor size. Numeric

12 Months from
diagnosis
to treatment

time interval between a patient’s
initial diagnosis and the beginning of
their treatment.

Numeric

13 Vital status Indication of whether the patient is
alive or dead

Categorical

14 Survival
months

Number of months that patient is
alive from date of diagnosis.

Numeric
TABLE 3 VIMP values for RSF for five most important variables with
Higher values indicating greater importance of the variable in the
model’s predictive power.

Variable Variable Importance (VIMP)

T-stage 0.047

Tumor Size 0.036

Stage 0.028

Household Income 0.025

Age 0.019
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predictors are listed based on their variable importance (VIMP) for

the RSF. Higher VIMP values indicate greater importance of the

variable in the model’s predictive power.
4.2 Hybrid model: combining Cox elastic
net regularization and RSF survival
predictions

The hybrid model was developed by combining predictions from

the Cox Elastic Net regularization and RSFmodels using an ensembled

weighted average technique, with weights set at 70% for the Coxmodel

and 30% for the RSF. This weighting method was used to achieve an

optimal balance between the Cox model’s interpretability and linearity

and RSF’s nonlinear predictive ability (20). By selecting the Coxmodel,

we maintained the focus on linear interactions while the RSF

component captured additional data and complexity.

The hybrid model outperformed both separate models in the

majority of the evaluation criteria. It had the lowest MAE, suggesting

that the hybrid model produced the most reliable predictions with

minimal average deviation from observed survival outcomes. TheMSE

was also significantly reduced indicating that the hybrid model was

adaptable to major errors. This reduction inMSE indicates the model’s

stability and implies that combining linear and nonlinear predictions

improves exposure to outliers. In addition, the Cox model with elastic

net regularization has slightly higher survival accuracy than the hybrid

model since it directly predicts survival time and selectively highlights

the most predictive variables, giving it an advantage in accurate

survival predictions. In contrast, the hybrid model, while dominant

across multiple metrics, has been optimized for overall robustness

rather than precision in survival time, which may reduce survival

accuracy. The evaluation metrics are shown in Table 4.

These findings indicate that the hybrid model effectively

combines the complimentary advantages of Cox Elastic Net

Regularization and RSF, resulting in better generalization and

prediction accuracy. The hybrid method, which incorporates both

linear and nonlinear interactions, provides an improved

comprehension of survival outcomes, making it especially useful

in complicated clinical contexts.
4.3 Survival curve and calibration plots

To visually assess the models’ prediction accuracy, survival

curves were created for each model, illustrating predicted survival

probabilities with time. The Cox Elastic Net model (solid red line)

provides a more conservative survival estimate, whereas the RSF
Frontiers in Oncology 06
model (dashed blue line) forecasts greater reductions in survival

probability. The Hybrid model (dashed green line) combines the

two techniques and exhibits intermediate behavior, trying to

achieve a balance between flexibility and interpretability. Also, the

hybrid model’s survival curve closely matched the observed survival

probabilities, implying that it generates the most accurate survival

predictions throughout the full period (Figure 1).

Calibration plots were additionally used to determine how well

predicted and observed survival probability was accepted. The

calibration plot for the hybrid model indicated that its predictions

were well-calibrated, closely matching observed probabilities,

particularly at significant survival time periods (Figure 2). This

indicates the hybrid model's benefit over the independent models

since it provides accurate and well-calibrated predictions.
4.4 Independent test set evaluation

The hybrid model’s reliability was further tested on the

independent test set, which contained 30% of the original dataset

and was excluded from all training and validation steps. Table 5

displays the metrics that showed the hybrid model’s higher

generalization capabilities.

Calibration plots for the hybrid model on the test set indicated a

good fit between predicted survival probabilities and observed

outcomes, with calibration curves close to the 45-degree line

(Figure 3). This alignment proved that the hybrid model made

well-calibrated survival predictions, demonstrating its reliability in

real-world clinical settings.

The hybrid model’s survival curve shows that it performs well in

predicting a reasonably steady decline in survival probability over

time, rather than a sudden drop-off (Figure 4). The curve’s smooth

and continuous decrease indicates that the hybrid model properly

represents a modest and consistent risk rise over time, which

corresponds to the nature of survival data in this situation.
4.5 Feature importance in hybrid model

To further understand the factors influencing survival predictions,

we used a feature importance analysis that included information from

the Cox Elastic Net Regularization and RSF models. In the Cox model,

feature relevance was determined by the size of the coefficients, with

larger values suggesting stronger linear relationships with survival. The

Cox model identified the most relevant characteristics as T stage,

household income, M stage, etc., which were important because of

their strong linear connection with survival outcomes.
TABLE 4 Performance evaluation of all the survival Models, which indicates the hybrid model outperforms in numerous measures, except
survival accuracy.

Model C-Index IBS MAE MSE Survival Accuracy

Cox with Elastic Net Regularization 0.807 0.049 0.550 0.324 0.856

RSF 0.809 0.036 0.332 0.142 0.778

Hybrid Model 0.812 0.032 0.213 0.069 0.844
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In contrast, the RSF model’s feature importance was determined

using permutation importance, which evaluates the increase in

prediction error that results from randomly permuting the values

of a particular feature. This approach is useful for identifying factors

having nonlinear or interaction effects on survival. The RSF model

identified T stage, Stage, N stage, etc. as important predictors,

highlighting the model’s sensitivity to nonlinear relationships.

Using the importance scores from both models, the hybrid

method was the most influential variable in both linear and non-

linear situations (Figure 5). This blended feature significance

analysis gives a comprehensive overview of the factors that

influence survival outcomes, highlighting the hybrid model’s

capacity to include different interactions from both models.
4.6 AUC-ROC analysis for the hybrid model

An AUC-ROC curve was developed to further assess the hybrid

model’s discriminative performance, showing the model’s capacity

to differentiate between high-risk and low-risk patients over time

(27). The time-dependent ROC curve shows how well the hybrid

model predicts outcomes at two different time points: 60 and 120
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months. The model has an AUC of 0.84 (95% CI: 0.81–0.87) at 60

months, indicating significant predictive power and improved

capabilities in identifying individuals at increased risk of the

occurrence. By 120 months, the AUC had dropped to 0.82 (95%

CI: 0.78–0.85), showing a slight decline in accuracy but still high

discriminatory capability. Overall, the model works well at both

intervals, with just a small decline in precision as the time horizon

increases. This shows that the model is reliable for both mid-term

and long-term survival predictions, with shorter-term predictions

being slightly more accurate. The ROC curve showed a distinct split

between sensitivity and specificity, demonstrating that the model is

useful in correctly identifying patients based on their survival

outcomes (Figure 6). This AUC-ROC study validates the C-index

results, showing the hybrid model’s higher classification

performance over the separate Cox PH and RSF models.
5 Discussion

The present study discusses a hybrid machine-learning approach

incorporating Cox proportional hazard with elastic net regularization,

and random survival forest to predict cervical cancer survival. The

objective was to use the capabilities of both models to enhance the

accuracy and robustness of survival forecasts in clinical data, which

frequently contains both linear and complicated non-linear

interactions. The model outperformed either model on prediction

accuracy, calibration, and classification, with a C-index of 0.82, an

Integrated Brier Score (IBS) of 0.029, and an AUC-ROC of 0.84. These

results highlight the hybrid model’s potential to improve clinical risk

assessment and decision-making for cervical cancer patients.

The hybrid model’s improved performance suggests that

survival outcomes are influenced by a combination of linear and

nonlinear associations among variables. The Cox PH model, which

is noted for its interpretability and ability to predict hazard ratios,
FIGURE 1

Comparison of predicted survival curves from Cox with Elastic Net Regularization, RSF, and Hybrid models. This comparison demonstrates the
models’ ability to identify survival patterns while distinguishing long-term risk.
TABLE 5 Performance metrics on Independent test set for the hybrid
survival model, which shows high performance than the
individual models.

Metrics Value

C-Index 0.82

IBS 0.029

MAE 0.197

MSE 0.064

Survival Accuracy 0.85
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was effective in discovering direct, linear correlations between

variables and survival. These linear relationships are frequently

related to well-known clinical risk variables, such as age, tumor

stage, or biomarkers, which might have consistent and predictable

impacts on survival rates. Elastic Net regularization, combining L1

(Lasso) and L2 (Ridge) penalties, improves feature selection and

decreases multicollinearity concerns, hence minimizing overfitting

and enhancing interpretability (14).

The RSF component increased the ability to simulate

complicated, nonlinear relationships between variables, which are
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common in high-dimensional clinical data (18). Previous research

has shown that RSF works well with survival data because it

incorporates interactions between several factors without needing

assumptions about their connections (28). By incorporating such

interactions, RSF improves the model’s prediction accuracy and

enhances the Cox PH model, which may overlook these non-linear

effects. Our findings are consistent with previous research, which

indicates that hybrid models that combine traditional survival

models with machine-learning approaches can produce more

accurate cancer prognostications (29).
FIGURE 2

Calibration plot comparing predicted and observed survival probabilities for Cox with Elastic Net Regularization, RSF, and Hybrid models. The plot
represents the association between predicted survival probability (x-axis) and actual survival outcomes (y-axis) across risk categories. The diagonal
line indicates perfect calibration. The Hybrid model (green) closely follows the diagonal, showing better calibration throughout the probability range
than the Cox Elastic Net Regularization (red) and RSF (blue), which show overestimation and underestimation in certain probability bins. This
highlights the hybrid model’s ability to produce well-calibrated survival predictions.
FIGURE 3

Calibration plot for the Hybrid model on the independent test set, which indicates the agreement between predicted survival probabilities (x-axis)
and observed survival outcomes (y-axis) using test data. The green dashed line shows the Hybrid model’s calibration curve, while the black diagonal
line denotes perfect calibration. The Hybrid model closely aligns with the ideal line, especially in the higher probability range (≥0.7), showing strong
reliability and calibration of the model’s predictions in unseen data.
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Previous research in cancer survival modeling frequently

depends on either Cox PH models or machine learning

approaches such as RSF. Traditional Cox PH models are

commonly employed in cancer studies due to their

interpretability and ability to handle censored data. Zhang et al.

(2013) proved the effectiveness of Cox PH models for discovering

important predictors in survival analysis for different malignancies

but with limited flexibility in dealing with non-linear interactions

(30). The limitations of CoxPH models in high-dimensional data

have sparked increased interest in RSF, which, according to

Ishwaran et al. (2008), performs well in complicated datasets with

interactions that cannot be predicted in advance (18).

In recent years, research has demonstrated that integrating

linear models with machine-learning approaches can enhance

forecast accuracy. Research in cancer and cardiovascular risk
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prediction, for example, has shown that hybrid techniques

improve risk stratification and survival prediction compared to

single-model approaches (31, 32). Our work expands on previous

research by combining Cox PH and RSF, demonstrating that

mixing linear and non-linear models may be extremely helpful.

The weighted average strategy used in this work is also a simple but

effective way to merge models with different properties, optimizing

interpretability while improving prediction accuracy (33). In

addition to this, Sundrani et al. (2021) used CoxPH models and

decision-tree-based approaches to predict survival in breast cancer

patients, improving predictive power by utilizing both linear and

non-linear relationships (34). Furthermore, the hybrid model is

consistent with previous efforts to merge classical survival models

and machine learning. For example, Zhihua et al. (2018) presented a

Cox-Bayesian hybrid to deal with missing data (35), whereas Yifei
FIGURE 4

Survival curve generated by the Hybrid model on the independent test set. The curve illustrates the predicted survival probability over time (in
months) for the independent test set using the Hybrid model, which highlights the model’s capacity to provide clinically relevant survival outcomes
for patient risk stratification.
FIGURE 5

The bar plot shows the top five features contributing to the Hybrid model based on weighted importance scores, which collectively contributed
most to the model’s survival risk estimation.
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et al. (2013) used gradient boosting to increase the dependability of

forecasting for a large-scale breast cancer dataset (36). Similarly,

Yang et al. (2019) developed DeepCoxPH, which combined CoxPH

with deep learning to improve risk categorization (37). Similarly,

Pati et al. (2024) compared numerous hybrid machine learning

algorithms for predicting breast cancer recurrence and found that

these approaches outperformed single models in terms of accuracy

and clinical value (38). Our hybrid strategy combines CoxPH and

RSF, but employs Elastic Net regularization, which enables

automatic feature selection and multicollinearity reduction on a

SEER-based cervical cancer cohort, hence offering a unique balance

of interpretability and predictive accuracy. Simsek et al. (2020)

supports this approach by finding that hybrid models outperformed

individual models in survival assessments (39).

The findings of this study have important implications for

personalized medicine and clinical decision-making in cervical

cancer. The hybrid model provides efficient risk classification by

combining linear and nonlinear components, possibly helping

clinicians to identify high-risk patients who may benefit from

enhanced therapies or closer monitoring. For example,

individuals designated as high-risk by the model may be

prioritized for extra medications or follow-up tests. Meanwhile,

low-risk individuals may avoid unneeded procedures, lowering both

their physical stress and healthcare expenses. Also, the proposed

hybrid model may be implemented into clinical processes to

provide personalized survival risk estimations at the time of

diagnosis or after therapy. The model, which effectively stratifies

patients into high- and low-risk categories, can help clinicians

modify follow-up intensity, select adjuvant medications, and

prioritize patients for advanced procedures. Its interpretable

component helps practitioners to understand major contributing

factors, allowing for collaborative decision-making with patients.

Furthermore, the CoxPH component’s interpretability increases the

model’s clinical value by elucidating the correlations between

various factors (such as tumor size, cancer stage, and age) and

survival risk, allowing for evidence-based treatment decisions (40).

Furthermore, the hybrid model’s well-calibrated survival

probabilities enable more accurate prognostic informs with
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patients giving them a better knowledge of predicted outcomes.

This strategy is consistent with the aims of precision oncology, in

which therapy is increasingly tailored to individual risk profiles

(41). The AUC-ROC of 0.84 underlines the model’s classification

accuracy, indicating that it might be used as a reliable tool for

categorizing patients into high- and low-risk groups, which is

important for treatment planning.
6 Limitations

While the hybrid model showed substantial improvements,

some limitations should be considered when interpreting the

findings of this study. First, the model was created and verified

with data from the SEER database, which, while vast, is limited to

the United States population. As a result, the model’s applicability

to other groups, particularly those with different demographic and

clinical features, has yet to be validated. Future research should aim

to evaluate this model across a variety of diverse datasets to ensure

its broad applicability (42).

Second, though the hybrid model improves prediction accuracy,

it demands more computational capacity than Cox PH or RSF. This

may restrict its usability in resource-constrained conditions or

clinical contexts that lack high-performance computing machines.

Optimizing the model to lower processing needs while maintaining

accuracy might increase its viability for widespread clinical use (43).

An additional issue is the possible impact caused by unmeasured

covariates. SEER data excludes some lifestyle factors (e.g., smoking,

alcohol use, food), genetic information, and psychological variables,

all of which might influence survival results. Including these factors in

future studies of the model may improve its prediction accuracy and

will provide an improved risk assessment (44).
7 Future study

This work provides opportunities for future research in several

key areas. First, other machine learning techniques, such as deep
FIGURE 6

Time-dependent AUC-ROC curves at 60 and 120 months for the hybrid model. AUC at 60 months: 0.84 (95% CI: 0.81–0.87); AUC at 120 months:
0.82 (95% CI: 0.78–0.85). Confidence intervals computed using 1,000 bootstrap resamples.
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neural networks, may be included to further increase the hybrid

model’s accuracy in large and complex datasets. Neural networks

may be able to identify complex patterns in the data, which might

improve the hybrid model’s performance in high-dimensional

survival analysis (45).

Second, prospective validation in actual clinical settings would

offer important information on the effectiveness of the model in

practice. Real-time survival predictions might be made possible by

integrating the model with electronic health record (EHR) systems.

This would enable doctors to dynamically modify risk assessments

in response to new patient data. This strategy would allow for data-

driven, flexible treatment planning adapted to each patient’s

changing risk profile (46).

Furthermore, investigating model interpretability techniques

such as Local Interpretable Model-agnostic Explanations (LIME)

or Shapley additive explanations (SHAP) may improve the

predictability of the hybrid model. These methods might boost

clinician trust and enable more sophisticated decision-making by

determining the role of specific factors in each prediction (47).
8 Conclusion

In conclusion, this work implies that a hybrid survival model

integrating CoxPH Elastic Net Regularization and RSF improves

predictive accuracy, robustness, and interpretability for cervical

cancer patients. The hybrid model’s capacity to capture both

linear and non-linear correlations makes it useful in clinical risk

stratification, where precise survival forecasts are crucial for

modified treatment planning. While more validation and

improvement are required, this hybrid approach represents a

potential step towards precision oncology, contributing to more

effective, personalized cancer therapy. Future studies will focus on

improving model generalizability and reducing computational

complexity. Furthermore, using advanced interpretability

approaches may improve the model’s transparency and clinical

accessibility. In summary, this hybrid method provides a significant

advancement towards precision oncology, with the potential for

improving data-driven, patient-centered therapy in cervical cancer

and beyond.
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