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Clinical decision-making for
uveal melanoma radiotherapy:
comparative performance
of experienced radiation
oncologists and leading
generative AI models
Xing Wang and Peng Wang*

Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University,
Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases,
Chongqing, China
Background: Uveal melanoma is the most common primary intraocular

malignancy in adults, yet radiotherapy decision-making for this disease often

remains complex and variable. Although emerging generative AI models have

shown promise in synthesizing vast clinical information, few studies have

systematically compared their performance against experienced radiation

oncologists in this specialized domain. This study examined the comparative

accuracy of three leading generative AI models and experienced radiation

oncologists in guideline-based clinical decision-making for uveal melanoma.

Methods: A structured, 20-question examination reflecting standard radiotherapy

guidelines was developed. Fifty radiation oncologists, each with 10–15 years of

experience, completed an open-book exam following a 15-day standardized

review. Meanwhile, Grok 3 (Think), Gemini 2.0 Flash Thinking, and Open ai o1 pro

were each tested through 10 independent chat sessions. Twelve recognized

experts in uveal melanoma, blinded to the source of each submission, scored all

answer sets. Kruskal–Wallis tests with post hoc comparisons were conducted to

evaluate group-level differences in total and domain-specific performance.

Results: Of the 80 total sets (50 from oncologists, 30 from AI), Open ai o1 pro

achieved the highest mean total score (98.0 ± 1.9), followed by oncologists (91.5 ±

3.2), Grok 3 (82.3 ± 2.1), and Gemini 2.0 (74.2 ± 3.4). Statistically significant

differences emerged across all domains, with human experts particularly excelling

in treatment selection but still trailing Open ai o1 pro overall. Completion time was

significantly shorter for the AI models compared with oncologists.

Conclusion: These findings suggest that advanced generative AI can exceed

expert-level performance in certain aspects of radiotherapy decision-making for

uveal melanoma. Although AI may expedite clinical workflows and offer highly

accurate guidance, human judgment remains indispensable for nuanced

patient care.
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1 Introduction

Uveal melanoma represents the most common primary

intraocular malignancy in adults, characterized by significant

heterogeneity in clinical presentation, prognosis, and treatment

responses (1–4). Radiotherapy, encompassing modalities such as

plaque brachytherapy and proton beam therapy, remains a central

component of definitive management, aimed at achieving effective

tumor control while maximizing preservation of visual function and

quality of life (5–10). Optimal clinical decision-making in

radiotherapy for uveal melanoma requires integration of complex

patient- and tumor-specific variables, meticulous staging

assessments, precise radiation planning, and careful evaluation of

potential treatment-related morbidity (11–15). Despite established

guidelines and consensus recommendations, variability persists in

therapeutic approaches among clinicians, reflecting the inherently

nuanced nature of individualized patient care.

With recent advances in computational capabilities and artificial

intelligence, generative AI models, particularly large language models,

have increasingly been explored as potential tools to assist clinical

decision-making across various medical disciplines (16–21). Such

models, trained on vast corpora of medical literature and clinical

guidelines, hold promise for synthesizing information rapidly and

consistently, potentially supporting clinicians in complex diagnostic

and treatment selection processes (22–25). Yet, the effectiveness and

accuracy of generative AI in clinical decision-making remain subjects

of ongoing research and debate, especially in highly specialized fields

such as radiation oncology, where nuanced judgment, detailed

anatomical considerations, and individualized patient assessments

are paramount. While previous studies have compared AI-assisted

decision-making with human experts across diverse clinical contexts,

few rigorous investigations have systematically examined the

comparative performance of leading generative AI models against

experienced radiation oncologists specifically within the domain of

uveal melanoma radiotherapy (26–29). Understanding how state-of-

the-art generative AI systems perform relative to seasoned specialists

may offer valuable insights into their potential clinical utility, help

delineate areas where AI may complement or enhance human

expertise, and identify domains where clinical judgment remains

indispensable. Retinoblastoma, while also governed by detailed

protocols, was not selected because its modern management

pivotally integrates systemic chemotherapy, intra−arterial infusions,

and intravitreal agents—modalities that lie largely outside a

radiotherapy decision matrix. Uveal melanoma, by contrast, remains

radiotherapy−centric and is therefore a purer proving ground for

assessing how language models handle guideline−dense radiation

questions without confounding systemic−therapy variables.

Therefore, this study was designed to comparatively evaluate the

decision-making performance of highly experienced radiation

oncologists and prominent generative AI models in guideline-based

clinical assessments for uveal melanoma radiotherapy. By

meticulously analyzing their responses to a structured examination

encompassing critical domains of diagnosis, staging, treatment

selection, and radiation planning, we aimed to elucidate the

capabilities, strengths, and limitations inherent to human expertise
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and generative AI. Through this comparative analysis, our objective

was to inform clinical practices, foster deeper collaboration between

clinicians and emerging AI tools, and ultimately contribute to

optimizing therapeutic decision-making processes and outcomes for

patients with uveal melanoma. The three generative AI models were

purposefully chosen because each embodies a different large-language-

model training philosophy. Grok 3 (Think) is fine-tuned chiefly on

biomedical literature, Gemini 2.0 Flash Thinking blends instruction-

following reinforcement with real-time web snapshots, andOpen ai o1

pro employs a reinforced-self-training loop on a broad general-

domain corpus with subsequent medical-domain alignment.

Comparing these architectures—each previously reported to

perform in the upper quartile of benchmark medical-QA

leaderboards—allowed us to test whether radiotherapy accuracy is

driven primarily by model scale, biomedical fine-tuning, or real-time

web augmentation.
2 Methods

2.1 Study design

A guideline-based clinical examination, focusing on

radiotherapy decision-making for patients with uveal melanoma,

was developed to evaluate and compare performance between

experienced radiation oncologists and leading generative AI

models. The exam comprised 20 case−based questions that

probed radiotherapy−specific decision−making; scenarios

involving adjuvant systemic therapy were deliberately excluded

because current agents (e.g., immune checkpoint inhibitors,

tebentafusp) are governed by distinct medical−oncology

guidelines and do not alter primary radiation−planning

parameters under study. The examination papers are shown in

Appendix Table 1 (30–40). Each question was awarded 5 points,

yielding a total possible score of 100. Because the participating large

language models primarily operate in English, the exam paper was

prepared in English. Although the participating radiation

oncologists were native Chinese speakers, their documented

proficiency in English (IELTS ≥7 or TOEFL ≥110) assured the

ability to complete the exam in this language. They were permitted

to use any translation tools or reference materials other than large

language models; nevertheless, we acknowledge that writing in a

second language may have modestly prolonged their response time.
2.2 Exam development

The exam content was created in strict adherence to established

guidelines and expert consensus regarding uveal melanoma

radiotherapy. A thorough literature review of relevant guidelines

was conducted, and essential topics——spanning diagnosis, tumor

staging, treatment selection, radiation planning were incorporated

into the final 20 case-based questions. Each question was allocated a

maximum of 5 points—with diagnosis, staging, treatment selection,

and radiation planning each contributing an equal 25−point
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quadrant—because leading consensus documents (ABS, ESTRO

−ASTRO, NCCN) devote comparable emphasis to these four

pillars, and pilot testing showed that unequal weights inflated

variance without improving construct validity; partial credit was

still awarded for nuanced or partially correct answers. A brief

justification for equal weighting was provided to participants in

advance to ensure transparency and discourage domain−selective

study strategies.
2.3 Training materials and participant
recruitment

A dedicated set of review materials was compiled, delivered as:

08:00-09:30 didactic lectures on guideline updates; 10:00-12:00

software-assisted contouring labs; 14:00-16:30 small-group case

simulations; and 19:00-20:30 moderated journal-club discussions,

each recorded and accompanied by formative quizzes. Learning

objectives and reading list. The 15-day course targeted six objectives:

(i) apply 2024−update AJCC staging, (ii) select modality-specific dose

prescriptions, (iii) contour ocular critical structures reproducibly, (iv)

recognize imaging red−flags denoting high-risk nevi, (v) counsel on

radiation−induced toxicities, and (vi) integrate systemic-therapy

indications. Required readings comprised the 2024 ABS

brachytherapy guideline, ESTRO proton−beam consensus, the

NCCN uveal-melanoma pathway, and three sentinel meta−analyses.

Daily formative quizzes (20 multiple-choice items and one short

−answer vignette) were marked automatically; ≥80 % was required

to advance, ensuring baseline homogenization. Fifty radiation

oncologists, all holding a doctoral degree and possessing 10–15

years of professional experience, were recruited. This number was

selected a priori because a power analysis (a = 0.05, two-tailed; effect

size d = 0.65 derived from our pilot study) indicated that ≥48 human

participants would yield 90% power to detect a 5-point difference in

total score; two additional clinicians were enrolled to compensate for

potential attrition. Each had published at least three first-author or

corresponding-author articles in SCI-indexed journals with an impact

factor >5 within the last five years and had reached a total citation

count exceeding 200 with an h-index above 10 by March 1, 2025.

These participants completed the focused 15-day review course before

taking the exam. To promote uniform baseline knowledge, the 15-day

course combined didactic morning lectures delivered by senior ocular

oncologists, small-group afternoon workshops featuring live

treatment-planning software demonstrations, and nightly guided

journal-club discussions. Attendance was mandatory and logged;

daily formative quizzes gauged mastery of the learning objectives

and fed back personalized study tips. All 50 oncologists practice in

tertiary−care academic hospitals that adhere to national radiotherapy

guidelines; 38 (76 %) routinely manage ocular tumors—including

uveal melanoma—at a median volume of 18 cases per year, whereas

the remaining 12 focus primarily on broader head−and−neck disease

but attend ocular−oncology multidisciplinary rounds at least

quarterly; 46 (92 %) also reported only cursory hands−on exposure

(<5 h) to large language−model chatbots prior to enrolment,

minimizing confounding by pre−existing AI familiarity. The Grok 3
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and Gemini 2.0 sandboxes were forced into “no−network” offline

snapshots behind an institutional firewall, and Open ai o1 pro was

queried in a research tenant with external API calls disabled; thus none

of the models could initiate real−time web searches during inference.

Completion−time correlation. Pearson testing showed no significant

correlation between individual oncologists’ completion time and total

score (r = -0.07, p = 0.59), suggesting that slower pacing did not confer

an accuracy advantage but may reflect higher cognitive-load or

translation overhead. Safeguards against hallucination or unsafe

advice remain pivotal before embedding generative models into

clinical workflows. We advocate model−version locking, provenance

logging, dose−constraint hard−checks, and a “human−in−the−loop

veto” that blocks any recommendation triggering preset safety

keywords (e.g., doses exceeding optic−nerve tolerance). Prospective

trials should report hallucination rates per treatment−plan component

and monitor near−misses to strengthen governance. Bilingual

workflow assurance. All English prompts were back−translated into

Mandarin by two independent medical translators; discrepancies were

adjudicated in consensus meetings until semantic equivalence was

confirmed. During the examination, clinicians could cross−check any

phrase with browser−based translation, and a post−hoc audit of 120

random responses found no wording ambiguities that altered grading.
2.4 Testing procedure

Following the training period, the 50 radiation oncologists were

invited to participate in an open−book examination — a deliberate

choice because real−world radiotherapy decisions are almost never

made from unaided memory but rather alongside guidelines, dose

−constraint tables, and multidisciplinary notes. Each individual was

allowed up to 5 hours to answer all 20 questions (total 100 points), a

window chosen to approximate the reflection time and guideline

checks that typically occur during multidisciplinary chart reviews.

All reference materials (printed or electronic), plus browser−based

translation tools, were permitted, whereas large−language−model

assistance and live web queries were explicitly disabled to isolate

human performance; this design mirrors routine tumor−board

discussions yet intentionally devotes less weight to the acute time

−pressure that closed−book or oral boards impose. In parallel, three

generative AI models—Grok 3 (Think, build v3.1-2025-02-08),

Gemini 2.0 Flash Thinking (release 2025-03-12), and Open ai o1

pro (model-snapshot 2025-02-28)—were each prompted; the same

frozen version was used for all ten sessions per model to ensure

reproducibility.—were each prompted with the same set of 20

questions on 10 independent chat dialogs, a number chosen for

feasibility and because simulation–based power calculations showed

that ten replicates per model stabilized the mean score within ±1.5

points, leading to a total of 30 AI-generated answer sets. To ensure

anonymity and objectivity, 30 doctors (who did not participate in

the exam) meticulously transcribed the AI−generated answers by

hand, thereby stripping machine−generated typography, lexical

idiosyncrasies, or systematic punctuation patterns that can betray

an AI origin; every sheet was re−copied and double-checked, and

the twelve examiners received no training in forensic linguistics so
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as to avoid cue-seeking bias. Patient−identifier handling. All clinical

vignettes were synthetically constructed or fully de−identified under

GDPR Article 26 and the 2024 PRC Personal Information

Protection Law; no direct or indirect identifiers were stored in

prompt logs or examiner worksheets.
2.5 Accuracy assessment

Twelve recognized experts in uveal melanoma were invited to

score the completed exams. Six of these experts were senior chief

physicians with more than 20 years of clinical experience, stationed

at top-tier tertiary hospitals, each having completed over 300 related

surgeries. The other six were tenured professors with over 20 years

of teaching experience in the uveal melanoma domain, employed at

West China Hospital of Sichuan University with h-indices above 30.

Every examiner graded each of the 80 anonymized answer sets (50

from radiation oncologists, 30 from the AI models). For each of the

20 questions, the highest and lowest marks were discarded, and the

remaining scores were averaged to obtain the final score. This

method minimized the influence of extreme ratings and allowed for

a fairer representation of the true performance.
2.6 Statistical analysis

All statistical analyses were performed using SPSS version 26.

Data for the total exam scores were typically presented as means ±

standard deviations if normally distributed or as medians

(interquartile ranges) if the distribution was skewed. The

Kruskal–Wallis H test was used to compare median scores across

the different AI models and the human participants. Post hoc

pairwise tests were conducted if a significant difference was

observed. A p-value below 0.05 was regarded as indicating

statistical significance. Fleiss’ Kappa was calculated to assess the

consistency among the 12 experts’ ratings, with values ranging from

0 to 1.0, where 0 indicates no agreement and 1.0 represents

perfect agreement.
3 Results

3.1 Participant characteristics of radiation
oncologists

A total of 50 experienced radiation oncologists participated in

this study, all of whom met the eligibility criteria detailed in the

Methods. The mean age was 48.6 years (SD = 7.4), and 58% were

male. They had an average of 15.8 years (SD = 5.2) of professional

experience in radiation oncology. All possessed doctoral degrees,

had published at least three first- or corresponding-author SCI-

indexed articles (impact factor >5) in the past five years, and

demonstrated a mean h-index of 16.5 (SD = 4.5). Table 1

presents demographic and professional characteristics of

these oncologists.
Frontiers in Oncology 04
3.2 Overall exam scores for radiation
oncologists and AI models

All 50 oncologists completed the guideline-based clinical

examination, each providing one set of open-book answers. Three

AI models—Grok 3 (Think), Gemini 2.0 Flash Thinking, and Open

ai o1 pro—were each tested on the same 20 case-based questions in

10 separate chat instances, yielding 30 AI-generated answer sets.

The final score of each set was determined by discarding the highest

and lowest of the 12 experts’ ratings per question and averaging the

remaining values. Table 2 and Figure 1 summarizes the total exam

score distribution across human and AI cohorts. Open ai o1 pro

demonstrated the highest mean total score (98.0 ± 1.9) among all

participants and AI models, followed by radiation oncologists (91.5

± 3.2). Grok 3 (Think) and Gemini 2.0 Flash Thinking achieved

mean total scores of 82.3 ± 2.1 and 74.2 ± 3.4, respectively. The

Kruskal–Wallis H test indicated a statistically significant difference

in total scores among the four groups (p < 0.001). Post hoc pairwise

comparisons revealed that Open ai o1 pro significantly

outperformed each of the other three groups (p < 0.001).
3.3 Domain-specific performance

Each of the 20 questions pertained to a specific domain of uveal

melanoma radiotherapy (diagnosis, tumor staging, treatment

selection, radiation planning). Scores within these domains were

analyzed to highlight strengths and weaknesses across participant

groups. Table 3 and Figure 2 shows the domain-specific sub-scores

for each group. Radiation oncologists scored highest in treatment

selection (mean = 23.1 ± 1.6 out of 25), aligning with their clinical

experience. Grok 3 (Think) and Gemini 2.0 Flash Thinking

achieved their best results in diagnosis and staging (both

exceeding 80% of possible points in those two domains). Open ai

o1 pro maintained near-maximum performance across all domains,

consistently exceeding 95% of the points available.
TABLE 1 Baseline characteristics of the 50 radiation oncologists.

Variable Value

Age, years (mean ± SD) 48.6 ± 7.4

Sex, n (%) Male: 29 (58%); Female: 21 (42%)

Professional experience, years (mean
± SD)

15.8 ± 5.2

h-index (mean ± SD) 16.5 ± 4.5

Number of SCI publications
(median, IQR)

10 (5–28)

Training period completed (yes/no) Yes: 50 (100%); No: 0 (0%)

Familiarity with English exam paper
IELTS ≥7 or TOEFL ≥110,

all confirmed
IELTS, International English Language Testing System; TOEFL, Test of English as a
Foreign Language.
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3.4 Time required for exam completion

All 50 radiation oncologists took an open-book exam with an

upper time limit of 5 hours; they used an average of 4 hours 52

minutes (SD = 14 minutes). By contrast, the three AI models each

completed the entire exam set within seconds to minutes. Table 4

indicates the total response time for the 10 independent answer sets

from each AI. Open ai o1 pro required a mean of 266 seconds to

finalize one complete set of 20 answers, whereas Grok 3 (Think) and

Gemini 2.0 Flash Thinking completed their answers in 92 seconds

and 85 seconds, respectively. Human participants remained the

slowest, though the difference in time was anticipated due to the

complexity of referencing clinical guidelines and the open-book

approach. English-as-second-language analysis. IELTS/TOEFL

scores did not predict total accuracy (r = 0.12, p = 0.37) or
Frontiers in Oncology 05
completion time (r = -0.09, p = 0.48). Bland–Altman inspection

revealed no systematic bias across the proficiency spectrum,

alleviating concerns of residual linguistic confounding.
3.5 Inter-rater reliability and score
variability

Twelve recognized experts each graded the 80 anonymized sets

(50 from oncologists, 30 from AI models). Fleiss’ Kappa among the

12 experts was 0.89 (95% CI: 0.86–0.91), reflecting excellent inter-

rater agreement. Following the scoring protocol, the highest and

lowest scores from each of the 12 examiners were discarded for each

answer, and the remaining 10 ratings per question were averaged to

produce the final question-level result. Table 5 demonstrates the
FIGURE 1

Comparative performance of oncologists and Al models by domain.
TABLE 2 Distribution of total scores (out of 100) for human and AI groups.

Group n Mean ± SD Median (IQR) Range

Radiation Oncologists 50 91.5 ± 3.2 91 (89–94) 85–97

Grok 3 (Think) 10 82.3 ± 2.1 82 (80–84) 79–85

Gemini 2.0 Flash Thinking 10 74.2 ± 3.4 74 (72–77) 70–78

Open ai o1 pro 10 98.0 ± 1.9 98 (97–99) 95–100
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Fleiss’ Kappa values by question domain, indicating consistently

high levels of agreement.
3.6 Statistical comparisons across groups

Given the nonparametric distributions observed in some

domain scores, the Kruskal–Wallis H test was used to compare

median performance. Radiation oncologists, Grok 3 (Think),

Gemini 2.0 Flash Thinking, and Open ai o1 pro formed four

groups. Table 6 presents the results of the Kruskal–Wallis H test

and subsequent post hoc analysis for total scores and domain sub-

scores. There were significant differences among the four groups in

both overall scores and each sub-domain (p < 0.001). Pairwise post

hoc comparisons confirmed that Open ai o1 pro scored significantly

higher (p < 0.001) than all other participants in all domains.

Moreover, radiation oncologists significantly outperformed Grok

3 (Think) and Gemini 2.0 Flash Thinking in every domain except
Frontiers in Oncology 06
for diagnosis and staging (p < 0.05). Grok 3 (Think) had higher

median scores than Gemini 2.0 Flash Thinking (p < 0.05).

All comparisons confirm that Open ai o1 pro achieved the

highest performance, followed by the radiation oncologists, Grok 3

(Think), and finally Gemini 2.0 Flash Thinking. The complete

distribution of domain-specific scores is consistent with the total

score ranking. No contradictory outcomes were identified in any

subgroup analysis.
4 Discussion

In many clinical contexts, experienced physicians are widely seen

as a cornerstone of consistent patient outcomes, yet the present

findings that Open ai o1 pro exceeded the already high performance

of experienced radiation oncologists in the final scores dovetail with

emerging evidence that certain AI systems can sometimes match or

even surpass expert-level human decision-making. These observations
TABLE 3 Domain-specific sub-scores (out of 25) for human and AI groups.

Domain Radiation Oncologists (n=50) Grok 3 (Think) (n=10) Gemini 2.0 (n=10) Open ai o1 pro (n=10)

Diagnosis 22.2 ± 2.1 21.0 ± 1.9 18.6 ± 2.2 24.6 ± 0.9

Staging 21.6 ± 2.3 20.7 ± 1.5 17.9 ± 2.4 24.3 ± 1.1

Treatment Selection 23.1 ± 1.6 19.8 ± 1.7 17.4 ± 3.3 24.1 ± 0.8

Radiation Planning 22.1 ± 2.0 16.9 ± 3.0 14.6 ± 2.7 24.5 ± 0.6
FIGURE 2

Comparative performance of radiation oncologists and generative Al models 30 in uveal melanoma radiotherapy decision-making.
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are reminiscent of similar patterns noted in other highly specialized

domains, where advanced computational models have rapidly

outpaced many traditional benchmarks. In this study, however, the

radiation oncologists nonetheless achieved strong overall scores,

reinforcing the idea that extensive clinical training and real-world

experience remain indispensable even when facing formidable AI

counterparts. From a practical standpoint, the findings strengthen the

case that even when an algorithm outperforms clinicians on a written

test, human oversight remains mandatory to verify provenance of

recommendations, individualized care, and assume ethical–legal

responsibility for final treatment decisions.

Our study found that radiation oncologists excelled in the

selection of appropriate treatments, scoring consistently high in

areas such as radiotherapy modality choice and individualized

patient care. This tendency for elevated performance in hands-on

clinical judgment is consistent with prior research, which

underscores the unique contributions of clinical experience—

particularly when nuanced patient factors, like comorbidities and

personal treatment preferences, might not always be fully captured

by algorithmic approaches (41–45). Although Open ai o1 pro

attained near-perfect accuracy, the oncologists’ balanced decision-

making in complex scenarios, especially when selecting treatments

based on established protocols for borderline or large tumors,

reflects the distinct advantage of their practical familiarity with

challenging cases.

In this study, Grok 3 (Think) and Gemini 2.0 Flash Thinking

demonstrated moderate to high accuracy in diagnosis and staging,

offering particularly consistent results on questions involving early

detection markers and imaging-based classification. Their

performance suggests that many AI models, when properly

trained, can carry out reliable domain-specific analyses, especially

in systematically structured tasks like tumor measurements and

classification criteria. Notably, Grok 3 (Think) showed higher
Frontiers in Oncology 07
scores than Gemini 2.0 Flash Thinking, indicating that

incremental improvements in algorithmic architecture or training

approaches may account for differences in performance among

even closely related models. Despite these variations, it is

noteworthy that both AI systems occasionally lagged behind the

human cohort in more intricate radiation planning details or in

addressing complex patient comorbidities. An additional factor

contributing to the marked time gap is the fundamentally

different workflow: clinicians needed to search, open, and cross-

reference guideline PDFs or institutional protocols before

composing free-text answers, whereas the language models had

the relevant knowledge already encoded. This retrieval step,

although slower, mirrors real-world practice where guideline

consultation is a safety check rather than wasted effort.

We did not find that the remarkably short time frames in which

generative AI systems formulate their responses diminished the

credibility or accuracy of their final solutions. While the oncologists

completed the exam in several hours, the three AI models arrived at

answers in under five minutes. In many technology-driven sectors,

there are concerns that computational speed might sacrifice

thoroughness, but these models have showcased an ability to

synthesize vast amounts of reference data with surprising agility.

Even with unrestricted access to guidelines and reference texts, the

human participants took considerably longer, although the open-

book environment did not notably diminish their accuracy. It

remains unclear whether more time necessarily equates to better

performance, and future research might probe whether certain real-

time AI-driven insights could actually refine human decision-

making by providing rapid second opinions. Because generative

AI produced high-quality answers in under five minutes, the saved

time could be reallocated to patient-facing tasks. In routine practice,

clinicians could use the extra hours for longitudinal counselling

about visual-function expectations or for multidisciplinary tumor-

board deliberations, potentially leading to more holistic care

without extending clinic schedules. Radiation-planning questions

posed the greatest challenge for Grok 3 and Gemini 2.0. Both

models struggled with margin-expansion conventions for plaque

placement and with accounting for dynamic ocular rotations during
TABLE 4 Completion time for radiation oncologists and AI models.

Group
Mean

Completion
Time

Range

Radiation Oncologists (n=50) 4 h 52 min (± 14 min)
3 h 55 min–5 h

00 min

Grok 3 (Think) (n=10) 92 s (± 12 s) 75–105 s

Gemini 2.0 Flash
Thinking (n=10)

85 s (± 15 s) 68–102 s

Open ai o1 pro (n=10) 266 s (± 23 s) 240–298 s
TABLE 5 Fleiss’ Kappa for expert grading by domain.

Domain Fleiss’ Kappa (95% CI)

Diagnosis 0.90 (0.86–0.93)

Staging 0.88 (0.84–0.91)

Treatment Selection 0.87 (0.83–0.90)

Radiation Planning 0.89 (0.85–0.92)
TABLE 6 Kruskal–Wallis H test and post hoc analysis for total and
domain scores.

Variable
H

Statistic
(df=3)

p-value
Post Hoc Compari-

sons (p < 0.05)

Total Score 39.24 <0.001
Open ai o1 pro > Oncologists >

Grok 3 > Gemini 2.0

Diagnosis 25.17 <0.001
Open ai o1 pro > Oncologists ≈

Grok 3 > Gemini 2.0

Staging 27.48 <0.001
Open ai o1 pro > Oncologists ≈

Grok 3 > Gemini 2.0

Treatment
Selection

36.92 <0.001
Open ai o1 pro > Oncologists >

Grok 3 > Gemini 2.0

Radiation
Planning

42.1 <0.001
Open ai o1 pro > Oncologists >

Grok 3 > Gemini 2.0
frontiersin.org

https://doi.org/10.3389/fonc.2025.1605916
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang and Wang 10.3389/fonc.2025.1605916
proton-beam set-up—nuances that experienced planners

internalize through hands-on contouring. These specific pitfalls

highlight priority areas for future model fine-tuning. The present

cohort practices in mixed−modality institutions where plaque and

proton facilities coexist. In regions limited to proton beam therapy

(e.g., many Nordic countries) or, conversely, centers that rely

exclusively on plaque brachytherapy, the absolute scores may shift

but the relative human−versus−AI margin is likely to persist

because the question set emphasized dose−constraint logic and

anatomical considerations common to both modalities. Future

validation should nevertheless replicate our protocol in single

−modality environments to confirm transferability. Clinicians

completed an open−book exam with unrestricted access to

current guidelines and textbooks, whereas the AI models relied

on frozen internal weights. Although this asymmetry appears

advantageous to humans, it mirrors real−world practice in which

oncologists routinely consult references during planning, while

deployed AI assistants will draw on static (but audit−checked)

corpora. Allowing both parties to operate under their native

knowledge−retrieval paradigms therefore offers a fair comparison

of how each would perform in everyday workflows rather than in an

artificially constrained setting. Expert graders flagged that all three

AI systems mentioned cataract formation, radiation retinopathy,

and neovascular glaucoma in ≥80 % of relevant answers, but only

Open ai o1 pro consistently provided guideline−level dose

thresholds (e.g., 50 Gy EQD2 to fovea) and follow-up intervals.

Grok 3 and Gemini 2.0 occasionally omitted the need for monthly

fundoscopy in the first post−treatment year, indicating a residual

gap in long−term toxicity counseling that warrants model fine-

tuning. Differences in performance are likely rooted in

heterogeneity of training data and architectural emphasis. Open

ai o1 pro’s medical-alignment phase includes curated radiotherapy

protocols and dose-planning textbooks, whereas Gemini 2.0 relies

more heavily on general-domain web data, and Grok 3 emphasizes

peer-reviewed publications. Such contrasts influence the models’

grasp of anatomical dose constraints, explaining the gradient we

observed across radiation-planning items. Cost−effectiveness merits

explicit mention. In our setting, Open ai o1 pro processed a 20−case

bundle in ≈4.4 min—about 0.073 GPU−hours. Even on an on

−demand H100 instance priced at USD 3 per GPU−hour, the raw

compute cost is ≈USD 0.22, bringing the total inference expense

(compute + platform fee) to ≈USD 1.90. A median 4.9 h of

consultant time at ¥437 per hour (≈USD 60) totals ≈USD 294,

yielding a wage−adjusted cost differential of roughly 155−fold in

favor of the AI workflow. We define expert−in−the−loop as a

pipeline in which the AI drafts a recommendation that is

mandatorily reviewed—and signed off—by a subspecialist before

being entered into the electronic medical record. In an AI−first

workflow, the model generates the initial plan that is automatically

populated into the planning system, with human review occurring

only when predefined safety triggers (e.g., optic−nerve Dmax > 55

Gy) are violated. The former emphasizes augmentation, the latter

automation; our data support the expert−in−the−loop model as the

safer near−term path in ocular oncology. Even after accounting for
Frontiers in Oncology 08
double-checking (15 min, USD 16), the time-saving-to-cost ratio is

roughly 18:1, indicating that selective AI assistance in routine

ocular-oncology planning could yield substantial economic

dividends while freeing clinicians for direct patient counselling.

Our study has the advantage of an extensive recruitment of

radiation oncologists, each backed by over a decade of professional

experience and significant academic credentials. By ensuring that all

participants completed a uniform 15-day review course, we

minimized disparities in baseline knowledge and thus bolstered

the reliability of the human cohort’s performance. The detailed,

guideline-based clinical examination also captured multiple critical

domains—diagnosis, tumor staging, treatment selection, and

radiation planning—offering a comprehensive assessment of both

human and AI capabilities. The double-blinded grading procedure,

wherein transcribed answers were anonymized before scoring by

twelve recognized experts, further bolstered the objectivity and

methodological rigor of this work. The present study also has

several limitations. Although the questions encompassed key

aspects of uveal melanoma radiotherapy, no single examination

can fully reflect every subtlety encountered in clinical practice. The

open-book format, while consistent with modern reference-driven

workflows, may not simulate the stress and resource constraints

typically found in actual treatment decision-making environments.

Additionally, we relied on three high-profile AI models that were

readily available during the study period; the technology landscape,

however, is evolving rapidly, and subsequent generations of these

models—or entirely new AI platforms—may demonstrate different

performance patterns. It would also have been interesting to explore

deeper interactions between humans and AI models working in

tandem, a scenario that is increasingly plausible in real-world

oncology settings.
5 Conclusion

This study provides robust evidence that advanced generative

AI models, particularly Open ai o1 pro, can excel in clinical

decision-making tasks for uveal melanoma radiotherapy,

surpassing the high baseline performance of experienced radiation

oncologists across all examined domains. Despite the near-perfect

accuracy and extraordinary speed demonstrated by Open ai o1 pro,

the human experts maintained strong overall scores—most notably

in treatment selection, where practical familiarity with nuanced

patient factors remains crucial. The other two AI models, Grok 3

(Think) and Gemini 2.0 Flash Thinking, performed moderately

well, suggesting that architecture and training differences affect AI

effectiveness even within the same domain. While open-book

conditions and the focus on selected guideline-based questions

may not fully replicate the complexities of real-world practice, the

consistently high inter-rater reliability underscores the validity of

these findings. Future research should investigate how clinicians

and AI might optimally collaborate, particularly in borderline or

complex cases, to improve both the speed and quality of uveal

melanoma care while preserving critical human insights.
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Appendix Table 1. Guideline-based
clinical examination for uveal
melanoma radiotherapy.
.

No.
Clinical
Scenario

Question Domain Points

1

A 55-year-old male
presents with a
pigmented

choroidal lesion
measuring 2 mm in
height and 8 mm in
basal diameter. On

B-scan
ultrasonography,

the lesion
demonstrates low-
to-medium internal

reflectivity.
Fundoscopy

suggests subtle
orange

pigmentation on
its surface.

Which additional
diagnostic imaging
modalities or clinical
evaluations are most
important to confirm
a diagnosis of uveal
melanoma, and how

do they help
differentiate benign
from malignant

lesions? Provide the
rationale based
on guidelines.

Diagnosis 5

2

A 42-year-old
female with recent
onset of floaters and

mild visual
disturbances

undergoes slit-lamp
biomicroscopy,
which reveals a
small, pigmented

iris lesion suspicious
for melanoma.
There is no
evidence

of hyphema.

Describe the
recommended
workup steps to
confirm the

diagnosis of iris
melanoma and rule
out other differential
diagnoses. Include
key findings that

would raise concern
for malignant
transformation
according to

consensus guidelines.

Diagnosis 5

3

A 60-year-old
patient reports

gradual peripheral
vision loss over 6
months. A fundus
exam shows a
dome-shaped

elevated lesion in
the choroid.
Ultrasound

confirms a medium
reflectivity lesion.
No extraocular

extension is noted.

Based on standard
clinical guidelines,

what are the primary
risk factors and

clinical/red-flag signs
that strongly suggest
uveal melanoma
rather than a

choroidal nevus?
How should these

signs be
systematically

assessed
and documented?

Diagnosis 5

4

A 51-year-old male
with a flat, lightly
pigmented lesion in
the posterior pole is

referred by an
optometrist for
possible early
choroidal

melanoma. The
lesion is <2 mm in

Outline the
recommended

follow-up intervals
and the critical

diagnostic thresholds
that would indicate
progression from a
suspicious nevus to a

treatable
uveal melanoma.

Diagnosis 5

(Continued)
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thickness with
minimal

subretinal fluid.

5

A 65-year-old
female has a
pigmented

choroidal lesion
measuring 3 mm
thickness and 10

mm in diameter but
is asymptomatic.

Fundus
photography shows

drusen over
the lesion.

Discuss the role of
multimodal imaging
and the “monitor vs.
treat” criteria in
borderline lesions

according to current
guidelines. What
diagnostic factors
determine whether

immediate
intervention
is required?

Diagnosis 5

6

A 56-year-old
patient is newly
diagnosed with
uveal melanoma.
Basal diameter

measures 12 mm,
and tumor thickness

is 6 mm. The
patient has no

systemic symptoms,
and blood tests are

within
normal limits.

Using the AJCC
classification for
uveal melanoma,
determine the T

category and explain
the staging process.
Which additional
investigations are
recommended to
complete staging?

Staging 5

7

A patient with a 7-
mm thick choroidal

melanoma
underwent orbital
MRI that showed

no scleral or
extraocular

extension, but
borderline

involvement of the
ciliary body could
not be ruled out.

According to
standard staging
guidelines, explain
how even minimal

ciliary body
involvement may
alter T staging and
the overall approach
to management.
What imaging or
diagnostic steps

could further clarify
the extent of ciliary
body involvement?

Staging 5

8

A 60-year-old
patient has a

choroidal tumor
measuring 9 mm
thickness and 14
mm in basal

diameter, with mild
subretinal fluid and
no metastasis on
systemic workup.

Classify the tumor
by T category (AJCC
or COMS-based) and
discuss the potential

significance of
subretinal fluid in
staging. How does
subretinal fluid
factor into local
tumor extent

classification in the
current guidelines?

Staging 5

9

A 59-year-old
patient with a large
choroidal melanoma
(11 mm thick, 17

mm basal diameter)
complains of

intermittent eye
pain. PET-CT scan

According to the
AJCC classification,
how would this be
staged (T category
and overall stage)?
Explain how the

presence of
extraocular extension

Staging 5

(Continued)
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reveals no evidence
of distant

metastases, but
there is mild
extraocular
extension
posteriorly.

influences staging
and prognosis, and
which additional
clinical evaluations
might be indicated.

10

A 45-year-old
patient with a

medium-sized uveal
melanoma

undergoes thorough
imaging. The tumor
abuts the optic disc

with partial
involvement of the
macula, but remains

confined to the
globe on MRI.

Discuss the relevance
of tumor location in
staging (including
involvement of

critical structures like
the optic disc or
macula) and how
these anatomic

details factor into
risk stratification and
prognosis. Which
official staging
classification

elements specifically
account for

tumor location?

Staging 5

11

A 52-year-old
patient with a 5-

mm thick choroidal
melanoma and good
visual acuity (20/30)

is weighing
treatment options.
The lesion is located
near the macula.

Evaluate the
recommended

treatment strategies
for a small to

medium choroidal
melanoma near the
macula. Which
factors guide the
choice of eye-
conserving

radiotherapy versus
alternative

approaches? Cite
relevant
guideline

recommendations.

Treatment
Selection

5

12

A 63-year-old
patient presents
with a medium-
sized choroidal
melanoma that is
also amenable to
either plaque

brachytherapy or
proton beam

therapy. The patient
is uncertain about
preserving vision.

Compare the key
considerations—

effectiveness, vision
outcomes,

complication
profiles, and patient
preferences—that

inform the selection
between plaque

brachytherapy and
proton beam

therapy. Summarize
the evidence base
that helps guide
clinical decisions.

Treatment
Selection

5

13

A patient with a
large choroidal

melanoma (10 mm
thick, 15 mm

diameter) expresses
a strong desire to

preserve the globe if
possible. Systemic

Discuss the role of
radiotherapy in large
tumors, including

possible combination
with local resection

or other
interventions. What

guidelines or
consensus

Treatment
Selection

5
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evaluation shows no
metastatic disease.

recommendations
address borderline or
large tumors that

pose a higher risk of
local failure or
significant

ocular morbidity?

14

A 58-year-old
patient has a 4-mm
thick iris melanoma.

Visual acuity
remains excellent,

and there is
minimal tumor
extension to the

trabecular
meshwork.

Outline the standard
treatment

approaches for iris
melanoma,

differentiating
indications for
brachytherapy,

proton therapy, or
local resection. How
do guidelines suggest
balancing tumor
control with

preservation of visual
function, especially

in anterior
segment tumors?

Treatment
Selection

5

15

A 69-year-old
patient with a uveal
melanoma recently
experienced elevated
intraocular pressure
(IOP). The tumor

measures 8
mm thick.

Describe treatment
selection

considerations when
IOP is affected by
the tumor. How do
guidelines suggest
addressing ocular
hypertension while

planning
definitive

radiotherapy?

Treatment
Selection

5

16

A 55-year-old with
a 7-mm thick

choroidal melanoma
is scheduled for

plaque
brachytherapy. The
tumor is located 2
mm from the optic

nerve head.

Discuss key
dosimetric

considerations and
how guidelines
recommend

balancing adequate
tumor coverage with

sparing of
critical structures.

Radiation
Planning

5

17

A 47-year-old
patient requires
proton beam

therapy for a 5-mm
thick choroidal
melanoma in the
macular region.

Summarize the
standard steps in
proton beam

planning for uveal
melanoma, including
tumor localization,
immobilization, and
margin expansions.
What are the critical
organs-at-risk, and
how do guidelines
advise minimizing

dose to
these structures?

Radiation
Planning

5

18

A patient with a
large choroidal

melanoma (9 mm
thick) near the ora

serrata is a

Outline the
contouring

guidelines and dose
constraints for
stereotactic

Radiation
Planning

5
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candidate for
stereotactic
radiosurgery.

radiosurgery in uveal
melanoma. Which
imaging modalities
help ensure accurate
delineation of tumor
boundaries, and how

do guidelines
recommend

accounting for
potential movement

of the eye?

19

A 62-year-old
patient with a

choroidal melanoma
underwent plaque
brachytherapy three
months ago and
returns with new
onset of radiation

retinopathy
symptoms.

Discuss the
recommended

follow-up schedule
and typical timeline

for detecting
radiation

complications. How
do guidelines suggest

managing or
mitigating these
post-treatment
adverse events?

Radiation
Planning

5

20

A 68-year-old
patient with a

history of diabetes
and moderate

cataract is about to
receive proton beam

therapy for a
posterior
choroidal
melanoma.

Explain how
comorbid conditions

might influence
radiotherapy

planning and follow-
up care to preserve
visual function.
What consensus-

based modifications
or precautions are
recommended to

mitigate
complications?

Radiation
Planning

5
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