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Background: Gliomas represent a significant burden in the realm of central

nervous system (CNS) malignancies, accounting for approximately 30% of all

primary brain tumors and a striking 80% of malignant cases. The incidence of

gliomas is observed to escalate with advancing age, exhibiting a marginally higher

prevalence in the male population. Among these tumors, high-grade gliomas,

particularly glioblastoma multiforme (GBM), are characterized by their aggressive

nature and dire prognosis. Conventional therapeutic approaches, including

surgical intervention, radiotherapy, and chemotherapy, have demonstrated

limited efficacy, underscoring an urgent need for the development of targeted

therapies and enhancedmechanistic understanding to improve patient outcomes.

Methods: In this study, we aimed to deepen our understanding of the role of

hypoxia, a critical factor in cancer progression, within gliomas. Using

comprehensive datasets from The Cancer Genome Atlas (TCGA) and Chinese

Glioma Genome Atlas (CGGA), we classified gliomas into two distinct subgroups

based on hypoxia-related gene expression profiles: C1 and C2. This classification

facilitated a comparative analysis of prognostic outcomes and tumor

microenvironment characteristics between the two subgroups.

Results: Our findings revealed that patients within the C1 subgroup exhibited

significantly poorer prognoses, with an upregulation of genes intricately linked to

various tumor progression pathways. Moreover, the immune microenvironment

within the C1 subgroup appeared more favorable for tumor survival and growth,

coupled with a notable increase in genomic instability compared to the C2

subgroup. A prognostic scoring system developed from key hypoxia-related

factors demonstrated substantial predictive value across multiple cohorts.

Conclusion: Ultimately, we identified four core hub genes—SOCS3, CLCF1,

PLAUR, and LIF—whose expression was validated under hypoxic conditions via

Western blot analysis in glioma cell lines. This study employs bioinformatics to

elucidate glioma subtypes, highlighting significant prognostic and functional

disparities. The experimental validation of candidate molecules paves the way

for future research aimed at unraveling their roles and underlying mechanisms in

glioma pathophysiology, potentially guiding novel therapeutic strategies.
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Introduction

Glioma is a common cancer that affects the brain and central

nervous system, accounting for approximately 30% of all primary

brain tumors and 80% of all malignant brain tumors (1–3). Notably,

the incidence of glioma increases with age, with slightly higher rates

in males than females (4, 5). Unfortunately, the outcomes for these

patients are frequently unfavorable. High-grade gliomas,

particularly glioblastomas (GBM), are extremely aggressive and

are life-threatening. Treatment options for gliomas include

surgery, radiation therapy, chemotherapy, or a combination of

these approaches (6, 7). However, the limitations of the current

treatments underscore the need for continued research and

development of new, more targeted treatment approaches.

Therefore, improving treatment strategies and understanding the

underlying mechanisms of gliomas are vital.

Hypoxia, or low oxygen tension, is an important factor in the

growth, development, and progression of cancer (8–12). Several

pathways are involved in the response of cancer cells to hypoxia,

including the hypoxia-inducible factor (HIF) pathway, which promotes

angiogenesis, cell survival, and tumor invasion (9, 13–15).

Furthermore, hypoxia affects the immune response, making tumor

cells more resistant to immune cell recognition and attack (16, 17).

Therefore, targeting the hypoxic pathways in cancer therapy has

emerged as an attractive approach for improving cancer treatment

outcomes. Importantly, several types of cancers, such as breast cancer,

non-small cell lung cancer, and malignant melanoma, have been

reported to be affected by hypoxia (18–24). Nevertheless,

advancements are crucial for a deeper comprehension of hypoxia’s

impact on gliomas. This encompasses elucidating the intricate hypoxic

pathways, precisely quantifying hypoxia’s extent and distribution, and

innovating effective therapies targeting hypoxia in gliomas.

By employing unsupervised clustering analysis utilizing hypoxia-

related gene expression profiles, we successfully categorized gliomas

into two distinct subtypes. Each subtype exhibits unique somatic

alterations, immune cell composition, metabolic characteristics, and

clinical outcomes. Through co-expression network analysis, we

identified four crucial hub genes, three of which were upregulated

in response to hypoxia treatment in glioma cell lines. These findings

have the potential to greatly advance clinical diagnosis and

mechanistic research in the field of glioma.
Materials and methods

Patients and samples

TCGA (The Cancer Genome Atlas) is a pan-cancer research

program initiated jointly by the NCI and NHGRI in the United

States, which includes genomic, transcriptomic, and clinical data

from 33 types of cancer and over 11,000 patients. The Chinese

Glioma Genome Atlas (CGGA) is a specialized database led by

Beijing Tiantan Hospital, focusing on multi-omics research of

primary and recurrent brain gliomas. Its core integrates genomic,

transcriptomic, epigenetic data, and complete clinical follow-up
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information, with a sample size exceeding 2,000 cases (as of 2023).

Data repositories, including TCGA (LGG and GBM) and CGGA

(mRNA_325 and mRNA_301) databases, were searched for

available glioma genomics, transcriptomics, and clinical

information. Our research scope includes patients from WHO

stage II to IV. The aforementioned datasets were downloaded

from various websites (https://xenabrowser.net/datapages/ and

http://www.cgga.org.cn/).
Identification of hypoxia cluster

The WINTER_HYPOXIA_METAGENE gene set obtained

from the Molecular Signatures Database (MSigDB) (https://

www.gsea-msigdb.org/gsea/msigdb/index.jsp) was selected for k-

means clustering. Normalized expression data were subjected to k-

means clustering using the Consensus ClusterPlus R package. The

optimal number of clusters was determined by selecting the k-value

at which the magnitude of the cophenetic correlation coefficient

decreased. Additionally, principal component analysis (PCA) was

employed to gain a better understanding of variations

between clusters.
Differentially expressed gene analysis and
functional enrichment

Differential expression analyses were performed using the

“DESeq2” package. In this analysis, genes with an absolute log2

fold change greater than 1 and a false discovery rate (FDR) <0.05

were considered as differentially expressed genes between two

clusters. Gene ontology and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway analysis was conducted using the

“ClusterProfiler” R package, with a cutoff value of FDR < 0.05

(25). To investigate the difference in biological process terms

between two clusters, GSEA and GSVA were performed using the

R package, considering the gene sets of “h.all.v7.5. symbols” and

“c2.cp.kegg.v7.5. symbols” downloaded from MSigDB.
Estimation of immune infiltration and
tumor purity

The CIBERSORT algorithm was used to estimate the relative

fractions of the 22 immune cell types in each sample (26).

ESTIMATE was used to evaluate the immune cells and stromal

contents of each sample (27).
Somatic mutation identification

Somatic mutation data of all patients categorized under the

“Masked Somatic Mutation” category in TCGA were processed

using VARSCAN software (https://portal.gdc.cancer.gov/).

Mutation analysis and visualization were performed using the
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“maftools” package. To detect differences in copy number

alterations between the subtypes, GISTIC2.0 analysis was

conducted. Here, loci with a GISTIC value greater than 1 or less

than -1 were defined as amplification or deletion, respectively.
Weighted co-expression network

A normalized expression matrix was used to construct a

weighted co-expression network (WGCNA) using R package (28).

A co-expression network was created using the blockwiseModules

function with default parameters. The modules were evaluated for

significance based on the correlation between module eigengenes

and information using Pearson’s test. Hub genes were then chosen

based on the modular connectivity of each gene and its relationship

with the phenotypic traits in the hub module.
Cell lines and culture

LN229 and U118 cells were procured from the American Type

Culture Collection (Rockville, MD) and maintained in Dulbecco’s

modified Eagle’s medium supplemented with high glucose, sodium

pyruvate, 10% fetal bovine serum, and 1% penicillin–streptomycin.

To simulate hypoxic conditions, cells were cultured in a hypoxia

chamber with 94% N2, 5% CO2, and 1% O2 at 37°C.
Western blotting

Protein extraction and western blot analysis were performed as

previously described (29). The antibodies used were anti-HIF-1

(1:5000, 20960-1-AP), anti-SOCS3 (1:2000, 14025-1-AP), anti-

PLAUR (1:1000, 10286-1-AP), and anti-LIF (1:500, 26757-1-AP),

all of which were obtained from Proteintech Group (Wuhan

Sanying, China). The antibodies were validated using a

commercial vendor. The bands on each membrane were detected

using an ECL kit from Beyotime Biotechnology (Beijing, China),

and ImageJ software (National Institutes of Health, Bethesda, MD,

USA) was used for quantification.
Bioinformatic and statistical analyses

To detect survival differences between clusters, Kaplan–Meier

analysis with log-rank tests was performed. Unpaired Student’s t-

tests were used for normally distributed variables, and Wilcoxon

rank-sum tests were conducted for non-normally distributed

variables when comparing the two groups. The Benjamini–

Hochberg method was used to adjust the P-value. For the

univariate analysis, we selected factors known to affect outcomes

and patient characteristics. Cox regression analysis was then

conducted with age, sex, and grade as factors. Cox proportional
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hazard models were used to examine the impact of various risk

factors on event outcomes, and the reliability of the model was

assessed using the Schoenfeld residual. To adjust for explanatory

confounding variables that were prognostic in the univariate

analysis, Cox multivariate analysis was conducted. A hypoxia-

related risk score was established by including normalized gene

expression values weighted by their Least Absolute Shrinkage and

Selection Operator (LASSO) Cox coefficients (30). All statistical

analyses were performed using R software, and statistical

significance was considered at a P-value < 0.05.
Results

Consensus clustering reveals two hypoxia
clusters in glioma

To identify the heterogeneity of hypoxia within gliomas, 240

hypoxia-related genes were obtained from MSigDB for clustering

analysis. We conducted univariate Cox regression and residual

analyses to identify genes with prognostic significance, resulting

in a total of 86 candidate genes for subsequent clustering analysis in

both TCGA and CGGA cohorts (Figure 1A, Supplementary Table).

Using an unsupervised consensus clustering analysis, we identified

two clusters, C1 and C2 (Figure 1B). Survival analysis revealed that

patients with the C1 subtype were likely to have worse outcomes

than those with the C2 subtype (P <0.0001, log-rank test,

Figure 1C). Furthermore, we performed PCA to confirm the

assignment of clusters and robust differences in expression

patterns between the two clusters (Figure 1D).
Identification of differentially expressed
genes and functional analysis

We performed differential analysis using C1 as the experimental

group. Based on the cutoff criteria of |log2 (fold change) | >1.0 and

FDR <0.01 using R package “DESeq2”, we identified a total of

10,482 differentially expressed genes (7,622 upregulated and 2,860

downregulated), as shown in the volcano plot (Figure 2A). To

explore the functional status, we calculated KEGG signaling scores

using the GSVA method and ran a GSEA analysis for the

HALLMARKER pathways. Our results revealed that tumor

malignancy-related signaling pathways, such as angiogenesis,

epithelial–mesenchymal transition, and the cell cycle, were

enriched in C1. In contrast, gap and tight junctions showed lower

enrichment scores (Figure 2B). Furthermore, C1 exhibited higher

enrichment of the Janus Kinase/Signal Transducer and Activator of

Transcription (JAK-STAT), Tumor Necrosis Factor alpha/Nuclear

Factor kappa-light-chain-enhancer of activated B cells (NF-kB),
and P53 pathways (Figures 2C-E). In summary, our findings suggest

that C1 glioma cells exhibit a higher degree of hypoxia and a more

significant malignant phenotype.
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Immune characteristics and hypoxia
clusters

Next, we utilized several previously reported immune-related

tools to decode the immune infiltration of the immune subtypes.

First, we used the CIBERSORTmethod to compare the composition

of infiltrating immune cells between the groups. C2 had a higher

percentage of monocytes and plasma cells compared to C1, whereas

C1 had a higher percentage of macrophages, including M0,M1 and

M2(Figure 3A). On the other hand, the ratio of CD4+ T cells and

CD8+ T cells in C1 is slightly higher than that in C2, although the

total amount is relatively low. Subsequently, we determined stromal
Frontiers in Oncology 04
and immune scores using the ESTIMATE algorithm. The C1 cluster

showed higher immune and stromal scores and lower tumor purity

than did cluster C2 (Figures 3B-D). Furthermore, we use the EaSIeR

package, a tool based on system tumor microenvironment

characteristics, to quantify immune cell composition and predict

different features of immune response through intracellular and

intercellular communication,We discovered that the C1 cluster

might have a higher immunotherapy response score compared to

cluster C2 (Figure 3E) (31). In addition, most classical checkpoint

genes, such as PDL1, CTLA4, CD86, HAVCR2, LGALS9, and CD48,

were highly expressed in C1 tumors (Figure 3F), indicating an

increased level of immunosuppression in these tumors.
FIGURE 1

Hypoxia gene profile of glioma yielded two clusters in the TCGA cohort. (A) Venn diagram showing 86 candidate gene. (B) Heatmap displaying
consensus clustering with the robust classification (k = 2). (C) Survival analysis of C1 and C2 based on OS. The P-value is calculated by the log-rank
test between clusters. (D) Principal component analysis (PCA) of two clusters using whole transcriptome data.
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Genomic alterations of hypoxia clusters

It has been reported that tumor genomic mutations correlate

with oxygen supply levels (32, 33). We analyzed the differences in

gene mutations between the two clusters and specifically looked at

the top 20 genes with different mutation frequencies in gliomas. C2

showed significantly higher frequencies of IDH1 and ATRX (93%

and 40%, respectively) than did C1 (25% and 23%, respectively).

The mutation rate of TP53 in C1 was similar to that in C2 (43%–

48%) (Figures 4A, B). In addition, there was significant

heterogeneity in the CNV profiles between the two clusters. C1

had more amplified and deleted variant samples as well as a higher
Frontiers in Oncology 05
tumor mutational burden (TMB) than did C2 (Figures 4C-E). These

results indicate that gene mutations may be associated with the

hypoxic cluster phenotype.
Construction of the prognostic model

To refine prognostic biomarkers from the initial 86 hypoxia-

related genes, we employed a multi-step filtering approach. First,

genes were subjected to univariate Cox proportional hazards

regression (P < 0.05), followed by multivariate Cox regression and

Schoenfeld’s residuals test (P > 0.05 for proportionality
FIGURE 2

Functional insights of distinct hypoxia clusters in glioma. (A) Volcano plots showing genes that are differentially expressed in C1 or C2 samples. Red
dots indicate genes upregulated in C1; blue dots indicate genes upregulated in C2. (B) Comparison of KEGG functions scores(calculated by GSVA
analyze) between C1 and C2 (the color of the squares indicates the high and low average scores of all samples within each cluster). (C-E) GSEA
analyses of HALLMARK gene set between C1 and C2, including JAK-STAT pathway, NF-kb pathway and P53 signaling.
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assumption), yielding 60 candidate genes. Subsequently, a Least

Absolute Shrinkage and Selection Operator (LASSO) Cox

proportional hazards regression with 10-fold cross-validation was

applied to this candidate set to mitigate overfitting and identify core

prognostic features. The optimal penalization coefficient lambda

(lambda.min= –2.7894) minimized the cross-validation error,

resulting in a 9-gene prognostic signature (ANXA5, DDIT3,

FABP5, LOX, PLAUR, SLC16A1, SLC20A1, TBPL1, and TFRC).

Their prognostic significance was statistically meaningful and

consistent with the PH assumption, and they were also free from

multicollinearity (Figures 5A–C). A prognostic index was calculated

for all cancer samples using the following formula: risk score =

ANXA5×0.15648040+DDIT3×0.01273471+FABP5×0.21023267
Frontiers in Oncology 06
+LOX×0.0112542+PLAUR×0.22763644+SLC16A1×0.02450256

+SLC20A1×0.10289532+TBPL1×-0.01552882+TFRC×0.1555086.

In themultivariate Cox proportional hazards analysis (Table 1), the

riskScore was identified as an independent prognostic biomarker (HR

= 1.92, 95% CI = 1.69–2.19, p <0.001). To improve prognostic

prediction in patients with glioma, we developed a nomogram by

integrating three independent predictors – risk score, age, and grade –

into a multivariate Cox regression model. We evaluated and validated

this nomogram using data from TCGA, CGGA_325, and CGGA_301

databases. The nomogram generated a score that predicted the 1-, 3-,

and 5-year overall survival (OS) rates for individual patients

(Figure 5D). The performance of the nomogram in predicting

patient OS was evaluated using a calibration plot, which
frontiersin.o
FIGURE 3

Investigation of the immunologic intertumoral heterogeneity. (A) Relative proportion of 22 infiltrating immune cells estimated by CIBERSORT
algorism between C1 and C2. (B-D). Comparison of immune, stromal, and tumor purity scores from ESTIMATE for C1 and C2. (E) Immune therapy
response scores(calculated by EaSIeR algorism) between C1 and C2. (F) Heatmap displaying the average expression levels of inhibitive checkpoint
genes. *P < 0.05; **P < 0.01;***P < 0.001.
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demonstrated that it accurately predicted patient survival according to

an ideal model (Figure 5E). The concordance indices for predicting OS

with the nomogram model were 0.857, 0.775, and 0.724 in TCGA,

CGGA_325, and CGGA_301 cohorts, respectively (Figure 5F),
Frontiers in Oncology 07
indicating good predictive accuracy. Furthermore, for the 1- to 5-

year OS prediction, the time-dependent receiver operating

characteristic curve demonstrated excellent predictive performance

(area under the curve >0.7) across all three cohorts (Figure 5G).
FIGURE 4

Comparison of genomic alterations between C1 and C2. (A, B) The top 20 mutated genes in glioma between C1 and C2. The colors of rectangles in
the body of the heatmap indicate different types of somatic mutations. (C-E) The number of mutations and copy number aberrations including
tumor mutation burdens, amplifications and deletions *P < 0.05; **P < 0.01;***P < 0.001.
TABLE 1 Univariate and multivariate Cox regression analyses of riskScore with WHO grade, age, and sex.

Variables

Univariable cox Multivariable cox

Hazard ratio
Lower
.95% CI

Upper
.95% CI

P. value Hazard ratio
Lower
.95% CI

Upper
.95% CI

P. value

riskScore 1.92 1.69 2.19 p<0.001 1.39 1.19 1.63 p<0.001

Age ≤ 42 vs > 43 0.52 0.40 0.68 p<0.001 0.96 0.72 1.28 p=0.776

Grade II vs III 3.65 2.38 5.60 p<0.001 3.18 2.06 4.92 p<0.001

Grade IV vs III 8.97 6.03 13.36 p<0.001 6.17 3.96 9.61 p<0.001

Gender 0.93 0.71 1.22 p=0.602
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FIGURE 5

Construction of the hypoxia-associated prognostic model. (A, B) Partial likelihood deviance for the LASSO regression and Lasso regression analysis.
(C) Forest plot for nine robust candidate genes. (D). Nomogram obtained using multivariate Cox regression analysis for predicting the proportion of
patients with OS. (E) Plots depicting the calibration of the model in terms of the agreement between the predicted and observed OS. The model
performance is shown in the plot relative to the 45-degree line, which represents a perfect prediction. (F) Concordance indices (C-index) of the
nomogram-based signature in TCGA, CGGA_325, and CGGA301 datasets. (G) ROC curve AUC plotted for different durations of OS for nomogram-
based signatures in TCGA, CGGA_325, and CGGA301 datasets.
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Landscape of riskScore associations:
clinical subgroups, functional activities, and
metabolic signatures

Next, we analyzed the relationship between risk score

and clinical parameters. As shown in Figure 6A, the risk score
Frontiers in Oncology 09
of the majority of the C1 cluster was higher than that of the C2

cluster. Additionally, there was a negative correlation between the

risk score and the Proneural score of glioblastoma (r = -0.4, p

<0.001), whereas a positive correlation was observed with the

mesenchymal score (r = 0.33, p <0.001) Figures 6B, C. Moreover,

the risk score was higher in patients with GBM, World Health
FIGURE 6

Relationship between clinical features of gliomas and nomogram-based signature. (A) Distribution of riskScore and hypoxia-related clusters.
(B, C) The correlation between riskScore and proneural and mesenchymal scores. (D-G) Boxplot indicating riskScore in different histological type,
WHO grades, IDH-1 with 1p19q status, and MGMT promoter methylation from TCGA dataset. (H) Correlations of the riskScore with different
metabolism marker gene expression, the color of the scatter points represents the significance of the Pearson correlation analysis, with red
indicating a positive correlation, blue indicating a negative correlation, and gray indicating no correlation. *P < 0.05; **P < 0.01;***P < 0.001.
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Organization grade IV, wild-type IDH-1, and non-methylated

MGMT promoter Figures 6D–G.

Hypoxia can also alter the expression of genes involved in

energy metabolism, leading to changes in protein and enzyme

levels. To identify differences in energy metabolism, we examined

seven central metabolic pathways: glycolysis, tricarboxylic acid

cycle, oxidative phosphorylation, lipid, and glutaminolysis. As

shown in Figure 6H, most markers of glycolysis and oxidative

phosphorylation were positively correlated with the risk score (r

>0.2, P <0.001). However, further studies are required to investigate

the global effects of hypoxia on metabolism.
Identification of hub genes through
WGCNA analysis

Weighted gene co-expression network analysis (WGCNA) was

performed to identify hypoxia-regulated hub genes using
Frontiers in Oncology 10
transcriptomic data from the TCGA samples (n=661 samples).

After quality control and normalization, 19,583 protein-coding

genes were retained for network construction. A soft thresholding

power of b=10 was selected to achieve scale-free topology (scale-free
fit index >0.8);. Hierarchical clustering with dynamic tree cutting

(minModuleSize = 50) identified 22 distinct co-expression modules.

Among these modules, the blue one was found to have the highest

correlation with hypoxia (r = 0.92, p <0.0001) (Figures 7A, B).

Biological process analysis revealed that genes in the blue module

were enriched in wound healing, angiogenesis regulation, and

histone modification. Furthermore, KEGG pathway analysis

demonstrated that the genes were associated with the JAK-STAT

and NF-kB signaling pathways (Figure 7C). Finally, after

identifying hub genes with a high degree of connectivity in the

blue module, we found that CLCF1, PLAUR, SOCS3, and LIF were

the top four hub genes (Figure 7D). HIF-1 is the most important

transcription factor that regulates gene expression under hypoxic

conditions. To investigate its role in the glioma cell lines LN229 and
FIGURE 7

Identification of four hub genes of Hypoxia cluster. (A, B) WGCNA analysis identified the blue module as the highest correlated module with hypoxia
(r = 0.92, p <0.001). (C) GO and KEGG analysis of blue module genes. (D) Hub genes of blue modules filtered by degree of connectivity. *P < 0.05.
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U118, we exposed the cells to prolonged hypoxic conditions for 48 h

and analyzed the expression of several hub genes using western

blotting. Our results, shown in Figure 8, demonstrate that the

expression of HIF-1, PLAUR, SOCS3 and LIF was significantly

upregulated under prolonged hypoxic conditions. The above

evidence proves that hub genes can be modulated under low

levels of oxygen by HIF-1.
Frontiers in Oncology 11
Discussion

Tumor hypoxia, characterized by an insufficient supply of

oxygen to solid tumors, plays a pivotal role in the development

and progression of cancer. This is due to an imbalance between

the oxygen demand and supply caused by the rapid growth of

tumors. Hypoxia triggers diverse biological processes, including
FIGURE 8

Western blotting validation of HIF-1 and hub genes in glioma cell lines under hypoxic conditions. (A, B) Western blotting showing that the protein
expressions of HIF-1, PLAUR, SOCS3, and LIF in U118MGand LN229 celllines are upregulated under hypoxic conditions. (C-J) Using Image J to
perform semi-quantification of the PLAUR, SOCS3, and LIF protein bands in Figure 8, calculating the relative expression of each protein in the cells
based on the quantitative values. All data were analyzed using the t-test and were shown as the mean ± SD (two independent experiments). *P <
0.05; **P < 0.01;***P < 0.001.
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metabolic alterations, angiogenesis, and metastasis, thereby

contributing to treatment resistance and unfavorable patient

outcomes (34–36). Notably, extensive research has highlighted

the profound effect of hypoxia on cancer cells and its potential as

an attractive therapeutic target. Moreover, several hypoxia gene

signatures have been developed to predict the prognosis of various

cancer types, including head and neck, breast, prostate, and

bladder cancers. Nonetheless, prior studies have encountered

limitations, such as oversimplification of hypoxia gene networks

and insufficient integration with conventional prognostic systems.

Nevertheless, the significance of tumor hypoxia in prognosis and

its potential as a therapeutic target continues to be actively

investigated, with substantial promise for enhancing cancer

treatment outcomes.

This study comprehensively explored the heterogeneity and

molecular characteristics of hypoxic clusters in gliomas. Consensus

clustering analysis revealed two distinct clusters, C1 and C2, with

C1 being associated with a more aggressive phenotype and poorer

prognosis. Differential expression analysis identified genes linked

to tumor malignancy, angiogenesis, and epithelial–mesenchymal

transition that were upregulated in C1. Immune infiltration

analysis showed differences in immune cell composition,

indicating higher immunosuppression in C1. Genomic analysis

revealed distinct mutation patterns, with C2 exhibiting a higher

frequency of IDH1 and ATRX mutations. The prognostic model

constructed using LASSO regression and nomogram integration

yielded accurate survival predictions. Energy metabolism analysis

revealed correlations between hypoxia and glycolysis/oxidative

phosphorylation markers. WGCNA identified the blue module as

being highly correlated with hypoxia and enriched in wound

healing, angiogenesis regulation, and histone modification

processes. Hub genes within the blue module (CLCF1, PLAUR,

SOCS3, and LIF) were found to be modulated by HIF-1 under

hypoxic conditions. Overal l , this assay enhances our

understanding of hypoxic cluster heterogeneity and the

molecular characteristics of gliomas. These findings may have

implications for targeted therapies and for improving

patient outcomes.

Our research focused on investigating the involvement of hub

genes in tumor hypoxia, particularly in gliomas. Although these hub

genes have been extensively studied in various cancers, their roles in

tumor hypoxia remain largely unexplored. For instance, CLCF1

expression has been identified as an independent prognostic factor

and a potential target for immunotherapy in hepatocellular

carcinoma (37). Additionally, PLAUR promoted anoikis

resistance and metastasis in cholangiocarcinoma (34). LIF, a

pleiotropic cytokine with diverse roles in different systems, has

been implicated in hematopoietic differentiation and has recently

emerged as a biomarker and therapeutic target in pancreatic ductal

adenocarcinoma (38–40). However, it is important to note that the

specific biological functions of these hub genes in the context of

tumor hypoxia still require further investigation. Further studies are

needed to elucidate the precise roles and mechanisms of tumor

hypoxia, potentially opening new avenues for therapeutic

interventions and biomarker development.
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Conclusion

In summary, our study introduces a novel hypoxia classification

for gliomas, encompassing two well-defined clusters exhibiting

distinct prognoses, somatic variations, immune infiltration, and

metabolic phenotypes. Our model identified three hub genes that

were significantly upregulated under hypoxic conditions.

Additional in vitro and in vivo experiments are required to gain a

comprehensive understanding of the underlying molecular

mechanisms driving these findings. These studies will provide

valuable insights and shed light on the intricate pathways and

processes involved in the observed phenomena.
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et al. Prognostic impact of tumor location and gene expression profile in
Frontiers in Oncology 14
sporadic desmoid tumor. Eur J Cancer. (2024) 209. doi: 10.1016/j.ejca.2024.
114270

40. Jianming W, Chun-Yuan C, Xue Y, Fan Z, Juan L, Zhaohui F, et al. Leukemia
inhibitory factor, a double-edged sword with therapeutic implications in human
diseases. Mol Ther. (2022) 31. doi: 10.1016/j.ymthe.2022.12.016
frontiersin.org

https://doi.org/10.3350/cmh.2024.0895
https://doi.org/10.1016/j.ejca.2024.114270
https://doi.org/10.1016/j.ejca.2024.114270
https://doi.org/10.1016/j.ymthe.2022.12.016
https://doi.org/10.3389/fonc.2025.1605949
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Characterization of hypoxia-related molecular clusters and prognostic riskScore for glioma
	Introduction
	Materials and methods
	Patients and samples
	Identification of hypoxia cluster
	Differentially expressed gene analysis and functional enrichment
	Estimation of immune infiltration and tumor purity
	Somatic mutation identification
	Weighted co-expression network
	Cell lines and culture
	Western blotting
	Bioinformatic and statistical analyses

	Results
	Consensus clustering reveals two hypoxia clusters in glioma
	Identification of differentially expressed genes and functional analysis
	Immune characteristics and hypoxia clusters
	Genomic alterations of hypoxia clusters
	Construction of the prognostic model
	Landscape of riskScore associations: clinical subgroups, functional activities, and metabolic signatures
	Identification of hub genes through WGCNA analysis

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


