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SPP1+ tumor-associated
macrophages define a high-risk
subgroup and inform
personalized therapy in
hepatocellular carcinoma
Wei-Xuan Xu1†, Ya-Mei Ye2†, Jia-Lin Chen1, Xin-Ying Guo1,
Chen Li1, Juan Luo1, Lin-Bin Lu1* and Xiong Chen1*

1Department of Oncology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou,
Fujian, China, 2Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical
University, Fuzhou, Fujian, China
Introduction: Recently, contrary to attacking cancer cells, the tumor

microenvironment (TME) with genomic stability and vulnerable nature has

emerged as promising therapeutic targets in hepatocellular carcinoma (HCC).

Within TME ecosystem, tumor-associated macrophages (TAMs) play a pivotal

role in tumor evasion and progression of HCC. However, their clinical and

therapeutic implications remain unexplored.

Methods: Utilizing a large-scale sc-RNA seq dataset, a landscape of HCC cellular

ecosystem was depicted. Based on previous literature, an effectively differential

TAMs subset classification was identified. Gene variations was extracted through

trajectory analysis and then unsupervised clustering was conducted within RNA-

seq data. Subsequently, survival analysis, specific pathway enrichment as well as

hub regulatory network analysis were performed. Additionally, the immune cell

infiltration and genomic variations were evaluated between clusters. Drug

sensitivity and underlying therapeutic molecular were also explored. Through

multiple immunofluorescence, our findings were verified.

Results: Herein, integrating single-cell RNA sequencing (scRNA-seq) and bulk

RNA-seq data, we established a novel TAM classification system based on

mutually exclusive SPP1 and FOLR2 signatures. According to the TAM

trajectory genes, unsupervised clustering stratified HCC into three distinct

clusters. Cluster 3 (C3), which is characterized by metabolic dysregulation and

immunosuppressive TME, exhibited the poorest prognosis among the three

groups. Hub network analysis of C3 further indicated its characteristic

dysregulation of liver-specific metabolism. SPP1 was identified as a key

signature of C3, which contributed to suppressing the infiltration of CD8+ T

cells. Therapeutic evaluation revealed that C3 were sensitive to chemotherapy

and tyrosine kinase inhibitors, while those C1 and C2 were more suitable for

immunotherapy. Drug screening identified potential therapeutic compounds for

each cluster.
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Conclusion: This study redefines the heterogeneity of TAMs beyond the M1/M2

paradigm, linking the TAMs trajectory genes to HCC patient stratification. SPP1

blockade emerged as a strategy for counteracting immunosuppression, and

cluster-specific therapies may optimize the management of HCC.
KEYWORDS

hepatocellular carcinoma, tumor-associated macrophages, single-cell RNA-seq,
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1 Introduction

Liver cancer has the sixth highest incidence and is ranked as the

third leading cause of malignant mortality worldwide (1, 2), with

hepatocellular carcinoma (HCC) accounting for 85%–90% (3, 4).

According to the patients’ tumor stage, liver function, and

performance status, a wide range of treatment options, including

organ transplantation, surgical resection, radiation, and

transarterial and systemic therapies, are alternatives for HCC (4,

5). With the approval of new agents as first- and second-line

therapies, in particular the combination of atezolizumab with

bevacizumab (T+A) as frontline standard care, the survival

outcomes are superior than ever before (6, 7). Nevertheless, the

prognosis remains dismal. Owing to the discouraging objective

response rate, therapy resistance, and the high relapse probability,

the overall 5-year survival rate is limited to 18% (8–10). Moreover,

HCC displays high complexity and heterogeneity. Patients in the

same clinical stage can respond differently to the same therapy (5,

11). Although unprecedented efforts based on multi-omics have

been made for the molecular stratification of HCC, there is still a

lack of a simple classification deriving from a single variable or

molecular biomarker for effective clinical practice.
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Currently, contrary to directly attacking cancer cells, the tumor

microenvironment (TME) with genomic stability and vulnerable

nature has increasingly emerged as a promising therapeutic target

(12, 13). Among the cellular ecosystems of solid malignancy,

tumor-associated macrophages (TAMs) play a pivotal role in

governing cellular and molecular interactions, sustaining

hallmarks of cancer, shaping TMEs, and eventually mapping onto

clinical outcomes, as elucidated in studies (14, 15). Although the

conventional M1/M2 macrophage classification simply and

effectively defined the function and differentiation state of

macrophages in vitro (13, 16), accumulating evidence based on

single-cell RNA sequencing (scRNA-Seq) has challenged the

applicability of this dichotomy for complex macrophages in vivo,

particularly the TAMs (17, 18). Although multiple high resolutions

of TAM subsets have been defined by scRNA-seq, the question of

how to classify TAMs based on a relevant yet simple variable

remains unanswered. It is well known that SPP1 encodes

osteopontin (OPN), a phosphorylated glycoprotein regarded as a

key component for tumor cell evolution and microenvironment

reprogramming (19). Recently, SPP1+ macrophages have been

recognized in several types of tumors and tend to present the

malignant polarity of TAMs. The intratumoral cellular programs of

SPP1+ TAMs, including promoting angiogenesis, enhancing tumor

cell invasion, and resisting immune checkpoint blockade (ICB)

therapy, have been reported (13, 14, 20–22). Nevertheless, how to

define the clinical phenotypes and guide population-oriented

therapy for HCC using SPP1+ TAM signatures has received

little attention. There is an urgent need for the simple

stratification of patients with HCC and the promotion of subset-

targeted interventions.

scRNA-seq is a powerful technology for characterizing the

heterogeneity of complex biological systems (23, 24). As a

counterpart, the traditional RNA-seq approach, which considers

the tumor but not the cell as a unit, obtains the average gene

expression and individual phenotype (25). Trajectory analysis is

widely used for cell differentiation inference and transcriptome

dynamic process decoding (26). In particular, compared with

superficial differential expression gene analysis that is conducted

at a cluster resolution, trajectory analysis provides an effective way

to explore intricate cell-to-cell variations at a single-cell resolution

(13, 27). Herein, we depict a landscape of the cellular ecosystem of
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HCC utilizing a large-scale scRNA-seq dataset and identify a novel

differential TAM subset classification for SPP1+ and FOLR2+

macrophages. Through trajectory analysis, we extract the

underlying gene variations and define the TAM-based molecular

classification of HCC, termed subgroups C1, C2, and C3, within the

RNA-seq data. Furthermore, we explore the survival analysis,

biological characteristics, hub regulatory gene network, and the

genome variations between these three subgroups. We also evaluate

the drug sensitivity and identify the underlying therapeutic

molecules for each cluster. Accordingly, subtype-specific

therapeutic strategies are proposed.
2 Materials and methods

2.1 Data acquisition and processing

A total of six independent cohorts were collected and processed in

this study. The HCC scRNA-seq dataset GSE149614 was downloaded

from the Gene Expression Omnibus (GEO). Excluding eight normal

liver tissues (NLTs), we retained 10 primary tumor (PT), two portal

vein tumor thrombus (PVTT), and one metastatic lymph node

(MLN) samples (28). The Cancer Genome Atlas liver cancer cohort

(TCGA-LIHC) and corresponding phenotype information, including

335 tumor samples and 89 normal samples, were retrieved from

TCGA (https://xenabrowser.net/). A total of 221 RNA expression

profiles of HCC from the GSE14520 cohort and 95 profiles from the

GSE76427 cohort were obtained from the GEO database (29, 30).

The International Cancer Genome Consortium—Liver Cancer–

RIKEN Japan (ICGC-LIRI) and related phenotype information

were downloaded from HCCDB v2.0 (http://lifeome.net:809/

#/home) (31). In addition, the paraffin-embedded liver cancer

tissue samples during general surgery were collected in the

Mengchao Hepatobiliary Hospital of Fujian Medical University

from January 2024 to December 2024. The study was conducted

in accordance with the Declaration of Helsinki, and the study

protocol was approved by the Institutional Review Board of the

Mengchao Hepatobiliary Hospital of Fujian Medical University on

November 3, 2023.
2.2 Single-cell RNA sequencing

The Seurat (version 4.4.0) package was used for processing and

further analysis of data (32). Single-cell gene expression profiles were

filtered using the criteria of a minimum threshold of 200 genes and a

maximum threshold of 20% mitochondria genes per cell. The top

2,000 high variant genes were identified and scaled with the ScaleData

function. To eliminate batch effects, all cells from the PT, PVTT, and

MLN were integrated using Harmony (33, 34). The parameter setting

in the Harmony algorithm was as follows: group.by.vars =

“orig.ident”, max.iter.harmony = 10, lamba = 1. Using the

RunPCA, FindNeighbor, and FindClusters functions, principal

component analysis (PCA) linear dimensionality reduction and

cluster visualization were performed. Cell clusters were annotated
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based on the cell lineage-specific genes (20, 28, 35), such as CD3D,

CD3E, and CD3G for T/natural killer (NK) cells; PECAM1, DCN, and

TM4SF1 for endothelial cells; ACTA2, DCN, and COL1A2 for

fibroblasts; MS4A1, CD79A, and MZB1 for B/plasma cells; LYZ,

CD14, and CD68 for myeloid cells; and ALB, SERPINA1, and KRT8

for hepatocytes. Sub-cluster analysis of myeloid cells was conducted

with the SingleR package. According to previous documents, two

different TAM clusters were identified based on specific cell type

genes, including SPP1+ TAMs (SPP1, TREM2, FABP5, and NUPR1)

and FOLR2+ TAMs (CD163, FOLR2, C1QB, and SEPP1) (13). These

annotations were confirmed using the random forest algorithm. The

“FindMarkers” function in Seurat was used to determine the

differentially expressed genes (DEGs) between the two clusters. The

non-parametric Wilcoxon rank-sum test was used to obtain p-values

for comparison. The Monocle2 package was utilized to conduct

pseudotime trajectory analysis of the TAMs for cell-to-cell variant

demonstration (36). Genes along the trajectory were obtained and

were enrolled in subsequent patient classification.
2.3 Identification of TAM-related subtypes

Non-negative matrix factorization (NMF) is an algorithm that

can reduce high-dimensional datasets of tens of thousands of genes

into a handful of metagenes, which are biologically easier to

interpret (37). NMF has been widely used in various fields such

as image analysis, speech recognition, auto signal processing, and

bioinformatics (38). Using univariate Cox regression, prognosis-

related genes were filtered from the trajectory genes. Subsequently,

the consensus matrix of the filtered genes and clustering were

constructed with the NMF algorithm. The parameter settings in

the NMF algorithm were as follows: factorization ranks = 2–10,

methods = “lee,” number of runs = 100 (38). The optimal rank was

determined according to the cophenetic coefficient, before which a

sharp decrease was observed (38). The silhouette graphic was used

to qualify the clustering robustness. Specifically, individual

silhouette statistics ranges from −1 to +1, where a high value

indicates that the object is well matched to its own cluster and

poorly matched to neighboring clusters (39).
2.4 Exploration of cluster-specific
biological characteristics

Analysis of the DEGs between groups was performed using the

DESeq2 package. The criteria log2 |foldchange| > 2 and p < 0.01 were

used to filter genes. With the sorted expression profile, gene set

enrichment analysis (GSEA) was conducted to elucidate the biological

characteristics of distinct groups. The C2.cp.kegg.v5.2.symbols.gmt from

the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

database was selected as the reference gene set. Hub gene-associated

functional pathway enrichment was performed using the Gene Ontology

(GO) pathways.

To evaluate the relative abundance of SPP1+ and FOLR2+

macrophages within the tumor and adjacent normal tissues, the
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DEGs [filtered using log2 (foldchange) > 0.585 and p < 0.01] in

these two cell types were used as signature gene sets. Thereafter,

gene set variation analysis (GSVA) (40) was applied to calculate the

GSVA scores of the SPP1+ and FOLR2+ macrophages in TCGA

and other independent datasets. Moreover, to explore the specific

functional pathways of distinct macrophage clusters, the GSEA

algorithm was performed using the R package clusterProfiler. The

DEGs were determined using the “FindMarkers” function in the R

package Seurat as described above.
2.5 Weighted gene co-expression network
analysis

Weighted gene co-expression network analysis (WGCNA) is

commonly used to reveal the patterns of gene expression,

summarizing the interconnections between modules and clinical

traits, as well as identifying the candidate biomarkers or therapeutic

targets (41, 42). In this study, cluster-associated regulated genes

were investigated using the WGCNA package. Specifically, genes

with the top 25% variance were selected and outlier samples were

removed. By choosing an optimal soft threshold b (b = 5), the

correlation matrix was converted into an adjacent matrix, and a

topological overlap matrix (TOM) was subsequently formed.

Utilizing average linkage hierarchical clustering, the 1 − TOM

dissimilarity metric categorized genes with similar expression into

gene modules. With the dynamic tree cut function, gene modules

with diverse colors were determined. Finally, based on the

relationship between modules and clinical traits, cluster-related

modules with the tightest correlation were identified and

signature genes were accordingly extracted.
2.6 Hub gene screening and visualization

The STRING website (https://cn.string-db.org/) is widely used

for exploring protein interaction networks. Overlapping genes

between the signature genes and the DEGs [filtered using log2

|foldchange| > 2 and p < 0.01] were submitted to the STRING

website, and then the relative interaction network was retrieved,

which was further imported into the Cytoscape software for

visualization. The maximal clique centrality (MCC) algorithm in

the cytohubba plug-in was used to obtain the top 10 ranked nodes

as hub genes. Another plug-in, molecular complex detection

(MCODE), was used to screen the hub modules (degree = 2, node

score cutoff = 0.2, k-core = 2, max.depth = 100). A Venn diagram

was used to capture an overlap of the hub nodes that were

determined by the two algorithms mentioned above.
2.7 Immune cell infiltration analysis

xCell is a gene signature-based tool that utilizes a large

compendium of publicly available transcriptomic data to infer the

enrichment scores of 64 immune and stromal cell types (43). Using
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the xCell algorithm, the abundance of the adaptive immunity cells

within each sample was quantified. Comparative analyses were

performed to assess differential immune cell infiltration patterns

across distinct clusters. Correlation analyses were conducted to

investigate the relationship between the abundance of the adaptive

immune cells and the expression levels of the cluster-specific

signature genes.
2.8 Multiplexed immunofluorescence
staining

Tumor tissues were first fixed in 10% formalin, embedded in

paraffin, and then serially sectioned to 4-µm thickness. The

following primary antibodies (all from ServiceBio, Wuhan, China)

were used: CD8 (dilution 1:2,000), CD68 (dilution 1:5,000), and

SPP1 (dilution 1:5,000). Subsequently, the samples were incubated

with primary antibodies, followed by secondary antibodies. Double

staining of CD8 with SPP1 and CD68 with SPP1 was mutually

conducted. 4′,6-Diamidino-2-phenylindole (DAPI) was used for

visualization of the cell nuclei (ServiceBio, Wuhan, China). A Nikon

ECLIPSE C1 microscope was used for all imaging.
2.9 Somatic mutation analysis between
clusters

The maftools package was utilized to identify and depict the top

10 somatic mutations among different clusters, including single

nucleotide polymorphisms (SNPs), insertions and deletions

(INDELs), the tumor mutation burden (TMB), and the mutation

frequency (44).
2.10 Drug response prediction and
potential therapeutic agent identification

Tumor Immune Dysfunction and Exclusion (TIDE) is

commonly used to predict the immune-escape probability to

comprehensively evaluate the T-cell infiltration and the T-cell

function status. The TIDE score is available through the online

algorithm (http://tide.dfci.harvard.edu/). In general, higher TIDE

scores are associated with a poorer immune checkpoint inhibitor

(ICI) therapeutic effect (45). The oncoPredict is an R package used

to predict drug response and potential biomarkers based on cell line

screening data (46). Importing the training matrices (GDSC and

CTRP) from the website (https://osf.io/c6tfx), the sensitivity of the

different clusters to chemotherapeutic or targeted drugs was

predicted. The connectivity map (CMap) is a powerful tool based

on pattern-matching algorithms for the identification of potential

therapeutic compounds for specific populations (http://clue.io/)

(47). The overlapping genes between the signature genes and the

DEGs [filtered using log2 |foldchange| > 2 and p < 0.01) were

selected and then the similarity of their expression profiles

compared using the CMap database. Finally, the top 10
frontiersin.org
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compounds from each cluster were obtained according to the

ascending negative scores.
2.11 Statistical analysis

The Kruskal–Wallis test was used to compare the DEGs among

the three groups. The survival probability between clusters was

compared with a log-rank test. The Kaplan–Meier and Cox

regression analyses were performed with the survival R package.

Independent risk factors were identified using the multivariate Cox

proportional hazards regression model. All statistical analyses were

performed with R version 4.2.2.
3 Results

3.1 Single-cell transcriptomic atlas and
myeloid cell landscape of HCC

To depict the landscape of the global microenvironment of HCC,

single-cell transcriptomic analysis was performed on tumor sections

from 10 patients, including 10 PTs, two PVTTs, and one MLN

(Supplementary Table S1). After log-normalization and

dimensionality reduction, a total of 43,228 cell transcriptomes were

classified into 23 clusters (Figure 1A). According to the respective

canonical markers, six main cell types—hepatocytes, T/NK cells, B/

plasma cells, myeloid cells, fibroblasts, and endothelial cells—were

defined (Figures 1B, C; Supplementary Figures S1A–D; Table S2). To

further investigate the TAMs, a total of 8,038 myeloid cells were

filtered out and categorized into three subpopulations: macrophages,

monocytes, and dendritic cells (DCs) (Supplementary Figure S1F).

Significantly, beyond the conventional M1/M2 macrophage

dichotomy, two distinct macrophage phenotypes characterized by

SPP1+ macrophage and FOLR2+ macrophage signatures were

identified at the single-cell level. The t-distributed stochastic

neighbor embedding (tSNE) map was used to delineate the

segregated macrophage clusters, composed of the SPP1+ TAM and

FOLR2+ TAM subsets, which exhibited mutually exclusive and DEG

signatures (Figures 1D, E; Supplementary Figures S2F–H). These

subset annotations were confirmed by analysis of the DEGs

(Figure 1F) and the random forest algorithm (Supplementary Figure

S2I). SPP1 emerged as one of the top upregulated genes in SPP1+

TAMs, but was significantly downregulated in FOLR2+ TAMs.

Tumor samples were histologically accessed in order to gain insights

into the distribution of SPP1+macrophages in our cohort. Specifically,

both SPP1+ microphages (with co-localization of CD68 and SPP1)

and SPP1− macrophages (CD68+ only) were observed (Figure 1G).
3.2 Trajectory analysis revealed TAM
variations

Using the GSVA algorithm, SPP1+ macrophages were found to

be significantly increased in tumor tissues, while FOLR2+
Frontiers in Oncology 05
macrophages were enriched in adjacent normal tissues

(Figures 1H, I; Supplementary Figures S2A, B). It was further

observed that higher expression levels of SPP1 were remarkably

associated with shorter overall survival (OS) in independent HCC

cohorts (Figures 2A–D). Distinct functions of the two subtypes were

a l so revea led . SPP1+ macrophages highly expressed

metalloproteinases (e.g., MMP12), macrophage migration

inhibitory factor (e.g., MIF), and chemokines (e.g., CXCL2 and

CXCL3). On the other hand, FOLR2+ macrophages showed higher

expression of CD5L and the metabolism-associated genes (e.g.,

APOA2, APOA3, and AHSG) (Figure 1F). Functional analysis

showed that the chemokine signaling pathway, cytokine–cytokine

receptor interaction, glycolysis/gluconeogenesis, the IL-17 signaling

pathway, and the PPAR signaling pathway were enriched in SPP1+

macrophages, while complement and coagulation cascades,

cholesterol metabolism, and metabolism of xenobiotics by

cytochrome P450 were highly enriched in FOLR2+ macrophages

(Supplementary Figure S2C).

For in-depth exploration of the phenotypic dynamics of the

macrophages and their correlated clinical relevance, the Monocle

algorithm was applied, considering cells, not clusters, as a unit of

statistical replication (27). Notably, it was found that the SPP1

expression progressively accumulated along a pseudotime

trajectory, while the FOLR2 signature was predominantly

enriched in the early stage (Figures 2E–I). Within the trajectory,

molecules with similar dynamic trends were gathered and displayed

in a pseudotime heatmap. The genes along the trajectory were

extracted and two coherently regulated gene modules were

identified (Figure 2H). Notably, SPP1 was determined as one of

the main dynamic genes (Figure 2H; Supplementary Table S3; the

heatmap shows the top 50 trajectory genes).
3.3 Identification of the SPP1+ TAM-related
population

For more in-depth insights into the clinical phenotype changes

along with dynamic shifts of the macrophage subtypes, a non-

negative matrix was constructed according to the prognosis-

associated genes filtered from the trajectory genes (Supplementary

Table S4). For the sharpest decrease in coefficient observed before 4

in the cophenetic arrangement, 3 was determined as the optimal

rank (Figure 2J). Unsupervised clustering analysis of a total of 365

tumor patients within TCGA-LIHC determined three groups: 232

cases in cluster 1 (C1), 45 cases in cluster 2 (C2), and 88 cases in

cluster 3 (C3). Significant heterogeneity of the transcriptome was

observed between clusters (Figure 2K). The silhouette graphic

further provided proof the robustness of the stratification

(Figure 2L). In addition, survival analysis displayed that C1

yielded favorable OS, while C3 tended to have the poorest

prognosis. Using a multivariate Cox regression model, a C3

classification was determined to be an independent risk factor for

shorter survival, whereas C1 was deemed as a protective factor for

better outcomes (Figures 3A, B). Similarly, the bar graph illustrated

that C1 and C2 predominantly comprised patients in the early stage
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FIGURE 1

Single-cell transcriptomic atlas of the global microenvironment and myeloid cell landscape of HCC. (A, B) UMAP plot of a total of 23 clusters (A) and
six main cell types (B) from three tissue sites of 10 patients with HCC. (C) Dot plot showing the percentage of expressed cells and average
expression levels of the canonical markers among six major cell types. Circle sizes represent the percentage of cells within a cluster expressing a
gene. Color represents the average expression of each gene. (D, E) tSNE plots (D) and the mutually exclusive expression of the SPP1 and FOLR2
signatures (E) within myeloid cells. (F) Top 10 upregulated and downregulated genes of the two clusters. (G) mIHC staining determining the
distribution of SPP1+ macrophages. (H, I) Signature scores of SPP1+ macrophages (H) and FOLR2+ macrophages (I) between tumor and adjacent
normal tissues. HCC, hepatocellular carcinoma; UMAP, uniform manifold approximation and projection; tSNE, t-distributed stochastic neighbor
embedding; mIHC, multiplex immunohistochemistry.
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FIGURE 2

Trajectory analysis revealing variations in TAMs. (A–C) Plots of the Kaplan–Meier overall survival curves from TCGA-LIHC (A), GSE14520 (B), and
ICGC-LIRI (C) cohorts, grouped with high and low expression of SPP1. (D) Univariate analyses of SPP1 within the different datasets. (E) Pseudotime
trajectory showing the distribution of macrophages. (F) The SPP1 signature accumulated with the progress of pseudotime. (G) FOLR2 signature
enriched in the early trajectory stage. (H) Heatmap displaying the genes along with a dynamic trend. (I) Peak map showing the distribution of the
SPP1+ and FOLR2+ TAMs during the pseudotime transition. (J) Identification the SPP1+ TAM-related population. (J) Cophenetic curve revealing 3 as
the optimal rank. (K) Consensus matrix map of the NMF clustering of the HCC cases from the TCGA-LIHC cohort. (L) Silhouette plot validating the
robustness of the NMF cluster. TAMs, tumor-associated macrophages; NMF, non-negative matrix factorization; HCC, hepatocellular carcinoma;
TCGA-LIHC, The Cancer Genome Atlas—Liver Hepatocellular Carcinoma; ICGC-LIRI, International Cancer Genome Consortium—Liver Cancer–
RIKEN Japan.
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FIGURE 3

Exploration of the SPP1+ TAM-related population. (A) Kaplan–Meier curves of the overall survival of three subgroups in TCGA-LIHC. (B) Forest plot
of the survival-related factors. (C) Bar plot displaying the correlation between HCC stage and cluster stratification. (D) GSEA showing the enriched
signaling pathways of each cluster. (E) The Dendrogram displaying the gene modules with diverse colors. (F) Correlation analysis of module
eigengenes and molecular phenotypes. TCGA-LIHC, The Cancer Genome Atlas—Liver Hepatocellular Carcinoma; HCC, hepatocellular carcinoma;
GSEA, gene set enrichment analysis.
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(I/II), while the C3 stratification was significantly associated with

patients in the advanced stage (III/IV) (p < 0.05; Figure 3C),

suggesting potential tumor progression from the C1 to the C3

phenotype. Moreover, the underlying biological characteristics were

delineated between clusters using GSEA. Consistent with the

FOLR2+ macrophage signature, C1 exhibited activation of the

metabolic pathways including fatty acid degradation (FAD),

amino acid metabolism (glycine, serine, and threonine

metabolism), and metabolism of xenobiotics by cytochrome P450

(Figure 3D). Conversely, these pathways were significantly

suppressed in C3. Notably, previous research revealed FAD to be

inhibited in multiple cancers and correlated with increased fatty

contents in tumors, which impaired the metabolism of fatty acids

(FAs) and promoted the pro-tumoral phenotype polarization of

TAMs. Although the amino acid pathway is typically aberrantly

activated during oncogenesis, its opposite dysregulation may

suppress T-cell proliferation and antitumor immunity. For C3,

several significantly upregulated pathways, including ECM–

receptor interaction and the IL-17 signaling pathway, were

noticeably enriched, similarly to the functional profile of SPP1+

macrophages (Supplementary Figure S2C). Overall, C1 was

characterized as a metabolism-enhanced, FOLR2+ macrophage-

related HCC subtype, while C3 was characterized as a metabolism-

dysregulated, SPP1+ macrophage-associated HCC subtype.

Metabolic alterations and TME remodeling underlie the observed

clinical heterogeneity.
3.4 Investigation of the hub molecule
network embedded in the SPP1+ TAM-
related cluster

To explore the molecular characteristics of the SPP1+

macrophage-associated subtype, WGCNA was performed. After

filtering qualified genes, stratifying all samples, defining an optimal

soft threshold b (b = 5), and transforming the matrix, a total of seven

co-expression modules were identified (Figure 3E; Supplementary

Figures S3A, B). The correlations between the gene modules and the

clinical traits were determined using a module–trait relationship

heatmap (Figure 3F; Supplementary Figure S3C). The turquoise

module exhibited the strongest association with C3. The correlation

coefficient between module membership and gene significance

validated the robustness of the characteristic genes (Figure 4A).

Furthermore, the hub genes within the turquoise module were used

to construct a gene interaction network using the STRING website

(Figure 4B; Supplementary Table S5). Using the Maximal Clique

Centrality (MCC) and Molecular Complex Detection (MCODE)

algorithms, hub genes and the core module of the interaction

network were identified. Remarkably, a significant overlap was

observed between the nodes of the core module and the top 10

hub genes (Figures 4C, D; Supplementary Table S6), indicating their

critical role in this network.

Furthermore, the expression patterns of these hub genes were

determined in tumor versus paraneoplastic tissues, as well as across

C3 and the other subgroups. Specifically, UGT1A10 exhibited a
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markedly elevated expression in tumor tissues, while the remaining

nine hub genes (ADH1A, ADH1B, ADH1C, ADH4, SLC10A1,

CYP2C9, GPT, HRG, and PON1) showed significantly reduced

expression levels in cancerous tissues compared with their

adjacent normal counterparts (Supplementary Figure S3E). A

similar trend in expression was also observed when comparing

the C3 subgroup with the other subgroups, hinting at the differential

expression patterns of these genes in tumor context (Supplementary

Figure S4A). Based on the expression patterns in cancerous and

non-cancerous tissues, the survival analysis revealed that the

decreased expression of nine hub genes—ADH1A, ADH1B,

ADH1C, ADH4, SLC10A1, CYP2C9, GPT, HRG, and PON1—was

significantly associated with worse prognostic outcomes. The

elevated expression of UGT1A10 was correlated with shorter

survival time (Figure 4E). Data from the Human Protein Atlas

revealed that most of the hub genes (i.e., ADH1A, ADH1B, ADH1C,

ADH4, CYP2C9, GPT, HRG, and PON1) belong to the liver-specific

enzyme family that is involved in metabolizing various xenobiotic

compounds, including alcohol, retinol aliphatic alcohols,

hydroxysteroids, and lipid peroxidation products. Pathway

analysis also confirmed the involvement of the hub genes in

mult ip le metabol ic a l terat ions (Figures 4F, G). The

downregulation of these hub genes may underlie the

characteristic metabolic dysregulation of C3.

Moreover, for C3, which showed a marked enrichment of

immune- and inflammation-associated pathways (Figure 3D), the

potential role of the hub genes in the regulation of immune

response was analyzed. Notably, decreased expression of the hub

genes was significantly associated with the decreased infiltration of

adaptive immune cells, particularly CD8+ naive T cells and

activated NK cells (Supplementary Figure S4B).
3.5 Determination of the cluster-driven
signature of HCC population stratification

To investigate the molecular signatures that drive the HCC

population stratification, a heatmap was constructed based on the

cluster-related module genes (Figure 5A). Exhibiting diverse

expression patterns across the HCC groups, SPP1 emerged as a

predominant cluster-driven signature. A remarkably elevated

expression of SPP1 was observed in C3 (Figure 5B). Based on the

downregulated hub genes within C3, a negative cluster score (−C3

signature score) was calculated to characterize this subgroup.

Notably, the expression level of SPP1 showed a strong correlation

with the −C3 signature score (Figure 5C), further confirming SPP1

as a key signature of the C3 subgroup. To investigate the

mechanisms underlying the association between the C3

population and poor prognosis, the infiltration of adaptive

immune cells was assessed using the xCell algorithm. Intriguingly,

the C3 subgroup exhibited a significant reduction in CD8+ naive T-

cell infiltration compared with the other subgroups (Figures 5D–F).

Furthermore, utilizing the TIMER 2.0 database, it was

demonstrated that the expression of SPP1 was inversely correlated

with the infiltration of both CD8+ naive T cells and total CD8+
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FIGURE 4

Investigation of the hub molecular network of the SPP1+ TAM-related cluster. (A) Scatter plot showing the module membership and gene
significance within the turquoise (C3-related) module. (B) Interaction network analysis of the genes in the turquoise module using Cytoscape
software. (C) Venn diagram displaying the overlap of the hub genes and hub module nodes. (D) Interaction network of the five overlapping hub
genes. (E) Correlation of the hub gene expression with overall survival (OS) in The Cancer Genome Atlas—Liver Hepatocellular Carcinoma (TCGA-
LIHC). The blue line designates samples with lowly expressed genes, while the yellow line indicates samples with highly expressed genes. (F) Bar plot
showing the Gene Ontology (GO) enrichment pathways of the hub genes in the C3-related module. (G) The most important hub genes and their
corresponding GO pathways. TAM, tumor-associated macrophage; MCODE, molecular complex detection.
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FIGURE 5

Identification of the cluster-driven signature in C3 hepatocellular carcinoma (HCC) stratification. (A) Heatmap depicting the driven signatures of the
HCC clusters, with SPP1 emerging as a predominant cluster-driven signature. (B) Violin plot of the SPP1 expression levels between clusters. (C)
Correlation between the expression of SPP1 and the negative cluster score (−C3 signature score). (D–F) Bar plots showing the infiltration levels of
CD8+ naive T cells (D), CD8+ effector memory T cells (E), and CD8+ central memory T cells (F) across three clusters. (G) Multiplex
immunohistochemistry (mIHC) staining revealing the characteristic localization of SPP1 and CD8 in HCC, with SPP1 tending to suppress the
infiltration of CD8+ T cells.
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central memory T cells in the HCC environment (Supplementary

Figures S4C, D). Consistently, multiplex immunohistochemistry

(mIHC) staining showed that SPP1 tended to localize at the tumor

boundary, whereas CD8+ T cells were likely to localize outside of the
Frontiers in Oncology 12
tumor, with less infiltration in tumor tissues (Figure 5G), hinting at

a potential role of SPP1 in shaping the immunosuppressive

microenvironment of HCC and at a promising strategy to

counteract immunosuppression.
FIGURE 6

Evaluation of clinical treatment and identification of promising therapeutic targets. (A) Box plot of the estimated IC50 values of chemotherapy and
targeted therapy drugs. (B) Waterfall plots showing the distribution of the somatic mutation genes with the top 10 highest mutation frequencies.
(C) TIDE algorithm for the prediction of the immunotherapy response between clusters. (D) Potential therapeutic compounds for the C3 group. IC50,
half-maximal inhibitory concentration; TIDE, Tumor Immune Dysfunction and Exclusion.
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3.6 Identification of subtype-specific
therapeutic strategies and promising
treatment targets

As distinct molecular phenotypes enable personalized treatment

and tailored clinical management for specific HCC subgroups,

potential precision strategies for macrophage-associated subtypes

were further explored. As is known, transarterial chemoembolization

(TACE) remains the preferred treatment for unresectable intermediate-

to-advanced HCC. Using the oncoPredict algorithm, the sensitivity of

the different clusters for conventional chemotherapeutic drugs was

evaluated. As shown in Figure 6A, with the relatively lower half-

maximal inhibitory concentration (IC50), C3 was more sensitive to

most chemotherapeutic agents, including 5-fluorouracil, cytarabine,

camptothecin, docetaxel, gemcitabine, and epirubicin. The results are

in line with the aforesaid stage stratification (Figure 3C), wherein C3

was dominated by a population in the advanced tumor stage (III/IV).

The sensitivity of the different groups to targeted therapy agents was

also determined. Significantly, patients in C3 exhibited superior

response to multiple kinase inhibitors, including sorafenib, alpelisib,

and gefitinib, compared with those in the other groups. Given the

critical role of somatic mutation in shaping cancer phenotypes and the

therapeutic response, the mutational landscapes were characterized

using the maftools algorithm. Consistent with the established literature,

TP53, CTNNB1, and MUC16 were identified as the most frequently

mutated genes across all subgroups. C3 demonstrated a distinctive

mutational profile, with predominant TP53mutations (21%, 27%, and

47% positivity, respectively), in contrast to the CTNNB1 predominance

observed in clusters 1 and 2 (29%, 34%, and 14% positivity,

respectively) (Figure 6B), hinting at the instability of the genome and

the dysregulation of the cell cycle in C3. In addition, to further delineate

the populations suitable for immunotherapy, the TIDE scores were

calculated. A significant increase in the TIDE score was observed in C3,

suggesting a poorer response to ICIs. The other two subgroups

maintained comparatively lower TIDE scores (Figure 6C),

implicating a potential group for ICIs. Moreover, using the CMap,

potential therapeutic compounds were identified for each cluster

(Figure 6D; Supplementary Figures S4A, C), and correspondingly,

the underlying regulatory mechanisms were also elucidated

(Supplementary Figures S4B, D). Collectively, according to the

distinct cluster stratification, personalized treatment strategies would

be available and ultimately improve clinical practice.
4 Discussion

Although multiple molecular classifications have improved our

understanding of the heterogeneity of HCC, the complicated

classifier and the reproducible difficulty still pose a substantial

challenge in the translation of the subtypes into clinical practice

(11, 48, 49). In contrast to previous classifications that focused on

comprehensive genomic or transcriptomic analysis, herein, we were

concerned on the dynamic evolution of TAMs, potential
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heterogeneous regulators (14, 15, 50). We specifically identified a

novel stratification of TAMs, proposed a simple classification of

HCC, and developed personalized therapy correspondingly.

Currently, TMEs with genomic stability and vulnerable nature

have increasingly emerged as promising therapeutic targets (12, 13).

Multiple associated attempts, including T cells with cytolytic

functions or combination therapies that inhibit compensatory

signaling pathways, have been developed (9, 51, 52). In this study,

using scRNA-seq analysis, we revealed the main cellular components

of the TMEs within HCC.We typically focused on the TAMs, pivotal

components revealed to govern the cellular and molecular

interactions and to sustain hallmarks of cancer, ultimately mapping

onto clinical outcomes (14, 15, 50). Similarly to recent single-cell

transcription analysis that abandoned the traditional pro-

inflammatory M1 and anti-inflammatory M2 dichotomy (50, 53),

we failed to clearly distinguish the M1 and M2 macrophages using

knownmarkers, such as CD86 (M1) andCD163 (M2). Notably, based

on previous knowledge (13, 14), we observed a roughly exclusive

expression of the SPP1 and FOLR2 genes within the macrophage

clusters. With regard to the complexity of the cellular ecosystem and

the instability of the sub-clusters derived from the dimensionality

reduction, we innovatively annotated macrophages into SPP1+ and

FOLR2+ TAMs according to simple but distinct variants. We

validated the distribution of SPP1+ macrophages in our cohort

through immunostaining. Diverse cell states were further defined

by trajectory analysis, in which the frequency of FOLR2 became

relatively diluted among TAMs by the expression of SPP1. We also

observed significant enrichment of the SPP1+ macrophages in tumor

tissues compared with adjacent normal tissues, where FOLR2+

macrophages predominated. As FOLR2+ macrophages were

revealed to be embryonic-origin tissue-resident macrophages

(TRMs, also known as Kupffer cell-like phenotypes in the liver)

(50), it was implied that, during tumor progression, SPP1+

macrophages increased from the infiltration of circulating

monocytes, accompanied with reduced FOLR2+ TRMs. For

functional analysis, higher enrichment of the PPAR pathway was

observed in SPP1+ TAMs, and increased expression of the

downstream protein metalloproteinases (e.g., MMP12) of this

pathway was also identified in SPP1+ macrophages, hinting at a

potential function of the activation of the PPAR pathway in the

terminal differentiation of SPP1+ TAMs. The dynamic evolution of

TAMs may initiate intratumoral cellular program reshaping and

heterogenetic clinical phenotype formation. The genes along the

trajectory of TAMs provided revealing features that covaried

between individuals, which enables a population-oriented

molecular classification (54, 55).

Therefore, using the NMF algorithm, heterogeneous molecular

clusters of HCC were obtained. Notably, the C3 group was associated

with unfavorable prognosis and was regarded as an independent risk

factor for worse outcomes. Several upregulated pathways, including

the ECM–receptor interaction and the IL-17 signaling pathway, were

simultaneously enriched in C3 and SPP1+ macrophages; therefore,

C3 was assumed as an SPP1+ macrophage-associated HCC subtype.
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Significant metabolic alterations, including the downregulated FAD

and amino acid metabolism (glycine, serine, and threonine

metabolism), were observed in C3. These may be attributed to the

reciprocal interactions between the dynamic TAM evolution and the

metabolic reprogramming within the TMEs. Similar to de novo FA

synthesis (56), the inhibition of FAD, as another energy resource,

caused FA accumulation in the microenvironment, subsequently

inducing dysregulated FA metabolism and promoting pro-tumoral

TAM phenotype polarization (57, 58). Furthermore, it is well known

that T cells in the TME catabolize lipids through mitochondrial fatty

acid oxidation (FAO) to meet the energy demands under nutrient

stress (59); however, current evidence demonstrates that unmodified

cellular therapy products fail to sustain the bioenergetics in tumors

(60). Within increasing FA concentrations due to the inhibition of

FAD in the TME, we supposed that a compromised metabolic state of

T cells with impaired antitumor effector function is formed (61, 62).

Taken together, these mechanismsmobilized the immunosuppressive

TME, facilitating tumor progression and proliferation. Although the

amino acid pathways are typically upregulated during tumorigenesis,

an inverse pattern of dysregulation was observed in the C3 group.

This aberrant metabolic reprogramming resulted in altered energy

homeostasis, which has been shown to suppress T-cell proliferation

and attenuate the antitumor immune response (63, 64).

In addition, most of the hub genes in the C3-associated module

belong to liver-specific enzymes and are predominantly enriched in

metabolic alteration, which further confirmed the characteristic

metabolic dysregulation in C3. Among these hub genes, typically,

ADH1A is an enzyme that is involved in metabolizing various

xenobiotic substrates (65, 66). Evidence suggests that the

downregulation of ADH1A may facilitate transition from liver

damage to hepatocarcinogenesis and exacerbate HCC progression

upon exposure to xenobiotic compounds (67). Consistently,

a reduction in the expression of ADH1A has been observed in

hepatocarcinoma tissue compared with para-tumor tissues, and

this pattern is also evident in C3 compared with C1 and C2.

Similar influences have also been observed in other hub

genes within C3, which conclusively contribute to the C3

phenotype formation.

Based on the downregulated hub genes, a negative cluster score

(−C3 signature score) was defined for the C3 subgroup of HCC. For

the characteristic gene driving the specific molecular classification,

SPP1, derived from the overlap of the trajectory genes and the main

module genes and significantly correlated with the −C3 signature

score, was identified as the primary signature of C3. Also known as

OPN, SPP1 is an integrin-binding glycoprotein that has been

reported to be overexpressed in various tumors (68). The literature

has elucidated the crucial role of SPP1 in remodeling the TME,

including promoting migration and colony formation and facilitating

M2-like polarization and immune cell suppression (69, 70). Our

findings demonstrate the remarkable increase in the expression of

SPP1 in HCC tissues, which was strongly correlated with a reduced

CD8+ T-cell infiltration. The mIHC staining revealed that SPP1
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tended to localize at the tumor boundary, whereas CD8+ T cells

were likely to localize outside of the tumor, further confirming the

immunosuppressive role of SPP1. Typically, among the three

classification phenotypes, the expression of SPP1 was markedly

elevated in the C3 compared with the C1 and C2 subtypes, which

may partially explain the immunosuppressive microenvironment

within C3. As ICI-based therapy has been established as the first-

line treatment and its efficacy is highly dependent on TME (4),

targeting SPP1may be a promising strategy to regulate the TME and

improve immunotherapy response.

As distinct molecular phenotypes uncovered features that covary

between individuals, personalized treatment recommendations and

tailored management are available for specific groups of HCC.

Through the oncoPredict algorithm, the therapeutic efficacy of various

treatments across the three subtypes was evaluated. Specifically, C3

exhibited greater sensitivity to most chemotherapeutic agents,

including 5-fluorouracil, cytarabine, camptothecin, docetaxel,

gemcitabine, and epirubicin. A plausible explanation for this

observation may lie in the impaired metabolic pathways within C3,

which imposed significant chemotherapeutic stress and influenced the

subsequent treatment response (71). Sorafenib is the standard systemic

therapy for advancedHCC (4). Notably, the superior efficacy of sorafenib

was observed in C3 compared with the other subgroups, alongwith other

kinase inhibitors including alpelisib and gefitinib. Previous studies have

elucidated that sorafenib-mediated lipotoxicity contributes to its

therapeutic efficacy, in which sorafenib acts as a direct LXR signaling

activator and promotes lipogenesis and a toxic accumulation of FAs (11,

52). For patients in C3, the downregulated FAD pathway may have

already predisposed them to lipotoxicity stress prior to treatment. The

additional administration of sorafenib exacerbated this lipotoxic effect,

which ultimately enhanced the therapeutic response in this group.

Furthermore, consistent with data indicating that HCC with TP53

mutation is markedly associated with immunosuppression (67), it was

confirmed that the C3 subgroup, which harbored the highest frequency

of TP53mutations, presented poorer response to immunotherapy. Given

the lack of precision medicine in HCC, we identified novel potential

therapeutic agents and their corresponding underlying mechanisms

based on similar transcription patterns embedded in each cluster.

Individualized therapy may be available, accordingly.

Several limitations of the present study need to be

acknowledged. Primarily, all of the datasets enrolled in this study

were retrospective. Secondly, we provide preliminary evidence that

the SPP1+ and FOLR2+ TAMs, rather than the traditional M1/M2

dichotomy, represent a novel macrophage stratification at single-

cell resolution. Adequately powered and well-designed studies are

required to confirm these findings. In addition, although we

revealed the tumor heterogeneity and stratified HCC into three

molecular clusters, along with providing potential therapeutic

recommendations for specific subgroups, the causality and the

precise underlying mechanisms remain to be further elucidated.

Population-oriented scRNA-seq analysis is expected for a better

understanding and interpretation of our findings.
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5 Conclusion

We established a novel TAM stratification system and classified

HCC populations based on the TAM trajectory genes. SPP1 was

identified as a key signature of the malignant cluster, which

negatively impacted immune cell infiltration. Targeting SPP1 may

improve the therapeutic efficacy, and personalized treatment

strategies can be tailored based on specific patient stratification.
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