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Background and purpose: Patients with recurrent nasopharyngeal carcinoma 
(rNPC) undergoing re-irradiation have a high risk of lethal nasopharyngeal 
necrosis (NN), which may lead to massive nasopharyngeal hemorrhage or 
death. Predicting NN is crucial to improve the prognosis of these patients. We 
aimed to utilize deep learning techniques in combination with multi-sequence 
magnetic resonance imaging (MRI) radiomics and dosiomics to predict the risk of 
nasopharyngeal necrosis in patients with recurrent nasopharyngeal carcinoma 
undergoing re-irradiation therapy. 

Materials and methods: 117 patients with rNPC were included, comprising pre­
treatment multi-sequence MR images (including T1, T1C, and T2 sequences) and 
a planned re-irradiation therapy dose distribution. A three-dimensional (3D) 
convolutional neural network (CNN) deep learning network model was utilized 
to integrate the selected MRI radiomics and dosiomics features. Eight prediction 
deep learning models were developed for training, 97 cases were used as the 
training set and 20 as the test set. The performance and prediction accuracy of 
each deep learning network model were then evaluated. 

Results: Thirty-two features correlated with necrosis of rNPC. The model based 
on multi-sequence MRI radiomics could better predict necrosis. The models 
combining radiomics and dosiomics features were more accurate for the 
prediction of NN, especially the model of multi-sequence MRI radiomics plus 
dosiomics, which showed the best performance in the test set, with an AUC, 
ACC, and F1-Score of 0.81, 0.75, and 0.74, respectively. 
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Abbreviations: AI, Artificial intelligence; CNN, Convol

FN, False Negative; FP, False Positive; rGTV, recurren

MRI, Magnetic resonance imaging; NN, Nasopharyngeal 

Operating Characteristic; ROI, Region of interest; TN

True Positive. 
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Conclusion: The deep learning model leveraging pre-treatment multi-sequence 
MRI radiomics and dosiomics of re-irradiation therapy can serve as a potential 
predictor of NN in patients with recurrent nasopharyngeal carcinoma, thereby 
improving clinical decision-making processes. 
KEYWORDS 

recurrent nasopharyngeal carcinoma, radiation therapy, nasopharyngeal necrosis, deep 
learning, magnetic resonance imaging 
Introduction 

Nasopharyngeal carcinoma (NPC) is a common malignancy 
affecting  the  head  and  neck  region  (1). Although the 
implementation of intensity modulated radiation therapy (IMRT) in 
primary nasopharyngeal carcinoma treatment has improved radiation 
dose distribution, 10-15% of patients still experience local recurrence 
(2). Re-irradiation remains the mainstay treatment for patients with 
recurrent nasopharyngeal carcinoma (rNPC) (3). However, rNPC 
patients undergoing re-irradiation may develop severe late adverse 
events, among which irreversible nasopharyngeal necrosis (NN) 
accounts for the largest proportion (4, 5). Approximately 28-41% of 
rNPC patients receiving nasopharyngeal re-irradiation develop NN (4, 
6), with approximately 45% of these NN cases involving the internal 
carotid artery. This progression leads to lethal NN, resulting in 
massive hemorrhage and even death, significantly impacting patient 
survival (7). Early prediction of NN risk and individualized 
interventions before or during treatment are crucial; these 
interventions include administering prophylactic agents like 
Endostar (recombinant human endostatin) prior to or early in 
radiotherapy (8), utilizing precise techniques to minimize high-dose 
exposure in predicted risk zones, or even opting for alternative 
comprehensive therapies instead of re-irradiation. However, reliable 
biomarkers and methods for the accurate prediction of NN in clinical 
practice remain elusive. 

Previous studies primarily used logistic regression to analyze 
single clinical features of NN risk (9, 10). Yu et al. (10) developed a 
mathematical model based on multiple clinical features to predict 
the risk of NN in patients with rNPC receiving IMRT. Nevertheless, 
the predictive value of models based solely on clinical features is 
limited, and the underlying pathophysiological mechanisms are 
largely unknown (11, 12). 

Recently, radiomics and dosiomics have gained attention in the 
field of tumor radiotherapy. Radiomics analysis quantifies image 
features across different spatial scales, linking individualized 
physiological and biological information to potential responses to 
utional neural network; 

t Gross tumor volume; 

necrosis; ROC, Receiver 

, True Negative; TP, 

02 
external perturbations such as radiation exposure (13). These analyses 
reveal associations between various biological features and radiation 
sensitivity and tolerance. Liu et al. (14) established an NN prediction 
model for rNPC re-irradiation using multiparametric magnetic 
resonance imaging (MRI) radiomics and machine learning, which 
outperformed single clinical factors. Additionally, dosiomics extracts 
high-dimensional dose spatial features from patient radiation 
treatment plans, providing richer tissue dose-related information 
than traditional dose statistics. This approach has been widely 
applied to analyze radiation dose effects and predict radiation-
related responses (15–18). 

Deep learning methods offer advanced feature extraction 
capabilities, leveraging the advantages of radiomics and dosiomics in 
medical data modeling (19). These models can simultaneously handle 
multiple clinical tasks and have demonstrated satisfactory results in 
prognosis prediction (20–22). Although previous studies have applied 
deep learning to predict normal tissue necrosis after re-irradiation in 
patients with rNPC (23, 24), there is currently no research combining 
multi-sequence radiomics features with automatically learned dose-
image features for joint modeling. To address this, we collected pre­
treatment multi-sequence MRI scans from rNPC patients and extracted 
handcrafted radiomics features alongside high-dimensional dose image 
features learned via 3D convolutional neural networks (3D CNNs). 
Based on these multi-omics features, we developed a neural network 
prediction model aimed at achieving precise individualized prediction of 
normal tissue necrosis following re-irradiation, thereby providing 
valuable guidance for treatment strategy selection and 
radiotherapy planning. 
Materials and methods 

Patient data 

This retrospective study included 117 patients with NPC 
diagnosed and treated at our center between April 2008 and 
December 2016. Inclusion criteria were: (1) absence of NN before 
recurrence; (2) pre-treatment MRI scans with clear T1, T2, and T1C 
sequences free from artifacts or misalignment; (3) receipt of re-
irradiation with intensity-modulated radiotherapy (IMRT); (4) no 
other malignancies; and (5) adherence to scheduled follow-up every 
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1–3 months in the first year, every 6 months in the second year, and 
annually thereafter. The study was approved by the Ethics 
Committee of Sun Yat-sen University Cancer Center (Number: 
B2023-103-01) and conducted in accordance with the Declaration 
of Helsinki, with waived need for written informed consent due to 
its retrospective nature. 

In this study, two datasets were collected, namely dataset A and 
dataset B cohorts. Dataset A cohorts (n=97) was used as the training 
set, and dataset B cohorts (n=20) was used as the independent test 
set. Baseline clinical characteristics showed no significant 
differences between the two groups (p>0.05). At last follow-up, 32 
(33.0%) patients in the training set and 8 (40.0%) in the test set 
experienced necrosis (NN) (p>0.05). The necrosis-to-non-necrotic 
sample ratio was approximately 1:2 in the training set and 1:1.5 in 
the test set (Table 1). 
Treatment 

All patients included in the study underwent re-irradiation with 
curative intent using an IMRT planning protocol similar to that 
previously reported (25). The re-irradiated prescribe ranged from 
50–70 Gy, delivered in fractions of 1.80-2.50 Gy per session, five 
times a week. The average equivalent dose in 2-Gy fractions (EQD2) 
was 63.4 Gy. Most patients also received platinum-based 
chemotherapy, including concurrent chemoradiotherapy (CCRT), 
induction chemotherapy (ICT), and adjuvant chemotherapy 
(ACT). The ICT or ACT regimens consisted of PF (Cisplatin+5­
Fluorouracil), TPF (Cisplatin+5-Fluorouracil+Paclitaxel), or TP 
Frontiers in Oncology 03 
(Cisplatin+Paclitaxel) for 2–3 cycles every 3 weeks. CCRT 
involved cisplatin-based regimens administered at weeks 1, 4, and 
7 during radiotherapy, or weekly therapy. 
Diagnosis of NN 

NN was diagnosed based on a combination of clinical 
symptoms, MRI, endoscopic observations, and pathological 
examinations. The key diagnostic features include the presence of 
a foul nasal odor, persistent headache, necrotic tissue, skull base 
osteoradionecrosis visible during endoscopy, discontinuous 
nasopharyngeal mucosa, or tissue defects observed on MRI, and 
the presence of a large amount of red-stained substance lacking 
cellular structure observed by hematoxylin-eosin staining during 
pathological examination (26). Patients who died of refractory 
epistaxis and were diagnosed with NN were recorded as having 
lethal nasopharyngeal necrosis. 
Pre-treatment MRI acquisition and tumor 
segmentation 

Multiparametric MRI scans were conducted for each patient 
within 2 weeks prior to any antitumor retreatment. Using a 
combined head-and-neck coil, the scanning range encompassed 
the suprasellar cistern to the inferior margin of the sternal end of the 
clavicle. Prior to contrast injection, T1-weighted MR images were 
obtained in the axial, coronal, and sagittal planes, while T2­
TABLE 1 Baseline characteristics in dataset A and dataset B cohorts. 

Characteristic Dataset A cohorts (N=97) Dataset B cohorts (N=20) P-valuea 

Age, mean (range), years 47 (24–75) 44 (28–62) 0.155 

Sex, No. (%) 0.823 

Male 75 15 

Female 22 5 

Overall stageb, No. (%) 0.208 

I 1 (1.0%) 0 (0.0%) 

II 9 (9.3%) 5 (25.0%) 

III 43 (44.3%) 9 (45.0%) 

IV 44 (45.4%) 6 (30.0%) 

Treatment 0.948 

No chemotherapy 14 (14.4%) 3 (15.0%) 

Chemotherapy 83 (85.6%) 17 (85.0%) 

Tumor volume (ml), mean 48.9 (1.2–170.2) 39.4 (1.8–156.79) 0.250 

rGTV Prescription dose EQD2 (Gy) 63.4 (46.9–71.1) 62.3 (50.0–70.7) 0.177 

Number of NN 32 (33.0%) 8 (40.0%) 0.547 
aP values were calculated using the chi-square test for categorical variables and non-parametric test for continuous variables.
 
bAccording to the 8th edition of the International Union against Cancer/American Joint Committee on Cancer (UICC/AJCC) staging manual.
 
rGTV, recurrent gross tumor volume; NN, Nasopharyngeal necrosis.
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weighted MR images were captured in the axial plane. Following 
intravenous injection of Gd-DTPA at a dose of 0.1 mmol/kg body 
weight, axial and sagittal contrast-enhanced T1-weighted MR scans 
were sequentially performed, approximately 40 seconds later. The 
main acquisition parameters for the scans are listed in 
(Supplementary Table 1). 

MR images of all patients were imported into MIM software 
(MIM Vista V7.1.3, MIM Software Inc., Cleveland, OH). 
Subsequently, the recurrent gross tumor volume (rGTV) was 
manually delineated and confirmed on each axial MR slice by three 
experienced radiation oncologists, as shown in Figure 1. To ensure 
inter-observer consistency, the three oncologists independently 
delineated ROIs and then conducted joint review sessions to resolve 
any discrepancies and reach a consensus on the final delineations. 
After delineating the rGTV, the planning target volume (PTVnx) is 
automatically generated with a 3-mm expansion margin serving as the 
region of interest (ROI). 
Feature extraction 

Radiomic feature extraction and selection 
MR image processing and feature extraction: The PyRadiomics 

software package (PyRadiomics 3.0.1) was employed to extract 
PTVnx region features annotated in the T1, T2, and T1C MRI 
sequences. To mitigate the effect of varying MR image resolutions on 
the experiments, the image sizes and voxel dimensions were 
standardized through resampling. Additionally, N4BiasFieldCorrection 
was utilized to correct bias fields in the MR images (27), thereby 
reducing the grayscale variations caused by MR scanner discrepancies 
and other unknown factors. 

Feature selection: The purpose of feature selection is to remove 
redundant variables, retain highly correlated features with 
representative characteristics, enhance the model interpretability and 
algorithm fitting speed, and avoid overfitting. In this study, the chi-
square test was used to preliminarily screen the features in each of the 
three feature sets. Subsequently, the Least Absolute Shrinkage and 
Selection Operator algorithm was employed for multivariate 
regression analysis of omics features (28), selecting highly correlated 
features predictive of NN. This approach aims to improve the 
accuracy of the prediction models. Finally, 32 relevant features were 
Frontiers in Oncology 04
selected for training the deep learning model; the specific feature

parameters are outlined in (Supplementary Table 2). 
 

Deep learning-based dosiomics feature 
extraction 

We employed the three-dimensional (3D) CNN method for 
automatic feature extraction directly from raw input dose 
distribution data (29), as illustrated in Figure 2. 

This network uses the 3D dose matrix corresponding to the 
PTVnx, which is cropped from the registered dose map according 
to the delineated PTVnx region, resulting in an input of 80 dose 
distribution slices with a resolution of 120 × 120 for each slice. We 
selected the PTVnx region for analysis as it encompasses the gross 
tumor volume and its expansion margins, representing the critical 
area receiving high radiation doses where nasopharyngeal necrosis 
is most likely to occur. Through 3D convolutional kernels, the 
network performs convolutional operations on cubes formed by 
multiple consecutive slices, enabling the feature maps of each 
convolutional layer to connect to multiple consecutive dose layers 
(slices). This facilitated the capture of dose distribution feature 
information across different dose layers. The jth feature map of the 
ith layer at the dose position p(x,y,z) is given by the following 
Equation 1: 

xyz Pi −1 Ri−1Qi−1 
r=0 W

pqrvij = relu(bij + omop=0 oq=0 o ijm V(
(
i
x
−
+
1)
p)(
m
y+q)(z+r)) (1) 

Where Ri, Pi, and Qi represent the temporal, height, and width 
dimensions of the three-dimensional convolutional kernel, 
respectively, and Wpqr denotes the value at position (p, q, r) of ijm 

the connection from the previous layer to the mth feature map. 
In the network architecture, we utilized 3×3×3 sized 3D 

convolutional kernels. By progressively increasing the number of 
channels using 3D CNN blocks, we ultimately obtained a result of 
128×1×1 through the output of a 1×1 convolution in layer L6. This 
task involves fusing dosimetric omics features for classification 
within a 128-dimensional dose–feature vector space. The 3D 
CNN block served as the fundamental module constituting the 
dose–feature extractor (Figure 2B). Initially, the input vector 
undergoes channel expansion via the first layer of 3D 
convolution. InstanceNorm was applied for spatial normalization, 
FIGURE 1 

Example of ROI segmentation. 
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followed by a second 3D convolutional layer for slice-wise 
downsampling. By employing residual connections, the feature 
loss is minimized, thereby enhancing the trainability of the model. 
Prediction model building 

We constructed a CNN model architecture to predict NN in 
rNPC after Re-irradiation by integrating multi-omics features, as 
illustrated in Figure 3. The network takes MR images, annotated 
target volume, selected imaging omics features, and dose maps as 
inputs, and outputs the prediction of NN occurrence. It comprises 
modules for dose–feature extraction, multifeature fusion, 
and classification. 

The dose–feature extractor utilizes a 3D CNN to extract 128­
dimensional dosiomics features relevant to the NN using deep 
learning methods. These features are then projected onto 32 
dimensions through a fully connected layer. After manual 
selection, each MRI imaging omics feature set retained 32 
dimensions. These features were concatenated and projected onto 
32 dimensions through another fully connected layer for fusion 
with dose features. 

Dosiomics and radiomics features were linearly embedded, 
stretched into one-dimensional vectors, concatenated, and 
subjected to a 1×1×64 convolution operation for feature fusion. 
Subsequently, a one-dimensional global maximum pooling 
operation is applied, followed by a fully connected layer to obtain 
the network output. 

We aimed to predict the probability of an NN representing a 
typical binary classification model. Finally, the network employs a 
sigmoid function to map the output values of the neurons. Given 
Frontiers in Oncology 05 
that the last fully connected layer outputs xlast , the final network 
output xpred is determined using the following formula (Equation 2): 

( )
1predx = sigmoid(xlast ) =  (2)−xlast1 +  e

The network output activation function ranged from 0 to 1. 
Therefore, we established the loss based on the form of the cross-
entropy, and the contribution corresponding to xpred is as follows 
(Equation 3): 

h i1 1 pred predL = 
N oiLi = 

N oi − yi : log (xi ) +  (1  − yi) : log (1 − yi ) (3) 

Here, Li represents the distance between the true label and the 
predicted value for a single sample, where yi denotes the label of the 

predsample, and xi represents the network output. Notably, as 
the probability of necrosis deviates more from the true label, the 
penalty for offsetting these values increases, facilitating optimization 
by the optimizer. 
Establishment of NN prediction models 
based on radiomics 

Training, validation, and testing were conducted separately on 
three single-sequence MRIs (T1, T1C, and T2) and on the 
combination  of  multiple  sequences  (T1+T1C+T2).  For  
combination, we first concatenated the selected radiomic features 
from all relevant MRI sequences. To ensure that the input 
dimension to the neural network remained consistent across all 
models, we then applied principal component analysis (PCA) to 
reduce the combined feature vector to the same dimensionality as 
FIGURE 2 

3D CNN architecture. (A) 3D CNN architecture for dose–feature extraction. (B) 3D CNN block, as the basic module of dose-feature extraction. 
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that of a single sequence. All subsequent operations, network 
structures, and parameters were kept the same for each model. As 
a result, four intelligent prediction models for rNPC radiotherapy 
necrosis based on MRI radiomics were developed: ModelT1, 
ModelT1C, ModelT2, and ModelT1+T1C+T2. 
Establishment of NN prediction models 
based on radiomics and dosiomics 

Building upon the prediction models, dosiomic features were 
incorporated. Training, validation, and testing were conducted on 
three single-sequence MRIs scans (T1, T1C, and T2) and a multi-

sequence combination (T1+T1C+T2). For each sequence, all 
operations, network structures, and parameters were consistent. 
To address class imbalance in the training set (necrosis-to-non­
necrosis ratio of 1:2), the Synthetic Minority Over-sampling 
Technique (SMOTE) (30) was employed to balance the classes 
and improve model robustness, resulting in an effective ratio of 
approximately 1:1. Four intelligent prediction models integrating 
MRI radiomics and dosiomics fusion features were obtained: 
ModelT1+Dose, ModelT1C+Dose, ModelT2+Dose, and ModelT1 
+T1C+T2+Dose. 

The prediction models were implemented using PyTorch, and 
model training was conducted using two NVIDIA P6000 graphics 
cards. The Adam optimizer was utilized to optimize the loss 
function, with parameters b1=0.9, b2=0.999, learning rate=0.001, 
and decay=0.00001. The corresponding batch size and number of 
training epochs were set to 16 and 300, respectively. A grid search 
Frontiers in Oncology 06
strategy was employed for hyperparameter optimization to evaluate 
different combinations of hyperparameter values. 
Verification of the model 

Five-fold cross-validation was utilized for model hyperparameter 
optimization. We constructed two datasets for comprehensive 
evaluation: dataset A (n=97) and dataset B (n=20). In dataset A, 
each fold consisted of a training set (approximately 78 samples) and a 
validation set (approximately 19 samples), allowing the model to 
undergo hyperparameter adjustment and validation on 4/5 and 1/5 of 
dataset A, respectively. After model development and tuning with 
dataset A, dataset B was used as an independent external test set to 
further verify the performance of all eight deep learning models across 
different MRI sequence combinations. The performance of the 
prediction model was evaluated using AUC (Area Under Curve), 
ACC (accuracy), and F1-score. AUC is defined as the area under the 
Receiver Operating Characteristic (ROC) curve, with values ≤1. The 
ROC curve was plotted based on different binary classification 
methods (thresholds or decision thresholds), with the true positive 
rate (sensitivity) as the y-axis and the false positive rate (1-specificity) 
as the x-axis. An AUC closer to 1.0 indicates a higher predictive ability 
of the model. 

Based on the predicted values matching the true values, four 
outcomes can be derived: True Positive (TP), predicted values and 
true values are both positive; False Positive (FP), predicted values 
are positive while true values are negative; False Negative (FN), 
predicted values are negative while true values are positive; and 
FIGURE 3 

Deep learning model workflow. 
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True Negative (TN), predicted values and true values are 
both negative. 

Accuracy (ACC) is defined as the number of correctly classified 
samples divided by the total number of samples (Equation 4): 

TP + TN 
ACC = (4)

TP + FP + FN + TN 

ACC approaches 1 as it nears, indicating higher correctness and 
better predictive capability of the model. The F1-score is defined as 
the harmonic mean of precision and recall (Equation 5), serving as a 
metric to gauge the precision of the binary classification models: 

precision x recall 
F1 − score = 2  x (5)

precision + recall 

Where precision=TP/(TP+FP), recall=TP/(TP+FN). The 
maximum and minimum values were 1 and 0, respectively. 
Statistical analysis 

IBM SPSS Statistics (Version 25, SPSS Inc, Chicago, IL) was 
used to conduct chi-square tests for categorical variables and non-
parametric tests for continuous variables. Statistical significance was 
set at p<0.05. 
 

Results 

Eight deep learning prediction models for rNPC with NN after 
re-irradiation were first trained and validated using five-fold cross-
validation on Dataset A. Subsequently, the models were retrained 
on the entire dataset A with optimal hyperparameters and 
externally validated on dataset B. Specifically, we performed a 5­
fold cross-validation in each model of the dataset A using the same 
network architecture and training strategies. The results show that 
the predictive models based on single-modal MRI radiomics feature 
have poor performance, with an AUC value of <0.70. The AUC, 
ACC, and F1-score for ModelT1C and ModelT1+T1C+T2 were 0.67 
and 0.68, 0.65 and 0.70, and 0.63 and 0.70, respectively (Table 2). 

Compared to prediction models based solely on single-modal 
radiomics features, deep learning intelligent prediction models 
combining both MRI radiomics and dosiomics features exhibited 
significantly improved accuracy, whether  using  a  single  MR

sequence model or multi-sequences MRI model. The AUC, ACC, 
and F1-score were >0.75, >0.73, and >0.70, respectively. 
Furthermore, the model (ModelT1+T1C+T2+Dose) combining 
radiomics features from multi-sequences MRI (T1+T1C+T2) and 
dosiomic features demonstrated the best predictive performance, 
with AUC, ACC, and F1-score values of 0.86, 0.80, and 0.81, 
respectively (Table 2). Figure 4 showed the AUC results of the 
five cross-validations. 

These performance patterns were maintained in the external 
validation cohort (Table 3), where single-sequence MRI models 
showed AUCs between 0.64 and 0.66, and the multi-sequence 
model reached 0.63. The addition of dosiomics features again 
Frontiers in Oncology 07 
improved performance across all models, with ModelT1+T1C+T2 
+Dose achieving the highest metrics: AUC of 0.81, ACC of 0.78, and 
F1-score of 0.74 in the validation cohort, confirming the consistent 
performance advantage of the multi-modal integrated approach 
across different patient populations. 
Discussion 

NN is a major and severe complication during re-irradiation 
treatment for rNPC, significantly affecting patient prognosis. Early 
and accurate prediction of NN risk is essential for individualized 
treatment planning and optimization of re-irradiation schedules. 

In single-factor analysis, the radiation dose is considered an 
important risk factor affecting the severity of necrosis. When the 
cumulative irradiation dose of the gross tumor volume exceeds 141.5 
Gy, the incidence of NN significantly increases, making it a critical 
predictive factor (10). Similarly, the re-irradiation dose is an essential 
dosimetric factor for NN (31, 32). Dosiomics can reveal the spatial 
distribution characteristics of radiation doses. When combined with 
radiomic features, the dose effects caused by tissue heterogeneity can 
be comprehensively explored. Yang et al. (33) successfully integrated 
dose radiomics with imaging features to construct a predictive model 
for radiation-induced temporal lobe injury in NPC radiotherapy, 
demonstrating superior predictive performance compared with 
traditional methods. Furthermore, correlations between radiomics 
features and tissue damage after initial radiotherapy have been 
found (14), indirectly confirming the potential importance of 
radiation dose distribution in predicting NN. However, the impact 
of the re-irradiation dose on the model accuracy is not significant, 
perhaps because the model incorporated only the prescribed radiation 
dose without fully incorporating the dosiomics features. In our study, 
we successfully integrated dosiomics features into predictive models 
based on radiomics, resulting in significant improvements in 
prediction accuracy for both single-sequence and multi-sequence 
models. Notably, the model that combined multi-sequence MRI 
radiomics with dosiomics demonstrated the most impressive 
predictive performance, achieving an AUC of 0.86. This surpasses 
the results reported by Liu et al. (14), further validating the 
effectiveness of our approach. 
TABLE 2 The evaluation metrics of 8 deep learning models on dataset A. 

DL Model AUC ACC F1-Score 

ModelT1 0.66 0.65 0.53 

ModelT1C 0.67 0.70 0.63 

ModelT2 0.67 0.55 0.30 

ModelT1+T1C+T2 0.68 0.70 0.63 

ModelT1+Dose 0.75 0.75 0.70 

ModelT1C+Dose 0.76 0.73 0.78 

ModelT2+Dose 0.78 0.75 0.73 

ModelT1+T1C+T2+Dose 0.86 0.80 0.81 
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The quantitative results in Tables 2 and 3 provide objective 
evidence for the advantages of combining multi-sequence MRI 
radiomics with dosiomics. In the dataset A (Table 2), single-
sequence MRI models demonstrated limited discriminative ability 
with AUC values of 0.66-0.67. The combined multi-sequence model 
(ModelT1+T1C+T2) showed only marginal improvement 
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(AUC=0.68), indicating that simply aggregating different MRI 
sequences provides minimal additional predictive value. 

A marked performance improvement occurred when dosiomics 
features were incorporated. Single-sequence models combined with 
dose information achieved substantially higher AUCs (0.75-0.78), 
while the comprehensive ModelT1+T1C+T2+Dose integrating all 
FIGURE 4 

The ROC curves of the eight predictive models on the test set for five-fold cross-validation are shown from left to right, top to bottom, respectively: 
ModelT1, ModelT1C, ModelT2, ModelT1+T1C+T2, ModelT1+Dose, ModelT1C+Dose, ModelT2+Dose, ModelT1+T1C+T2+Dose. 
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data sources reached an AUC of 0.86—representing a 26% 
improvement over the best single-sequence model and a 10% 
improvement over the best single-sequence plus dose model. This 
performance hierarchy was maintained in the dataset B (Table 3), 
where ModelT1+T1C+T2+Dose achieved an AUC of 0.81, 
significantly outperforming all other configurations. 

The external validation data revealed a particularly informative 
pattern: while the multi-sequence model without dose (ModelT1 
+T1C+T2, AUC=0.63) performed slightly worse than some single-
sequence models (AUC 0.65-0.66), this pattern completely reversed 
once dosiomics was introduced. This indicates a synergistic 
relationship between multi-sequence radiomics and dosiomics 
that enhances predictive capability beyond what either approach 
achieves independently. The F1-Score data reinforces this 
conclusion, with ModelT1+T1C+T2+Dose consistently achieving 
the highest values (0.81 in training, 0.74 in validation), 
demonstrating that the integrated approach provides more 
balanced predictions across positive and negative cases. 

These results indicate that although each MRI sequence 
captures different tissue characteristics related to necrosis 
susceptibility, their predictive potential is maximized when 
combined with spatial dose distribution information. The 
substantial AUC increase when dose information is added 
confirms that tissue susceptibility (captured by radiomics) and 
radiation exposure patterns (captured by dosiomics) represent 
complementary dimensions of the necrosis development process. 
Moreover, we note that Lu et al. (24) proposed a multi-modal deep 
learning fusion framework based on handcrafted radiomics and 
dose features on a larger dataset. However, our preliminary 
attempts to apply their two-stage approach on our cohort 
produced less satisfactory results, possibly due to dataset 
characteristics. Therefore, our study focuses on automatic feature 
learning and assessing the performance benefit of different feature 
combinations using 3D CNN-based dosiomics, rather than a head-
to-head comparison with handcrafted feature-based models. 

Precision medicine increasingly relies on integrating multiple 
data types and artificial intelligence to enhance diagnostic and 
prognostic accuracy (34). Responding to this trend, our study is 
the first to combine multi-sequence MRI radiomics characterizing 
tumor and tissue heterogeneity with high-dimensional dosiomics 
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features extracted via a 3D CNN, enabling precise NN risk 
prediction after re-irradiation in rNPC patients. This multi-modal 
approach leverages synergistic information from diverse sources, 
markedly improving predictive performance and robustness 
compared to models based on clinical or single-modality data. 
Our main innovations are: extracting radiomics features from 
three standard MRI sequences, using deep CNNs for automated 
spatial dose feature extraction, and achieving personalized risk 
prediction through multimodal fusion. With an internal 
validation AUC of 0.86, our method substantially outperforms 
prior models such as that of Liu et al. (AUC 0.735) (14), 
underscoring the advantage of deep learning-based multi-omics 
integration for complex risk prediction. 

However, limitations remain. Being a retrospective study from a 
single center with a limited sample size restricts the model’s 
generalizability and applicability across different clinical settings. 
Future multi-center, larger prospective studies are planned to 
enhance model robustness. Moreover, clinical implementation 
faces challenges including MRI acquisition standardization, 
interpretability of deep learning features, model transparency, and 
integration with physician expertise for individualized 
radiotherapy adjustments. 

In conclusion, this study demonstrates that an AI model based 
on deep fusion of multi-sequence MRI radiomics and dosiomics 
features exhibits strong performance and potential in predicting 
nasopharyngeal necrosis risk after re-irradiation in rNPC patients. 
It provides robust support for individualized treatment strategy 
development and re-irradiation optimization, with promising 
prospects for advancing precision radiotherapy clinical 
application and improving patient outcomes. 
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