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Bi-modal ultrasound radiomics
and habitat analysis enhanced
the pre-operative prediction of
axillary lymph node burden in
patients with early-stage
breast cancer
Jing Xu1†, Pan Qi2†, Xiaoyan Ou2, Qiaoxin Zhong3,
Zhen-Wen Chen2, Yin Wang2, Aijiao Yi2 and Bin Wang2*

1Department of Medical Imaging, Yueyang Central Hospital, Yueyang, China, 2Department of medical
ultrasound, Yueyang Central Hospital, Yueyang, China, 3Department of Artificial Intelligence, Julei
Technology Company, Wuhan, China
Objective: This study aimed to evaluate the value of habitat analysis based bi-

modal ultrasound radiomics in predicting axillary lymph node (ALN) status in

patients with early-stage breast cancer, and find a non-invasive and accurate

method to predict ALN status.

Materials and methods: A total of 206 patients with 206 breast lesions were

enrolled in this study from July 2019 to December 2023. All patients were

randomly divided into training cohort (165 patients) and test cohort (41

patients). The feature extraction was manually delineated with ITK-SNAP

software, while a K-means clustering algorithm was employed for the

segmentation of sub-regions, with the number of clusters ranging from 2 to

10. Radiomic features were extracted separately from the subregions of B-mode

ultrasound (BMUS) and shear wave elastography (SWE) images after habitat

generation. These modality-specific features were then combined. Eleven

machine learning models were used to build models, including support vector

machines (SVM), k-nearest neighbor (KNN), RandomForest (RF), ExtraTrees,

XGBoost, light gradient boosting machine (LGB), NaiveBayes, AdaBoost,

GradientBoosting, LR and MLP. Prediction performance was compared among

clinicopathological model, omics models and habitat models.

Results: According to the habitat analysis results of K clustering for BMUS and

SWE, the omics features of 4 subregions for BMUS images and the 5 subregions

for SWE images were extracted respectively. Compared the prediction

performance of the clinicopathologic (C) risk factors model, habitat and omics

models in the test cohort, NaiveBayes model based on SWE habitat achieved the

highest prediction performance with AUC of 0.953 (95% CI: 0.893, 1.000)
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region of interest; ML, Machine learning; AI, artificial in
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Sensitivity; SPE, Specificity; PPV, positive predictive
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Conclusion:Habitat analysis based on ultrasoundmight be a potential method to

visualize the intratumoral heterogeneity of breast lesions. The machine learning

models based on SWE radiomics with habitat analysis could enhance the ability of

prediction lymph node burden in patients with early-stage breast cancer, which

could be a promising approach to make clinical decisions.
KEYWORDS

habitat analysis, shear wave elastography, radiomics, early-stage breast cancer, lymph
node burden
1 Introduction

Primary breast cancer is most commonly diagnosed cancer and

the second leading cause of cancer-related death among women (1).

The axillary lymph node (ALN) status in patients with breast cancer

is critically important for treatment decisions and prognosis.

Reliable evidence from the American College of Surgeons

Oncology Group Z0011 (ACOSOG Z0011) randomized trial

revealed that early-stage breast cancer patients with one or two

metastatic sentinel lymph nodes can be spared ALN dissection

(ALND) (2). Thus, accurate prediction of limited nodal burden (0–2

metastatic ALNs) and high nodal burden (≥3 metastatic ALNs)

before surgery is very important.

B-mode ultrasound (BMUS) remains the first-line imaging

modality for assessing axillary lymph node (ALN) status in clinical

practice. However, its reliance on morphological features alone - such

as cortical thickness and hilum preservation - results in suboptimal

diagnostic accuracy. Previous studies have confirmed that BMUS

alone provides insufficient preoperative evaluation of ALN status (3),

creating a critical need for more reliable assessment methods.

Shear wave elastography (SWE) represents a significant

technological advancement, combining conventional ultrasound

with quantitative and qualitative tissue stiffness mapping through

color-coded visualization (4). While SWE has demonstrated strong

performance in differentiating benign from malignant breast lesions

(5), and shows potential for predicting ALN status (3, 6), its clinical

utility remains constrained by several factors. These include

variability in measurement techniques, subjective region-of-

interest (ROI) selection, and inconsistent interpretation of

qualitative SWE patterns. These limitations highlight the need for

more robust predictive approaches.
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Radiomics has emerged as a powerful tool for extracting

quantitative imaging features beyond human visual perception

(7). While ultrasound-based radiomics has shown superior

diagnostic performance compared to traditional methods,

conventional radiomic approaches have a fundamental limitation

- they analyze tumors as homogeneous entities, failing to capture

the regional heterogeneity that characterizes breast cancer biology.

This is where habitat imaging offers a paradigm shift. Unlike

conventional radiomics, habitat analysis partitions tumors into

biologically distinct subregions (habitats) based on voxel-level

similarity in imaging characteristics (8, 9). Thus, the proposed

integration of BMUS and SWE data for habitat analysis is

particularly compelling. BMUS provides detailed structural

information about tumor morphology, SWE quantifies tissue

mechanical stiffness that correlate with tumor biology. This bi-

modal habitat approach could provide unprecedented insights into

tumor biology and significantly improve ALN status prediction. By

moving beyond whole-tumor analysis to examine biologically

relevant subregions, we may finally bridge the gap between

imaging findings and actual metastatic potential.

Artificial intelligence (AI) have been used to identify and

diagnose breast lesions (10, 11). Machine learning (ML) is a

subfield of AI, involves using statistical, mathematical, and logical

methods to enable machines to learn from data, which could handle

complex radiomics features effectively (12). ML models have been

used in the differentiation of benign and malignant breast lesions

(13), prediction of ALN metastasis (14) and response to

neoadjuvant chemotherapy (15). To the best of our knowledge,

the use of habitat analysis with ML based on bi-modal ultrasound

radiomics for prediction of ALN status in patients with breast

cancer has not yet been reported.

Habitat analysis based bi-modal ultrasound radiomics might

provide more morphological and biomechanical stiffness

information, which could comprehensively evaluate breast cancer

and reflect intratumoral heterogeneity. Hence, this study aimed to

evaluate the value of habitat analysis based bi-modal ultrasound

radiomics in predicting ALN status in patients with early-stage

breast cancer, and find a non-invasive and accurate method to

predict ALN status, which might help surgeons select individual

treatment decision and improve prognosis.
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2 Materials and methods

This retrospective study was approved by the ethics committee

of Yueyang Central Hospital.
2.1 Patient

A total of 206 patients with 206 breast lesions were enrolled in

this study from July 2019 to December 2023 (Figure 1). The

inclusion criteria were listed as follows: (1) all breast lesions were

confirmed by the final surgical pathology; (2) the breast surgery was

performed within 1 month after ultrasound examination; (3) the

age of all patients were over 18 years old; The exclusion criteria were

listed as follow: (1) patient had accepted invasive diagnosis and

therapy before ultrasound examinations; (2) the patient with

unsatisfying BMUS and SWE images; (3) patients with non-mass

like lesions on BMUS.
2.2 Ultrasound examinations

2.2.1 BMUS examinations
BMUS was performed by Aixplorer ultrasound system

(SuperSonic Imaging, France) with L15–4 and L10–2 linear array

transducers. Patients were asked to lie in supine position with fully

exposed breast and axilla. When a target breast lesion was detected,

the conventional ultrasound features were recorded based on BI-

RADS lexicon (2), including the shape, margin, orientation, echo

pattern, posterior features and calcification. All breast masses were

classified as BI-RADS 3 category (probably benign), 4a category

(low suspicion for malignancy), 4b category (moderate suspicion

for malignancy), 4c category (high suspicion for malignancy) or 5

category (highly suggestive of malignancy).
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2.2.2 SWE examinations
After conventional ultrasound, SWE was performed with L10–2

linear array transducer. Two perpendicular planes were observed for

each breast mass. SWE was induced with minimal pressure, while

patients were asked to hold breath for a few seconds. The region of

interest should include the whole breast masses and surrounding

breast tissue for at least 3mm. The stiffness was displayed with color

map ranged from blue to red (0–180 KPa). The standard SWE image

was obtained with several seconds of immobilization. The satisfactory

SWE image was that the color fill is uniform with no mosaic artifacts.

To obtain satisfactory SWE images, the SWE mode should adjust to

penetration while breast masses were deeper than 1.5 centimeters.
2.3 Habitat generation

2.3.1 Feature extraction and feature clustering
In this study, paired B-mode ultrasound and SWE images of

each breast lesion were utilized for habitat analysis. The ROIs for

feature extraction from the B-mode ultrasound images were

manually delineated with ITK-SNAP software (3.8.0; http://

www.itksnap.org), including the entire lesion area. The ROIs for

the SWE image were derived from the corresponding masks of B-

mode ultrasound images by shifting the XY coordinates.

For each breast lesion, nine groups of clustering features were

extracted for further clustering analysis. These included Gray-Level

Co-occurrence Matrix (GLCM) features (contrast, dissimilarity,

homogeneity, energy, correlation, angular second moment),

Shannon entropy, Local Binary Pattern (LBP) features (LBP_mean,

LBP_std), and shape features (closing_mean).

A K-means clustering algorithm was employed for the

segmentation of sub-regions, with the number of clusters ranging

from 2 to 10. The clustering index extracted from the clustering

methods included the following five metrics:
FIGURE 1

The flow chart of patient enrollment.
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2.3.1.1 Calinski-harabasz score

This metric evaluates clustering performance by assessing the

compactness within clusters and the separation between clusters. A

higher score indicates better clustering performance. The formula is

as follows:

CH =
Tr(Bk)
Tr(Wk)

� (N − k)
(k − 1)

Where Bk is the between-cluster dispersion matrix, Wk is the

within-cluster dispersion matrix, N is the total number of data

points, k is the number of clusters.

2.3.1.2 Inertia (sum of squared errors within clusters)

Inertia represents the sum of squared distances between the

samples and their cluster centroids. Lower inertia values indicate

that the samples are closer to their centroids, implying higher intra-

cluster similarity.

Inertia =o
k

i=1
o
x∈Ci

‖x − mi‖2

Where   Ci is the i-th cluster, mi is the centroid of cluster i.

2.3.1.3 Davies-bouldin index

The DBI measures the quality of clustering by comparing intra-

cluster similarity with inter-cluster separation. A lower DBI

indicates better clustering.

DBI =
1
ko

k
i=1

max
j≠1 (

si + sj

d(mi,mj)
)

Where  si is the average distance within cluster i, d(mi,mj) is the

distance between the centroids of clusters i and j.

2.3.1.4 Separation

Separation refers to the average distance between the centroids

of different clusters, measuring how distinct the clusters are. Greater

separation suggests more dispersed clusters.

Separation =
2

k(k − 1)o
k−1

i=1
o
k

j=i+1
d(mi,mj)

Where   d(mi,mj) is the Euclidean distance between the

centroids of clusters i and j.

2.3.1.5 Mean intra-cluster distance

The mean intra-cluster distance is the average distance between

the samples and their respective cluster centroids. A smaller value

indicates tighter clusters.

Mean Intra _ cluster Distance  =  
1
No

k

i=1

1
Cij j ox∈Ci

‖ x − mi‖

Where   Ci is the number of samples in cluster i, and mi   is the

centroid of cluster i.
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2.3.2 Feature extraction and selection from
habitat regions

Initially, radiomic features were extracted separately from the

subregions of the two types of ultrasound images after habitat

generation. These modality-specific features were then combined. A

Pearson correlation coefficient threshold of 0.9 was applied to filter

out highly correlated features. Subsequently, Lasso regression was

employed for further feature selection, with the optimal alpha

coefficient determined through tenfold cross-validation in the

training cohort.

After Lasso-based selection, features with coefficients smaller

than a pre-set threshold (coef = 1e-6) were excluded. Very small

coefficients typically arise from noise in the data and contribute

little to predictive accuracy. Retaining such features could increase

the model’s sensitivity to noise and impair its generalization

ability. By removing noise-driven features through thresholding,

the stability and generalization performance of the model

are enhanced.
2.3.3 Model construction and evaluation
The features selected via Lasso were then used to construct

various machine learning models. The models evaluated in this

study include Support Vector Machines (SVM), k-Nearest

Neighbors (KNN), Random Forest (RF), Extra Trees, XGBoost,

LightGBM, Naive Bayes, AdaBoost, Gradient Boosting, Logistic

Regression (LR), and Multi-Layer Perceptron (MLP). Each of

these models was trained using the selected features.

The dataset was randomly split into a training cohort and a test

cohort in an 80:20 ratio, with 10,000 random seeds applied. The

performance of the models was evaluated using several metrics:

Accuracy, area under the receiver operating characteristic (ROC)

curve (AUC), 95% Confidence Interval (95% CI), Sensitivity (SEN),

specificity (SPE), Positive Predictive Value (PPV), Negative

Predictive Value (NPV), Precision, Recall, and F1 Score.

Experiments were conducted across different feature sets,

including omics and habitat. The final results were selected based

on performance in the test cohort.
2.4 Statistical analysis

Statistical analyses were conducted with R software 3.6.1 and

SPSS 23.0 software (SPSS Inc.). All numerical data are expressed as

the mean ± standard deviation (SD). Categorical variables were

compared using the c2 test or Fisher’s exact test, while continuous

variables were compared using the independent t-test. The training

cohort was used to construct the clinicopathologic model and ML-

based US radiomics or habitat models for predicting ALN burden; the

test cohort was used for independent validation to evaluate the

prediction performance of the models. SEN, SPE, accuracy, PPV,

NPV and AUCwere used to evaluate prediction performance. A two-

sided p < 0.05 was regarded as the standard for statistical significance.
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3 Results

3.1 General data of breast lesions

All patients were randomly divided into training cohort (165

patients) and test cohort (41 patients). The clinical characteristics of

patients between training cohort and test cohort are shown in the
Frontiers in Oncology 05
Table 1. According to the postoperative pathological results, there

were no significant differences in age, maximum size of breast

lesions, histological type, tumor grade, ER status, PR status, HER2

status, Ki-67 status and molecular subtype between low and high

lymph node burden groups in training cohort. Clinical stage 2 and

ultrasound reported positive lymph node were associated with high

lymph node burden.
TABLE 1 Clinical characteristics of patients in the training and validation cohorts.

Characteristic
Training cohort (n=164) Test cohort (n=42)

Low (n=111) High (n=53) p Low (n=30) High (n=12) p

Age,y 51.33 ± 9.49 52.62 ± 12.10 0.459 50.37 ± 10.14 50.17 ± 13.18 0.833

Maximum size (mm) 20.72 ± 7.628 23.11 ± 7.08 0.056 19.8 ± 7.98 24.58 ± 6.80 0.075

Clinical T stage (%) 0.038 0.118

cT1 59 19 18 4

cT2 52 34 12 8

Histological type 1.000 1.000

Ductal 105 51 27 11

others 6 2 3 1

Tumor grade 0.858 0.668

Low (I)/
intermediate (II)

79 37 25 9

High (III) 32 16 5 3

ER status 0.127 0.655

Negative 31 9 5 1

Positive 80 44 25 11

PR status 0.593 1.000

Negative 36 15 7 3

Positive 75 38 23 9

HER2 status 0.135 0.719

Negative 78 31 19 9

Positive 33 22 11 3

Ki-67 status 0.543 0.316

≤20% 58 25 13 3

>20% 53 28 17 9

Molecular subtype 0.060 0.650

Luminal A 30 10 6 1

Luminal B 51 36 19 8

HER2 postive 11 2 2 2

Triple negative 19 5 3 1

US-reported LN status

Negative 84 30 0.013 24 5 0.026

Positive 27 23 6 7
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3.2 Radiomics extraction and features
clustering

A total of 927 radiomics features were extracted from each

BMUS and SWE image of breast lesion, including 10 shape features,

18 first-order features, 24 GLCM features, 14 GLDM features, 16

GLRLM features, 16 GLSZM features, 5 NGTDM features, and 824

wavelet transform features. According to the quantitative analysis

results of K clustering for BMUS and SWE (details are provided in

Appendixes S1), the omics features of 4 subregions for BMUS

images and the 5 subregions for SWE images were extracted

respectively, and the features of all subregions were fused

(Figures 2, 3).
3.3 Performance of prediction models

Eleven machine learning models based on traditional radiomics

and habitat on the test cohort were established to evaluate

prediction performance. In the training cohort, the prediction

models were constructed with the AUC as the evaluation metrics

(details are provided in Appendixes S2). The results in the test

cohort were shown in Table 2. For BMUS based on habitat, LR

achieved the highest AUC of 0.894, outperforming SVM (AUC

0.725), KNN (AUC 0.792), RF (AUC 0.593), ExtraTrees (AUC

0.761), XGBoost (AUC 0.736), LGB (AUC 0.783), NaiveBayes
Frontiers in Oncology 06
(AUC 0.881), AdaBoost (AUC 0.660), GradientBoosting (AUC

0.663) and MLP (AUC 0.889). For BMUS based on traditional

radiomics, NaiveBayes achieved the highest AUC of 0.836,

compared with other models. For SWE based on habitat,

NaiveBayes achieved the highest AUC of 0.953, outperforming

SVM (AUC 0.781), KNN (AUC 0.650), RF (AUC 0.703),

ExtraTrees (AUC 0.708), XGBoost (AUC 0.700), LGB (AUC

0 . 641 ) , LR (AUC 0 . 906 ) , AdaBoo s t (AUC 0 . 727 ) ,

GradientBoosting (AUC 0.647) and MLP (AUC 0.784). For SWE

based on traditional radiomics, MLP achieved the highest AUC of

0.836, compared with other models (Figure 4).
3.4 Comparison of prediction performance
for clinicopathologic risk factors model,
habitat and omics models

The clinicopathologic (C) risk factors model was established

based on risk factors (Clinical stage and ultrasound reported lymph

node status) related to ALN burden in the univariate analysis.

However, the prediction performance of C model was

unsatisfactory with an SEN of 83.33%, SPE of 56.67%, PPV of

43.48%, NPV of 89.47% and AUC of 0.736 (95% CI: 0.569, 0.903).

Compared the prediction performance of the clinicopathologic (C)

risk factors model, habitat and omics models in the test cohort,

NaiveBayes model based on SWE habitat achieved the highest
FIGURE 2

The breast cancer intratumoral heterogeneity (ITH) based on habitat in two patients with similar clinical characteristics. (A, B) were the habitat
analyses based on BMUS or SWE for patient 1, respectively. (C, D) were the habitat analyses based on BMUS or SWE for patient 2, respectively.
Patient 1 and patient 2 both had approximate age (48 and 50 years), the same clinical T stage, estrogen receptor (ER) status (positive), progesterone
receptor (PR) status (positive), human epidermal growth factor receptor 2 (HER2) status (negative), Ki-67 index category (low proliferation) and
similar BMUS or SWE features. The optimal number of clusters were 2 (BMUS) and 3 (SWE) for patient 1,while these were 4 (BMUS) and 5 (SWE) for
patient 2. The final pathological surgical results were negative ALNM for patient 1 and high ALN burden for patient 2, respectively.
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prediction performance with AUC of 0.953 (95% CI: 0.893,

1.000) (Table 3).
4 Discussion

In this study, eleven machine learning models for predicting

lymph node burden in patients with breast cancer based on habitat

and traditional radiomics extracted from BMUS or SWE. Compared

using traditional radiomics, some machine learning models based on

habitat could enhance the ability of prediction performance.

Moreover, habitat extracted from BMUS or SWE could realize the

visualization of breast tumor heterogeneity, which might be helpful

explore the metastasis mechanism of breast cancer. To the best of our

knowledge, this is the first study on developing machine learning

models based on bi-modal ultrasound with habitat analysis for

predicting lymph node burden in patients with breast cancer.

Lymph node status is an important marker for staging of breast

cancer, and affecting clinical decision making. Previous study have

reported that ALND can be avoided in clinical T1/T2 breast cancer

patients with SLN negative as well as one or two SLN positive (2,
FIGURE 3

The breast cancer intratumoral heterogeneity (ITH) based on habitat, axillary lymph node on B-mode ultrasound and pathological image in a triple-
negative breast cancer patient. A 62-year-old woman with breast lesion in left breast. The molecular subtype of this breast lesion was triple-negative
breast cancer. The final surgical pathology indicated three lymph node metastases in the axilla, which was high lymph node burden. (A, B) were the
habitat analyses based on BMUS or SWE, which indicated high intratumoral heterogeneity. (C) showed negative axillary lymph node status in B-mode
ultrasound with clear cortex and medulla, normal aspect ratio and cortical thickness <3mm. (D) was H&E (hematoxylin and eosin) stain of a
representative tumor.
TABLE 2 Performance of the machine learning models for the
test cohort.

Model
BMUS SWE

omics habitat omics habitat

LR 0.800 0.894 0.805 0.906

NaiveBayes 0.836 0.881 0.762 0.953

SVM 0.758 0.725 0.733 0.781

KNN 0.671 0.792 0.722 0.650

RandomForest 0.658 0.593 0.720 0.703

ExtraTrees 0.665 0.761 0.695 0.708

XGBoost 0.739 0.736 0.740 0.700

LightGBM 0.739 0.783 0.754 0.641

GradientBoosting 0.819 0.663 0.677 0.647

AdaBoost 0.785 0.660 0.690 0.727

MLP 0.817 0.889 0.817 0.784
The bold values mean the highest AUC in all models.
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15). Thus, it’s important to find a non-invasive and accurate

method to predict lymph node status in breast cancer patients.

Clinicalpathological risk factors have potential values in

predicting ALN burden in patients with early-stage breast cancer.

However, the risk factors in different studies were inconsistent. Yao

et al (16) found high tumor grade and positive lymphovascular

invasion (LVI) were related to sentinel lymph node metastasis

(SLNM) burden. Ngai et al (17) have reported that the number of

abnormal lymph nodes on axillary ultrasound was an important
Frontiers in Oncology 08
predictor for ALN burden. In this study, we found clinical stage and

ultrasound reported lymph node status were associated with ALN

burden in patients with early-stage breast cancer. However, the

AUC (0.736) of C model based on risk factors for predicting ALN

burden was unsatisfying, which was similar to previous study (16)

with AUCs from 0.678 to 0.710. Thus, C model might be insufficient

to predict ALN burden in patients with early-stage breast cancer.

Radiomics features extracted from bi-modal ultrasound images

have been recognized as the core of machine learning models based
FIGURE 4

Performance of the eleven developed models based on traditional radiomics and habitat on the test cohort for predicting axillary lymph node
burden in patients with early-stage breast cancer. (A) BMUS omics models; (B) SWE omics models; (C) BMUS habitat models; (D) SWE
habitat models.
TABLE 3 Comparison of prediction performance for clinicopathologic risk factors model, habitat and omics models.

Models Method Accuracy AUC 95% CI Sensitivity Specificity PPV NPV

C model risk factors 0.643 0.736 0.569 - 0.903 0.8333 0.5667 0.4348 0.8947

NaiveBayes BMUS omics 0.714 0.836 0.714 - 0.959 0.8333 0.6667 0.5000 0.9091

LR BMUS habitat 0.857 0.894 0.781 - 1.000 0.6667 0.9333 0.8000 0.8750

MLP SWE omics 0.786 0.817 0.667 - 0.968 0.7500 0.8077 0.7059 0.8400

NaiveBayes SWE habitat 0.857 0.953 0.893 - 1.000 0.9000 0.8437 0.6429 0.9643
The bold values mean the highest Accuracy and AUC in all models.
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on ultrasound. Radiomics features extraction and selection of

previous studies mainly focused on the whole breast lesions,

which neglected the intratumoral heterogeneity (18, 19). Habitat

could identify subregions comprising voxels sharing similar

imaging characteristics, which might share a common tumor

biology, and better reflect biological behaviors. Thus, habitat

analysis might be helpful to visualize the intratumoral

heterogeneity of breast lesions and predict lymph node status

before surgery.

In this study, we used k-means algorithm to realize feature

clustering, the omics features of 4 subregions for BMUS images and

the 5 subregions for SWE images were extracted respectively. We

could visualize the intratumoral heterogeneity based on number of

subregions in BMUS or SWE images by habitat analysis, the fewer

of subregions, the lower of intratumoral heterogeneity.

Some studies have found radiomics models or machine learning

models based on US radiomics analysis could be a promising

predictive tool. Yu et al (20) found radiomics nomogram based

on BMUS radiomics showed good performance for ALN detection

(AUC 0.84 and 0.81 in the training and validation cohort). Jiang

et al (21) found radiomics model based on SWE showed good

discrimination for preoperative evaluation of the ALN burden in

early-stage breast cancer (overall C-index 0.842 and 0.822in the

training and validation set). Yao et al (16) have established four

machine learning models using BMUS radiomics to predict axillary

sentinel lymph node metastasis (SLNM) burden in early-stage

invasive breast cancer (IBC), and found combination of

clinicopathologic factors and SVM classifier model improved the

predictive performance with an AUC of 0.934 in the test

cohort (20).

In our study, we established eleven machine learning models

based on BMUS or SWE habitat, the NaiveBayes model based on

SWE habitat analysis was found to be best with AUC of 0.953,

which outperformed other machine learning models for the

prediction ALN burden in patients with breast cancer. Our study

suggested that NaiveBayes was a robust algorithm and had strong

generalization power to build habitat-based ultrasound models.

Moreover, the hardness of breast cancer is not uniformly

distributed, and some studies have shown that the hardness of

tumor micro-environment regulates cell morphology, proliferation

and metastasis (22–24). Therefore, hardness heterogeneity of tumor

microenvironment quantitatively assessed by habitat-based SWE

might be expected to provide reliable clues for understanding the

mechanical process of breast cancer formation and development.

Several limitations associated with this study warrant mention.

First, this study was a retrospective study in single center. Some

unavoidable bias cannot be excluded. Second, considering the

pathology heterogeneity of breast cancer, the sample size of this

study was relatively small. Third, the machine learning models need

to validate in multicenter external test patients. Finally, to realize

SWE-based quantitative measure of breast tumor quantitative,

further analysis based on habitat should be performed.
Frontiers in Oncology 09
5 Conclusion

Habitat analysis based on ultrasound might be a potential

method to visualize the intratumoral heterogeneity of breast

lesions. The machine learning models based on SWE radiomics

with habitat analysis could enhance the ability of prediction lymph

node burden in patients with breast cancer, which could be a

promising approach to make clinical decisions.
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