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Cervical cancer, one of the most common female cancers, can be detected with
computed tomography (CT) and magnetic resonance imaging (MRI). Computer-
aided diagnosis (CAD) methods based on artificial intelligence have been widely
explored to improve traditional screening methods for cervical cancer detection.
This study aims to compare the accuracy of CT and MRI in diagnosing cervical
cancer using a novel methodology that combines the Large Vision Model (LVM)
and Internlmage, which reduces the misclassification of cervical tumors,
especially in benign and malignant cases. Internlmage (based on InceptionV3)
extracts pre-trained deep features, making it more sensitive to tumor-specific
patterns. At the same time, LVM focuses on fine-grained spatial features, helping
to classify early changes in cervical pathology. In the Shark Optimization
Algorithm (SOA), the procedure dynamically selects the optimal weight
parameter, avoiding overreliance on a single model. This application improves
generalization across different CT and MRI datasets. The performance of the
proposed model is evaluated on two new datasets, KAUH-CCTD and KAUH-
CCMD, collected from King Abdullah University Hospital (KAUH) in Jordan. The
proposed model classified images into three categories: benign, malignant, and
normal. The proposed model achieved the best performance in diagnosing CT
images, with an accuracy of 98.49%, while achieving an accuracy of 92.92% in
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diagnosing MRI images. CT imaging, especially MRI, can detect tumor extension
into the cervical stroma, which could change treatment approaches. Additionally,
imaging plays a crucial role in monitoring treatment and patient progress to
detect early disease relapses.

gynecologic oncology, cervical cancer, classification medical image, deep learning,
computer aided diagnosis, MRI image, CT image

1 Introduction

Cervical cancer is one of the most common tumors amongst
women worldwide, ranked fourth according to the 2022 Global
Cancer Observatory (1). With approximately 660,000 new cases and
350,000 deaths reported, it is the primary cause of cancer-related
deaths in 25 countries, in terms of incidence and mortality. Due to a
lack of funding and resources for public health infrastructure,
prevalence and mortality rates are up to ten times higher in
developing countries (2). These challenges impede access to
preventive measures, early detection, and treatment compared to
developed countries. However, with advances in diagnostic
methods, there has been a leap in detecting cervical cancer early
on, thus increasing survival rates (3).

Magnetic resonance imaging (MRI), incorporating T2-weighted
imaging (T2WI), contrast-enhanced T1-weighted imaging (CE-
TIWI), and diffusion-weighted imaging (DWI) (4), is the optimal
imaging tool in staging cervical cancer according to the 2018 FIGO
(International Federation of Gynecology and Obstetrics) guidelines
(5). In addition, emerging evidence highlights the amplified role of
computed tomography (CT) in this domain (6). A systematic review
indicated that the specificity of both MRI and CT for detecting
parametrial tissue invasion and lymph node involvement is
comparable, at approximately 80% (7). Nevertheless, their
sensitivity varies significantly. Pelvic MRI exhibits a higher
sensitivity, with a 74% rate for detecting parametrial tissue invasion
and 60% for identifying regional lymph node involvement. In
contrast, pelvic CT exhibits lower sensitivity, measuring 55% and
43% for those respective parameters (8).

Considering these points, artificial intelligence (AI) has
significant potential in oncology. Al-based algorithms resorting to
deep learning techniques have shown substantial promise in
analyzing screening and diagnostic methods. These systems can
detect subtle patterns and abnormalities that are overlooked by
human examiners by processing extensive datasets, thereby
reducing diagnostic errors (9). The previous few years have seen
extensive use of Al for tumor detection, including skin tumors (10)
and imaging-based tumor diagnosis (11). Screening and early
diagnosis of cervical cancer are the most important applications
of AI, wherein it can contribute to the alleviation of medical
resource shortages as well as enhanced diagnosis accuracy (12).
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This paper reflects upon recent advancements in Al technology and
its utility in early cervical cancer diagnosis. It further debates
existing barriers to AI application within the health field and
suggests research opportunities for the future.

The main objective of this study is to develop a reliable model
for cervical cancer diagnosis using MRI and CT data, leveraging two
new datasets collected from King Abdullah University Hospital, as
well as advances in deep learning and computer vision techniques.
The main contributions of this research paper are:

e This study offers two new data sets from cervical CT and
MRI scans gathered at King Abdullah University Hospital
in Jordan to detect and diagnose cervical cancer.

* A hybrid technique combining Internlmage and Large
Vision Model (LVM) is presented in this paper.
The findings of the two models were combined, and
cervical MRI and CT scans were classified using the
Shark Optimisation Algorithm (SOA) to increase
classification accuracy.

* A comparison was made between MRI and CT scanning in
cervical cancer diagnosis.

* A comprehensive analysis and evaluation of the proposed
model was conducted on datasets and compared with a set
of pre-trained models, and its performance was analyzed.

The following sections of this work are detailed as follows:
Section 2 discusses the approaches used, a comprehensive
description of the dataset, the hybrid approach combining LVM
and InternImage, and the training protocols. Section 3 summarizes
the results analysis, evaluating the performance of the proposed
model in cervical cancer diagnostic tests. Section 4 discusses the
most important studies in cervical cancer diagnosis, and Section 5
concludes with key findings and suggestions for future research.

2 Materials and methods

The proposed ensemble model is designed for cervical cancer
diagnosis based on MRI and CT scans. As shown in Figure 1. The
proposed model integrates the Large Vision Model (LVM) and the

InternImage model, reducing misclassification of cervical tumors,
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FIGURE 1
Process for methodology.

especially benign and malignant cases. InternImage (based on
InceptionV3) extracts pre-trained deep features, making it more
sensitive to tumor-specific patterns. At the same time, the LVM
model focuses on fine-grained spatial features, helping to classify
early changes in cervical pathology. The Shark Optimization
Algorithm (SOA) dynamically selects the optimal weight
parameter, avoiding overreliance on a single model. This
implementation enhances generalization across diverse MRI and
CT datasets. Medical data, including MRI and CT images, is
expected to vary in complexity, including resolution, contrast, and
noise. These variations are learned from the ensemble, emphasizing
high reliability during predictions in real-world clinical cases.
Clinical impact, early detection, and accurate differentiation
between normal, benign, and malignant conditions contribute to
early diagnosis and treatment planning. Therefore, the accuracy of
our comprehensive model reduces the likelihood of false negatives
and ensures the identification of malignant conditions.

2.1 Dataset description (KAUH)

The records of 500 women who underwent cervical MRI and CT
scans between early 2018 to late December 2024 were retrospectively
reviewed. This study was conducted under guidelines and with
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institutional review board approval (IRB No. 21/171/2024) at King
Abdullah University Hospital (KAUH), Jordan University of Science
and Technology (JUST), Jordan. Institutional review board approval
was granted. The data collection period spanned five months, from
October 2024 to February 2025. The KAUH-CCMD and KAUH-
CCTD datasets consist of three sections (sagittal, coronal, and axial)
classified by hospital physicians as normal, benign, or malignant.

The KAUH-CCMD dataset includes MRI scans captured using
an Ingenia Ambition 1.5T scanner. The KAUH-CCTD dataset
includes CT scans stored on a Philips Brilliance 64-channel CT
scanner. Both datasets contain 1,974 images each, classified into
three groups: normal, benign, and malignant. Table 1 shows the
distribution of the KAUH-CCTD and KAUH-CCMD datasets,
while Figure 2 provides a sample from each dataset.

2.2 Input image representation and
preprocessing

Preprocessing medical images in machine learning and deep
learning models is an important step, impacting the accuracy and
generalization of the model (13). This study partitions the dataset
into three subsets: 80% for training, 10% for testing, and 10% for
validation. The detection of cervical cancer consists essentially of
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TABLE 1 Distribution of images in each KAUH-CCTD and KAUH-CCMD
category.

639

Normal
Benign 680
KAUH-CCTD
Malignant 655
Total 1974
Normal 639
Benign 680
KAUH-CCMD
Malignant 655
Total 1974

Bold values indicate the total number of images in each dataset.

the analysis of medical images like, for instance, Pap smears or
colposcopy images, to identify signs of possibly cancerous cells. The
idea is to take meaningful features from these images to classify
benign, malignant, or normal conditions. As far as image
representation for cervical cancer detection is concerned, medical
images have come to be represented as matrices (14), more

Normal. MRI

FIGURE 2
Sample from the KAUH-CCTD and KAUH-CCMD datasets.
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specifically, as 3D tensors as shown in Equation 1:

s RHXWXC

(1)

Where S input data, H is height (number of rows of pixels), W is
width (number of columns of pixels), C is the number of color
channels, which could vary with the imaging methodology (for
example, RGB channels in colored images or gray levels in CT and
MRI) (15).

Normalizing an input image would be vital for the stability and
performance of deep learning models in training (16). For the case
of cervical cancer detection incorporated into input images,
associated with the pixel values from 0 to 255, it prompts that
normalization be applied to scale the input into a more suitable
range for the convergence of the model: Standardization could then
be applied, where pixel values become normalized concerning the
mean (u) and standard deviation (o) of the dataset as shown in
Equation 2:

)

Medical imaging is characterized by limited datasets, thus
making data augmentation necessary (17). Augmentation creates
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variations in training data, which equips the model with the ability
to handle different variations (18). The model gets used to ingesting
variations due to very slight rotations, size differences, and
horizontal shifts. By rotating the image, the model learns to view
cancerous cells from different angles. The rotation of angles is
carried out by applying the rotation matrix Ry, as shown in
Equation 3. Scaling modifies image sizes, which is essential
because cancerous cells may differ in size o is a randomly chosen
scaling factor and thus allows the model to learn scale-invariant
features using Equation 4. To avoid biasing the model towards one
side, random horizontal flipping mirrors the image across its central
axis, as described in Equation 5, while translation helps to adapt to
object positioning. Shearing simulates distortions that render the
model much stronger against variations in image quality.

/

Suew = Rg - S (3)
Shew =00+ (4)
Sij = Siw 5)

2.3 Large vision model

Large Vision Models (LVMs) are a special kind of deep learning
architecture designed to handle high-dimensional visual data. These
models have achieved remarkable success in solving quite
complicated image classification problems, especially concerning
the medical imaging domain, with an even higher significance
towards the diagnosis (19). LVMs apply some methods of
building complex architecture using convolutional layers,
attention mechanisms, and multi-scale feature extraction
techniques for understanding complicated visual patterns such as
those in cervical cancer detection scans. The inherent strength of
LVMs is built on describing spatial hierarchies and representing
long-range spatial dependencies in images. The conventional form

10.3389/fonc.2025.1608386

of a convolutional neural network (CNN) focuses more on
capturing sliding filters for local feature extraction, whereas
transformer-type LVMs use self-attention for global contextual
relationships throughout the image. Thus, fine-grained features,
which could be essential in distinguishing normal, benign, and
malignant cervical MRI and CT images, are indeed captured by the
LVMs (19). Figure 3 Illustrates the working architecture of
the model.

In this sense, the LVMs hierarchically extract the image features
(20), beginning from low features to the highest-level representation,
low-level features are detected with the use of convolutional layers,
followed by high-level features. The convolution operation in LVMs
can be expressed as shown in Equation 6:

FOU.j) = (e XSWP0mn) - FV - m,j—n) + ) (6)

Where F (i . ) is the feature map at layer 1 at spatial location (i . j)
, WO(m, n) is the filter weight of size (m x n), FUD (G - m,j—n) is
the input feature map from the previous layer, b is the bias term
used, , is an activation function, such as rectified linear unit (ReLU).
Usually, pooling layers follow the convolution operation in a deep
learning neural network. Pooling reduces the spatial dimensionality of
the feature maps while keeping relevant information. The max-
pooling operation process as shown in Equation 7:

PO = FOG +m,j+n) 7)

(m,n)eR
It consists of pooling windows R, P”(i.j) being a pooled
feature at position (i.j). This process improves computational
efficiency and mainly focuses on the most meaningful activations
to avoid overfitting (21). After the feature has been extracted from
these high-level features, they are sent to fully connected layers
where the classification decision is made.

e

Yk = Ejez’

(8)

Nx \

Conv2D (3x3, 32) Conv2D (3x3, 128) E;:a::;ed Softmax
Batch Norm Batch Norm
RuLU RuLU 9
Max Pooling (2x2) Max Pooling (2x2) Dense1

Conv2D (3x3, 64)

Conv2D (3x3, 256)

Batch Norm

Batch Norm
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FIGURE 3

LVM methodology architecture.
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Where z; denotes the logit score for class k, yj represents the
probability of the input belonging to class k as shown in Equation 8.
Now, the denominator ensures that the outputs get normalized to 1.
Transformer-based LVMs such as Vision Transformers (ViTs) process
images by cutting the images into smaller patches and modeling the
relationships between them through self-attention mechanisms. What
this self-attention mechanism does is largely capture the long-range
dependencies and general global contextual relations rather than only
capturing local spatial patterns. These projection matrices, Equations
10, 11, 12, respectively W, WX, WY, respectively, d; is the
dimensionality of the key vectors, Q and KT by dot products will
get the attention scores. Further, these attention scores are normalized
using the softmax function as described in Equation 9.

T

K
Attention(Q, K, V) = softmax( Q

Vi

W ©)

Q=sw? (10)
K = Swk 1mn
Vv =swY (12)

The dot product between the query and key is taken to determine
how much attention should be given to the different regions of the
image by allowing LVMs to emphasize relevant spatial relationships
that are significant in making the distinction between malignant and
benign cervical MRI and CT images. To increase feature diversity,
LVM implements multi-head self-attention, whereby several
attention functions are applied in parallel according to Equation
13, where W is the output-projection matrix, and & is the number
of attention heads as shown in Equation 14.

MHSA(Q,K, V) = Concat(head,, head,, heads, ... heudh)Wo (13)

head; = Attention(QW<, KWK, viv)) (14)

Multi-headed attentions whereby LVMs can pick up several
relationships in the image instantaneously, hence enhancing the
chances of classifying it correctly. For instance, one head can be
used to identify the tumor margins while the other investigates the
texture variations indicating malignancy. Position encoding
becomes necessary in vision transformers since transformers do
not hold an embedded spatial hierarchy like CNN architecture;
some position encoding is needed for retaining spatial information.
The position encoding function is usually defined as shown in
Equations 15, 16:

[

PE(pos2i) = SiH(W) (15)
pos
PE(;52i+1) = €Os (W) (16)

Here, pos denotes the position in the sequence, d indicates the
embedding dimension, while i represents the feature index.
The position encodings are added to the input image patches
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before passing them through the transformer layers to retain
spatial information.

2.4 Internlmage

InternImage is a hybrid model that blends the efficiency of the
CNNs with the flexibility that ViTs afford (22). We built an
InceptionV3-based model through which we brought in
multiscale feature extraction combined with dynamic
convolutions and self-attention to improve performance. This
proposed model brings forth a detailed mathematical explanation
of InternImage with InceptionV3 as the backbone model.
InternImage comprises the following major components.
InceptionV3, the base feature extractor, extracts low and middle-
level features through Inception modules, processing images over
multiple scales (23). Dynamic Convolutional Blocks replace static
convolution filters with input-dependent kernels for enhanced
adaptability. Self-Attention Mechanism Captures long-range
dependencies for better feature representation. Hierarchical
Representation Learning: pyramidal feature extraction at several
levels for image processing. Fully Connected Layers for Final
Classification Prediction Layer with Softmax Activation.

Multi-scale feature extraction, in principle, takes place with
different convolutional filters, in parallel, having diverse sizes of
kernel (1 x 1, 3 x 3, 5 x 5). This process captures spatial features
at different scales, which makes it robust for the detection of
heterogeneous structures in medical images (24). Instead of making
use of the standard 3x3 convolution, InceptionV3 uses 2 consecutive
convolutions of 1 and 1x3 to factorize the same. This helps to reduce
the number of parameters and the computation cost. In this paper, an
additional classifier has been integrated into the intermediate layer so
that it can improve the flow of gradients during training and mitigate
the chances of vanishing gradients in deep networks. Normalizes the
feature maps to stabilize and accelerate the training. Figure 4
ustrates the working architecture of the model.

2.4.1 Mathematical formulation of inception
modules

The mathematical formulation of an Inception module consists
of multiple convolutional layers operating in parallel, as shown in
Equations 17-21:

Fri = 0(WyxS+b1y) (17)
Fiy3 = 0(Wi33%S + b3y3) (18)
Fsys = 0(Wsy5%S + bsys) (19)
Fpoot = O(Wpoor#S + byoor) (20)
Feoncat = [Fix1> F3x3> Fx5> Fpooll (1)

Where S is an input feature map. Fy, k., by, is weights and biases
for convolutional layers. o is an activation function (e.g., ReLU).
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Architecture design of the internimage.

F

concat 18 @ concatenated feature representation from different filters.

This structure ensures that both fine-grained details and large-scale
structures are captured effectively.

2.4.2 Dynamic convolution mechanism in
Internimage

Traditional CNNs use static convolutional filters that remain
unchanged once trained (22). However, InternImage introduces
dynamic convolutions, where filters adapt based on the input. A
CNN convolution operation is defined by Equation 22, Dynamic
convolution in InternImage. Instead of using fixed kernels,
InternImage generates convolutional filters dynamically using by
Equations 23, 24.

Fl = O'(W[X»S + b[) (22)
Wl = g(s) : Wbuse (23)
Fi = O-((g(s) . Wbase)*s + bl) (24)

Here, F; depicts the feature map at the layer. [ S is the input
feature map. W, b; convolution filters, and biases. G is an activation
function (e.g., ReLU). Wj,,. It is the base convolutional kernel. The
learnable function g(S) generates a new kernel conditioned on
the input.

CNNs use local receptive fields, whereas InternImage
establishes long-range dependencies based on the self-attention
mechanism, inspired by Vision Transformers. The mathematical
formulation of self-attention is computed using query (Q), key (K),
and value (V) matrices by Equation 9. InternImage extracts features
through multiple levels of image processing, like Feature Pyramid
Networks (FPNs). During the hierarchical feature-extraction
phases, Low-Level Features (Shallow CNN Layers) are obtained in
the early convolutional layers to capture basic textures and edges.
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2.5 Shark optimization algorithm

Shark Optimization Algorithm (SOA) is a kind of swarm
intelligence-based method that imitates sharks in foraging and
predatory behavior in the ocean (25). Sharks maintain a balance
between exploration and exploitation so that prey can be tracked
and sufficiently captured. In SOA, this is all mathematically
modeled to handle some complex optimization problems (26).

The algorithm iteratively works. A population of candidate
solutions (sharks) evolves toward the optimal solution.

Each shark is a candidate solution randomly initialized in the
search space. Where S; position of the i shark. S,,;,, Spax  are the
lower and upper bounds of the search space, as shown in Equation 25:
and r is a random number drawn from the uniform distribution [0,1].
Si = Spin + 7 X (Spax — Smin) (25)

Each shark evaluates its fitness based on the objective function
f(S;), which depends on the optimization problem. The shark with
the best fitness is recorded as the current best solution S*. For a
minimization problem by the Equation 26, or for a maximization
problem by the Equation 27.

S* = arg minf(S;) (26)

S* = arg maxf(S;) (27)

Movement strategy sharks update their position based on two
key components. Cognitive component sharks remember their best-
known position. The social component sharks adjust their
movement based on the best-performing shark. As shown in
Equations 28, 29:

VI =V (ST =S+ G =S (28)
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VD Z g 4 gD (29)

Where V,-(t) is the velocity of the i" shark at iteration t. C,, C,
are acceleration coefficients controlling cognitive and social learning
(27). 1y, rp are random numbers in [0,1]. S is the position of the
current best-performing shark. Sl(-t) is the current position of the
shark. S* is the best position found globally so far.

Exploration and exploitation balance sharks alternating
between searching for new areas (exploration) and refining the
best-known solution (exploitation). A control factor « is introduced
to balance these phases, @ gradually decreases to encourage more
exploitation in later iterations as shown in Equation 30:

S = g0 4 gy D (30)

Adaptive behavior and convergence to avoid getting stuck in
local optima, the velocity update includes an adaptive random
movement term as shown in Equation 31:

VD = BVO 4 (1 - B)(ST - S) + ¥ x randn()  (31)

Where 8 is a momentum coefficient (typically 0.5-0.9). ¥
controls the strength of random movement (higher values
encourage more exploration). randn() is a normally distributed
random number. The algorithm runs for a fixed number of
iterations, stopping when no significant improvement is observed.
Figure 5 illustrates the Bayesian optimization flowchart.

2.6 Build of proposed model

The proposed model is an advanced ensemble deep learning
framework for the classification of cervical MRI and CT images into
the applicable categories of Benign or Malignant, or Normal. The
model tries to integrate the pros of two deep learning architectures

10.3389/fonc.2025.1608386

(28). LVM-A custom convolutional neural network (CNN) that
extracts deep spatial and structural features from cervical medical
images. InternImage (An InceptionV3-based Model)-A pre-trained
feature-extraction model to level up classification performance. The
ensemble obtains optimal accuracy in the classification using the
Shark Optimization Algorithm (SOA) for determining the best
weight coefficients (29).

To enhance the diagnostic accuracy of cervical cancer
classification, this study proposes a novel hybrid framework that
combines the strengths of the Large Vision Model (LVM),
InternImage, and the Shark Optimization Algorithm (SOA). The
proposed architecture introduces a unique synergy between spatial
and semantic feature representations.

InternImage, built upon the InceptionV3 backbone, is utilized
to extract deep pre-trained features that are highly sensitive to
tumor-specific patterns, which are particularly useful in
distinguishing benign from malignant cases. In contrast, the Large
Vision Model (LVM) contributes fine-grained spatial features,
enabling the detection of early pathological changes in cervical
tissue morphology.

To effectively integrate the outputs of both models, we adopt the
Shark Optimization Algorithm (SOA) as a dynamic weighting
mechanism. SOA simulates the intelligent hunting behavior of
sharks, wherein it explores the solution space adaptively to
optimize the weight parameters assigned to each model’s output.
Unlike traditional fusion techniques such as fixed-weight averaging
or majority voting, SOA dynamically adjusts these weights based on
performance feedback during training. This allows the model to
avoid overfitting and improves generalization across datasets with
different imaging modalities (CT and MRI).

The advantage of using SOA lies in its adaptive learning
capability, which enables the system to better respond to
variations in data quality, imaging characteristics, and class
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A flow graph for the shark optimization algorithm (SOA).
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distributions. This dynamic fusion process significantly reduces
misclassification, especially in challenging borderline cases, and
outperforms conventional static ensemble approaches.

2.6.1 Individual models and their mathematical
formulation

The LVM comprises several convolutional layers and max-
pooling operations, which are then followed by fully connected
layers, all designed to extract features from cervical MRI and CT
images (21). Mathematically, forward propagation in LVM is
defined as shown in Equation 32:

Frym(S) = Softmax(W; - c(W, - o(Wy - S+ b)) +by) + b3)  (32)

Where § is the cervical MRI or CT input image. The different
weight matrices for the different layers are Wy, W,, W3. by, b, , bs
are the bias terms. o is the activation function (ReLU) (30). The
score is generated through Softmax over three classes: Benign,
Malignant, and Normal. The very purpose of the LVM is to
capture minute anatomical differences as a way of understanding
malignant and benign tumors in cervical cancer diagnosis.
InternImage is built on InceptionV3, which is a pre-trained
model serving as a feature extractor (31). The last classification
layers are fine-tuned to classify cervical MRI and CT images, as
shown in Equation 33:

FInternImage (S) = Soﬂmax( Waense - G(S) + bdense) (33)

G(S) denotes deep feature embeddings extracted via
InceptionV3. The variables W, and b, denote the last
layer’s weight matrix and bias, respectively. The Softmax function
assigns probabilities to the three classes: Benign, Malignant,
and Normal. Internlmage retains robust generalization using
pre-trained deep features to reduce overfitting on small
medical datasets.

2.6.2 Ensemble learning with shark optimization
algorithm

Instead of considering a model in isolation, the ensemble
method improves classification accuracy by aggregating
predictions from various architectures (32). The ensemble
decision function is Equation 34. Where Ppyy, Prygernimage - With
probability outputs from LVM and InternImage. ®;, @, are optimal
ensemble weights. These weights are determined using the Shark
Optimization Algorithm (SOA) to ensure model fusion for the
classification of cervical cancer.

P ensemble = () p Lvm + a)ZP InternImage (34)

2.6.3 Shark optimization algorithm for weight
optimization

SOA optimizes the weights using a given fitness function (33).
Where Y ; is max (Pepsemple > 1) meaning the predicted class. ), is the
true class label (Benign, Malignant, or Normal). S(j)l-, V;) =1 if the
prediction is correct, otherwise 0. N is the total cervical MRI and CT
samples. SOA updates the ensemble iteratively for maximum
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classification accuracy, as shown in Equation 35:

1N .
Fitness(w,, @,) = NE&J’,-; Vi) (35)
-1

LVM and Internlmage will carry out cervical MRI and CT
classification. Optimized ensemble learning by SOA increases the
accuracy and generalization. Successfully isolates Benign from
Malignant and Normal cases. Facilitates early detection of cervical
cancer, which allows for timely medical intervention.

Hyperparameter tuning was conducted to optimize the
performance of the developed deep learning model (34). The
values selected were optimal on systematic experimentation, using
the Shark Optimization Algorithm (SOA) in Table 2. The learning
rate of 0.001 turned out to be optimal for training to have a stable
and efficient model development environment. Batched 32 achieved
good speed in the computation as well as convergence of the model.
Adam, of all the optimizer functional forms tested, produced the
highest performance. The dropout rate for overfitting was set at 0.3,
having a very general model. The model’s robustness further
increased with L2 regularization of 0.0005. On training with the
model for 50 epochs, learning was sufficiently done not to require
intense computation. A hidden layer size of 256 turned out to be
quite productive.

while controlling an exploding gradient with a gradient clipping
value of 1.0, which helped stabilize the training process. Such
hyperparameters worked well for this model to get high
validation accuracy.

To ensure a fair comparison between the proposed model and
baseline architectures, all models underwent a dedicated
hyperparameter optimization process. For the proposed model,
the Shark Optimization Algorithm (SOA) was used to
dynamically optimize parameters such as learning rate, dropout
rate, and model fusion weights. For the baseline models, a grid
search approach was applied to determine optimal values for key
parameters, including learning rate, number of hidden units, and
regularization strength. All models were trained and validated using
the same 5-fold cross-validation strategy.

TABLE 2 Hyperparameter optimization results using the shark
optimization algorithm.

Hyperparameter Value range Best value
Learning Rate 0.0001 - 0.01 0.001
Batch Size 8- 64 32

Optimizer Adam, SGD, RMSprop Adam
Dropout Rate 0.2-0.5 0.3
L2 Regularization 0.0001 - 0.01 0.0005

Number of Epochs 10 - 100 50
Hidden Layer Size 64 - 512 256
Gradient Clipping 0.1-50 1.0
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2.7 Methods of transfer learning

Transfer learning is an excellent technique under deep learning,
where the model or with pre-trained parameters to help improve
the performance of the model on a new dataset (35). Rather than
developing a deep neural architecture from scratch, the model
would probably depend on the knowledge gained from a
larger dataset scale, such as ImageNet, that improves feature
extraction and classification. In this study (36), five advanced
deep learning architectures (ResNet50, DenseNetl21,
NASNetLarge, Internlmage, and LVM) were utilized to classify
cervical MRI and CT images into three categories: Benign,
Malignant, and Normal. As shown in Figure 6.

2.8 Evaluation proposed method

The evaluation of the cervical cancer classification model uses a
standardized set of evaluation metrics to assess the ability of the
model to distinguish Benign from Malignant and Normal cases
using MRI and CT images (37). The effectiveness of the model is
quantified through the metrics outlined below. In simple terms,
accuracy considers how many predictions made by the model are
correct in general. Precision tells us how many out of those
predicted to be positive by the model are positive. Sensitivity, also
called Recall or True Positive Rate TPR, indicates the proportion of
actual positives that are identified correctly. Specificity evaluates the
correct identification of negative cases by the model. The F1 Score,
being defined as an inverse relationship between Precision and
Sensitivity, balances false positives and false negatives, as shown in
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FIGURE 6
Working methods of transfer learning.
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Equations 36-40:

A N TP + TN (36)
Y =Py IN + FP + EN
Precision = P (37)
recision = -

Sensitivity = L (38)

ensitivity = -——o

TN

Specificity = ———— 39
pecificity TN + FP (39)
F1 Score = 2+ Precision«Sensitivity (40)

Precision + Sensitivity

The Area Under the Curve (AUC) is a statistical measure
evaluated to assess the performance of the model in classification.
It represents the probability that a randomly chosen positive case
(Benign, Malignant, or Normal) ranks higher than a randomly
chosen negative case. The AUC is calculated from the relation
between True Positive Rate (TPR) and False Positive Rate (FPR) as
shown in Equations 41-43:

TP
TPR = ——— 41
TP + FN (1)
FpP
FPR = ————— (42)
FP + TN
1
AUC = / TPRA(FPR) (43)
0
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By using the trapezoidal rule for numerical approximations.
Thus, a high AUC value (closer to 1) offers a better ability to
discriminate among the three classes: Benign, Malignant, and
Normal as shown in Equation 44. Such a kind of evaluation
assures the proposed model is true, reliable, and clinically
applicable for the classification of cervical MRI and CT images.

FPR; + FPR;,,

n-1
AUC = 3\ (FPRy,; - FPR)) 5

i=1

(44)

3 Result analysis

This research compares MRI and CT imaging to make a cervical
cancer diagnosis. A hybrid model that integrated with an LVM
model from Convolutional Neural Networks (CNNs) and an
Internlmage model from InceptionV3 was employed to make
predictions on its own. The Shark Optimization Algorithm (SOA)
was employed to optimally fuse the outputs of the two models and
enhance classification performance by finding the optimal weights
for each model and classifying cervical MRI and CT scans into
normal, malignant, and benign. The King Abdullah University
Hospital in Jordan served as the source for the KAUH-CCMD
and KAUH-CCTD datasets. The identical set of parameters was
used to train each model: 50 epochs, learning rate of 0.001, Adam
activation function, and class cross-entropy loss function. For this
study, the dataset is split into three subsets: 80% for training, 10%
for validation, and 10% for testing. Additionally, the models were
trained locally using an RTX 3050 GPU and a Jupyter laptop.

3.1 Model performance evaluation and
analysis on KAUH-CCTD

The proposed model appears to have performed best based on
the provided evaluation metrics. The proposed model had the
highest precision, AUC, sensitivity, specificity, F1 score, and
accuracy compared to all the other models for cervical cancer
diagnosis from CT images. Precision represents the ratio of
correctly predicted positive cases out of all the predicted positive
cases. High accuracy means a low false positive rate in the model,
which means it is more accurate to predict positive cases. As can be
seen from Table 3. The proposed model’s accuracy was 98.49%,

10.3389/fonc.2025.1608386

specificity was 99.23%, and AUC was 99.54%, proving its efficiency
for the diagnosis of cervical cancer using CT images. The LVM and
DenseNet121 model accuracy was approximately equal for the CT
image classification task, with LVM correctly classifying 84.84% and
DenseNet121 correctly classifying 85.35%. The lowest accuracy was
recorded by the ResNet50 model in cervical cancer diagnosis, with
an accuracy of 60.10%. The result indicates the effectiveness of the
suggested model in cervical cancer diagnosis using the CT image.
Figure 7 demonstrates the model’s performance.

Figure 8 shows six confusion matrices for comparing the
performance of different deep models, ResNet50, DenseNetl21,
NASNetLarge, InterImage Model, LVM Model, and the proposed
model in classifying cervical CT scans of three classes: benign,
malignant, and normal. Each confusion matrix displays the correct
and incorrect predictions within these classes. The model suggested
has the highest classification rate among cervical CT scans with near-
perfect diagonal values (67, 65, 61), which means perfect classification
of all three classes with minimal misclassification. DenseNet121 and
NASNetLarge perform well in CT image diagnosis. ResNet50 and the
InterImage Model experience much confusion among classes, with
high misclassification of benign and normal CT scans. The results
confirm the superiority of the new model in accurately diagnosing
cervical cancer CT images for all classes.

3.2 Model performance evaluation and
analysis on KAUH-CCMD

In this section, the performance of the model was evaluated with
the KAUH-CCMD dataset for the diagnosis of cervical cancer from
MRI images. When trained, the suggested model gave an impressive
accuracy of 92.92%, indicating that it predicted the result correctly for
all the test set samples, as shown in Table 4. When comparing the
performance of the proposed model with other models, it outperformed
the others. The specificity was 96.46%, and the AUC was 97.01%,
demonstrating the model’s effectiveness in diagnosing cervical cancer
on MRI images. LVM ranked second in diagnosing cervical cancer with
an accuracy of 86.86%. DenseNet121 and NASNetLarge also performed
the same, with the accuracy of 73.79% and 75.75%, respectively. The
worst-performing model among the models was ResNet50 with an
accuracy of 59.59%. The results demonstrate the effectiveness of the
proposed model for cervical cancer diagnosis from MRI. Figure 9
demonstrates the effectiveness of the model.

TABLE 3 Evaluating the effectiveness of models using the KAUH-CCTD dataset.

Accuracy Precision Sensitivity Specificity F1 score

ResNet50 60.10 61.99 60.36 80.11 58.98 80.90

DenseNet121 85.35 85.41 85.37 92.69 85.32 94.82

NASNetLarge 78.28 78.25 78.28 89.14 78.25 92.82

InternImage 69.19 69.51 69.22 84.57 69.19 87.15

LVM 84.84 84.86 84.89 92.43 84.85 94.83

Proposed model 98.49 98.51 98.48 99.23 98.49 99.54
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FIGURE 7
Model performance analysis using KAUH-CCTD.

Figure 10 shows six confusion matrices to analyze the
performance of different deep learning models (ResNet50,
DenseNet121, NASNetLarge, InterImage, LVM, and Proposed
Model) to classify MRI scans into three classes: Benign-MRI,
Malignant-MRI, and Normal-MRI. Each matrix illustrates the
correct and wrong predictions for each class in a graphical

format, with the best predictions on the diagonal. The Proposed

Confusion Matrix - ResNet50

Confusion Matrix - DenseNet121
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Model stands out clearly with high accuracy and low
misclassifications as indicated by its high diagonal values (65, 61,
60). The LVM Model is also satisfactory, with somewhat more
errors. ResNet50 and DenseNet121, on the contrary, show high
confusion, particularly between malignant and other classes,
indicating lower discriminatory power. The NASNetLarge and
InterImage models provide moderate performance, better than

Confusion Matrix - NASNetLarge

50
50
& g
5 26 22 20 50 5
= £
3 g
o - 40 e
-40
- 40
= = I
Q Q Q
[T -0 o€ [T
ES Eg ® EE [
= = =
20 20
20
= = I
g Q L
K] K] ]
E £ v E
2 © 2 2 10
Benign-CT Malignant-CT Normal-CT Benign-CT Malignant-CT Normal-CT Benign-CT Malignant-CT Normal-CT
Predicted Predicted Predicted
Confusion Matrix - Interimage Model Confusion Matrix - LVM Model Confusion Matrix - Proposed Model
a5
5 5 5 e
5 5 -
s 40 s s
& & & _s0
35 L 20
-40
& oG &
[T [T [T
22 22 -0 22
s s F 2 =2 -30
s 5 5
= = =

Normal-CT
Normal-CT

10

Normal-CT

Benign-CT Malignant-CT Normal-CT Benign-CT Malignant-CT Normal-CT Benign-CT Malignant-CT Normal-CT
Predicted Predicted Predicted
FIGURE 8
Confusion matrix for all models using KAUH-CCTD.
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TABLE 4 Evaluating the effectiveness of models using the KAUH-CCMD dataset.

Accuracy Precision Sensitivity Specificity F1 score
ResNet50 59.59 61.83 59.54 79.75 59.03 80.35
DenseNet121 73.79 74.05 73.79 86.91 73.52 89.06
NASNetLarge 75.75 77.09 75.84 87.94 76.02 88.72
InternImage 68.68 69.16 68.46 84.30 68.14 84.59
LVM 86.86 87.47 86.96 93.47 86.93 96.94
Proposed model 92.92 93.09 92.87 96.46 92.93 97.01

ResNet50 but still lower compared to the Proposed and LVM
models. Overall, the Proposed Model is seen to provide improved

classification for MRI-based diagnosis in all classes.

3.3 Comparison of MRI and CT in the
diagnosis of cervical cancer using the
proposed model

The main objective of the present study is to analyze the ability
of the suggested model for the proper diagnosis of cervical cancer
between CT scan and MRI. According to the comparison of KAUH-
CCMD and KAUH-CCTD datasets, the suggested model is more
precise in diagnosing cervical cancer in CT than MRI, with an
accuracy of 98.49% and an area under the curve (AUC) of 99.54%.
Figure 11 shows the ROC plots of the true positive rate (TPR) for
each class versus the false positive rate (FPR). The AUC values
indicate good performance in classification in that both benign and
malignant possess 0.99 and 1.00 accuracy, respectively. A random
classifier is depicted as a dashed diagonal line; the better the model
performs, the closer the curves are to the upper left corner.
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The model provided a diagnosis accuracy of 92.92% and an area
under the curve (AUC) of 97.01% for MRI-based cervical cancer
diagnosis. The AUC values were 0.96 for benign, 0.98 for malignant,
and 0.97 for normal, as reflected in Figure 12.

The proposed model demonstrated a higher diagnostic accuracy on
CT images (98.49%) compared to MRI images (92.92%). This
performance gap can be attributed to several factors. First, CT images
generally provide higher spatial resolution and more consistent contrast
levels, which facilitates more precise feature extraction by the model. In
contrast, MRI scans are prone to variability due to differences in
scanning protocols, magnetic field strength, and susceptibility to noise
and artifacts, which can hinder deep feature learning.

Second, specific pathological features of cervical cancer, such as
tumor boundaries and calcifications, tend to be more clearly visible
in CT scans. These distinct patterns enhance the model’s ability to
differentiate between benign, malignant, and normal tissues. Finally,
the current hybrid architecture, which leverages spatially focused
features (LVM) and deep semantic features (Internlmage), may be
more compatible with the structural consistency present in CT
images. These factors combined contribute to the observed
difference in modality-specific classification accuracy.
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Model performance analysis using KAUH-CCMD.
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3.4 Statistical analysis

To assess the consistency and comparative strength of the
evaluated models, we conducted a statistical analysis based on
their accuracy scores using the KAUH-CCTD (CT) and KAUH-
CCMD (MRI) datasets. Table 5 and Table 6 present the
classification accuracy of each model alongside the performance
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deviation from the best-performing proposed model, and their

respective 95% confidence intervals (CI).

On the CT dataset, the proposed model achieved the highest
accuracy of 98.49%, with a narrow 95% CI indicating high reliability
and minimal variation across folds. Models such as DenseNet121
and LVM also demonstrated strong performance, yet showed a
performance gap of 13.14% and 13.65%, respectively, compared to
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TABLE 5 Accuracy, 95% confidence intervals, and deviations — CT
Dataset (KAUH-CCTD).

10.3389/fonc.2025.1608386

TABLE 6 Accuracy, 95% confidence intervals, and deviations — MRI
Dataset (KAUH-CCMD).

RS ol Dgiaten o RS o ity Dgiatenfom

Proposed 98.49 + 045 0.00 Proposed 92.92 +0.67 0.00
Model Model

LVM 84.84 +1.22 -13.65 LVM 86.86 +1.15 -6.06

DenseNet121 85.35 +1.30 -13.14 NASNetLarge 75.75 +1.72 -17.17

NASNetLarge 78.28 +1.70 -20.21 DenseNet121 73.79 +2.05 -19.13

InternImage 69.19 +2.45 -29.30 InternImage 68.68 +2.47 -24.24

ResNet50 60.10 +3.12 -38.39 ResNet50 59.59 +2.96 -33.33

the proposed model. The lowest-performing model, ResNet50, had
a significantly wider CI and a performance drop of 38.39%,
indicating higher variability and lower consistency.

Similarly, on the MRI dataset, the proposed model reached an
accuracy of 92.92%, with a narrow CI. The LVM model followed at
86.86%, within 6.06% of the proposed model, while ResNet50 again
showed the lowest performance, trailing by 33.33%.

Overall, the results reveal a direct relationship between higher
accuracy and narrower confidence intervals, suggesting that more
accurate models tend to deliver more stable and reliable
performance. The proposed model consistently outperformed all
other baselines across both datasets, both in absolute performance
and statistical stability.

3.5 Study limitations

This study has several limitations that should be considered
when interpreting the results. First, the retrospective nature of the
data collection introduces potential selection bias, which may affect
model performance. Second, the use of data from a single institution
may limit generalizability to other clinical settings. Third, despite
efforts to balance the dataset, some variability in image quality,
acquisition protocols, and potential class imbalance remain.
Additionally, while the proposed model performs well in
classification, it does not yet support tumor localization, staging,
or uncertainty estimation. These aspects represent important
directions for future development. There are certain limitations to
follow when data collection is conducted in hospitals. Legal
obligations and patient confidentiality result in stripping off
identifying information, making a public statement of clear intent
for the study, and protecting data from inappropriate individuals.
Proper authority and ethics approval must be sought. Adherence to
data minimization policies is essential in that only necessary
information is retained and kept for a given period before they
are disposed of. Although the dataset used in this study was
collected from a single hospital and includes a total of 1,974
images per modality, several data augmentation and validation
techniques were applied to mitigate the risks of overfitting and
enhance model generalization. Nevertheless, future work will focus
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on validating the model using multi-center datasets from diverse
imaging environments to further assess its robustness and clinical
applicability. One of the significant weaknesses of AI systems in
healthcare involves a lack of transparency that detracts from
reliability and interpretability. Interpretable AI techniques need to
be employed to remove this deficiency.

Although the model achieved high classification accuracy,
particularly for CT images, the possibility of overfitting remains a
valid concern due to the relatively small dataset size and the
complexity of the hybrid architecture. To mitigate this, several
precautions were implemented, regularization, data augmentation,
and early stopping. However, further external validation on
independent, multi-center datasets is necessary to fully assess the
model’s generalizability and confirm its robustness in broader
clinical settings.

4 Discussion

Magnetic resonance imaging (MRI) and computed tomography
(CT) have facilitated the identification and classification of cervical
tumors. Numerous approaches have been explored, including model-
based deep learning approaches, radiation-based approaches, and
hybrid systems for grading multimodal images. While studies
demonstrate the advantage of CT in the detection of endometrial
cancer, they also indicate limited datasets, heterogeneity in imaging
protocols, and the absence of external validation.

While previous hybrid models (38) have demonstrated strong
results on tasks such as colorectal (39) and skin cancer (40)
classification, they often relied on fixed architectural blocks or
overlooked the limitations of image variability and dataset
generalizability. Unlike (41), which focuses solely on cervical
cancer with static transformer layers. Moreover, we address the
challenge of interpretability by incorporating Grad-CAM
visualizations and statistical significance testing to support our
claims (42). Thus, this study fills a critical gap by offering a
robust, interpretable, and clinically deployable solution for skin
lesion classification.

The contributions made by different strategies for improving
tumor classification and diagnostic accuracy are discussed below.
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4.1 Literature review on computed
tomography in the diagnosis of cervical
cancer

They proposed in a study (43) to develop a multimodal deep-
learning model to predict lymph node metastasis (LNM) in cervical
cancer from a collection of 233 contrast-enhanced multiphase CT
images. Their model blended a three-dimensional MedicalNet pre-
trained model for feature extraction and employed the least absolute
shrinkage and selection operator (LASSO) regression for feature
selection. The model was 88% accurate, with an AUC of 82%, a
sensitivity of 83%, and a specificity of 89%. Even though the model
was robust, some limitations to the studies were few, including their
retrospective nature, potential biases from the collection of data at
one center, and external validation required from a larger multi-
center dataset for the determination of its generalizability.

A study (44) proposed a deep learning method of automatic
segmentation of interstitial needles from post-operative cervical
cancer brachytherapy using a database of 70 three-dimensional CT
scans. Their model was trained on the detection of metal needles
and was evaluated in terms of geometric accuracy metrics with Dice
similarity coefficients (DSC) of 88%, 89%, and 90% for three
needles. The method demonstrated high accuracy in needle
positioning with little dosimetry difference from manual
reconstruction. However, the study was constrained by limited
dataset size, lack of external validation across modalities, and
possible generalizability issues on account of the single-
institutional dataset.

A study (45) proposed an artificial neural network (ANN)
model for the identification of cervical abnormality from
computed tomography (CT) images. Their study employed a
dataset of 212 CT images, of which 106 were normal and 106
were abnormal cervical images, sampled from three hospitals. The
techniques employed included preprocessing, segmentation by
using a region-based snake model, and feature extraction by using
a gray-level co-occurrence matrix (GLCM). ANN was then used for
classification with a support vector machine (SVM) as the control.
ANN was 95.75% accurate as opposed to 92.9% for SVM. While its
accuracy was extremely high, the study was hampered by having a
limited diversity dataset because cervical CT images were not very
large in number, and variations in cancer staging were not
extensively tested.

The study (46) proposed a machine learning-based model for
predicting the occurrence of malignant cells in pelvic lymph nodes-
pelvic lymph node metastasis (PLNM), in the early stages of cervical
cancer. It used 832 preoperative computed tomography (CT) scans
of patients as a basis for the study. Seven machine learning models,
such as logistic regression, random forest, and support vector
machine, were compared. Accuracy between the models ranged
from 89.1% to 90.6%, sensitivity ranged from 77.4% to 82.4%, and
specificities ranged from 92.1% to 94.3%. The study was limited:
relatively small dataset size, exclusion of patients who did not
undergo CT scans would introduce selection bias, and CT results
were not centrally read by radiologists.
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4.2 Literature review on magnetic
resonance imaging in the diagnosis of
cervical cancer

In a study by Qin (47), deep multiple-instance learning (D-
MIL) was employed to predict lymph node metastasis (LNM) in
operable cervical cancer patients using MRI data from a cohort of
392 patients. The model used for imaging feature extraction with no
manual tumor annotation was based on ResNet-50, which achieved
AUC scores of 75.7%, 71.4%, and 76.5% for the training, internal,
and external cohorts, respectively. The introduction of clinical
parameters led to a hybrid model (M3) attaining AUC scores of
83.8, 76.4, and 83.5. The study was limited mainly due to its
retrospective nature and small sample size, which might have
introduced bias.

The study (48) investigated the detection of cervical cancers
using a dataset that comprises 900 cancerous and 200 non-
cancerous MRI images. Four machine-learning models have been
applied for image classification, namely VGG16, CNN, KNN, and
RNN. Additionally, robust preprocessing techniques, including
standardization, normalization, and noise filtering, have been
employed to enhance the dataset’s quality. The best-performing
model was VGG16, with an accuracy of 95.44%. The accuracies of
CNN, KNN, and RNN were 92.3%, 89.99%, and 86.23%,
respectively. Although VGG16 achieved good accuracy, according
to the authors, factors limiting its performance included dataset
imbalance, dependency on pre-trained models, and variations in
MRI acquisition settings.

In the study (49), MRI is considered the gold standard for local
staging in cervical cancer, as it offers better soft tissue contrast and
assesses tumor size, the extent of stromal infiltration, and pelvic
lymph node involvement. The study revealed that a high-resolution
T2-weighted MRI had an accuracy of 88% and a negative predictive
value of 94-95% for detecting parametrial invasion. It also
demonstrated that DWI-MRI improved sensitivity and specificity
to 86% and 84%, respectively, for lymph node metastasis diagnosis.
Its limitation is high cost, longer scanning time, and reduced accuracy
in the evaluation of retroperitoneal disease. The study also argued
that MRI, together with imaging modalities such as PET-CT, would
improve overall diagnostic yield as well as for treatment planning.

The study by (50) aimed at predicting the response of patients
having locally advanced cervical cancer (LACC) to
chemoradiotherapy (CRT). This research was based on a dataset
comprising 252 subjects who underwent pre-treatment MRI scans.
Two models were created: a handcrafted radiomics (HCR) model
that involved feature extraction of 1,890 imaging features and
adopted the use of an SVM classifier, and a deep learning
radiomics (DLR) model that introduced the use of a 3D
convolutional neural network for the same purposes. The model
DLR scored higher than HCR, with an accuracy of 73.2% compared
to the latter’s 59.8%. For clinical factors, integrated accuracy was
raised to 77.7% for DLR and 67.6% for HCR. Limitations included
the sample size and the lack of external validation, which affected
the study’s generalizability.
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The research work conducted in (51) It is about the detection of
cervical cancer using a multiparametric MRI dataset containing 177
images. The purpose of this research was to create a radionics-based
model capable of predicting lymph-vascular space invasion (LVSI).
From T2-weighted MRI (T2WI), diffusion-weighted imaging (DWI),
and dynamic contrast-enhanced T1-weighted imaging (DCE T1WI),
the techniques of maximum relevance and minimum redundancy
(mRMR) and LASSO regression were used to select thirteen
significant features. The resultant area under the curve (AUC) was
found to be equal to 83.8% in the training cohort and equal to 83.7%
in the testing cohort for this radiomics nomogram, with 78.0% and
72.2% accuracy in the respective cohorts.

An experiment by (52) utilized convolutional neural networks
(CNNs) to detect cervical cancer in MRI images with a focus on
deep imaging features critical for accurate classification. The MRI
scans were conducted for various types of cancer, thereby providing
adequate and diverse input to train deep learning models. They
applied Learning Without Forgetting (LwF) to save knowledge from
previous sets of data and improve the classification of new data. The
top one was MobileNetV3 Small with 86% accuracy. Xception and
Inception V3 architectures were also applied for further
improvement, as the immense computational processing demands
of MRI data were given top priority.

While previous studies have achieved promising results using deep
learning in cervical cancer diagnosis, most of them rely on either single-
modality data or fixed-weight fusion approaches. In contrast, our work
introduces a novel hybrid framework that combines semantic and
spatial feature extractors (Internlmage and LVM) and applies dynamic
fusion using SOA. This enables more adaptive learning across
heterogeneous inputs. Furthermore, by using both CT and MRI
modalities, our model overcomes limitations of modality-specific
training seen in prior research. These innovations directly address
the gaps identified in the literature and demonstrate a more clinically
adaptable and technically robust approach.

5 Conclusions and feather work

When diagnosing cervical cancer patients, computed tomography
(CT) and magnetic resonance imaging (MRI) are crucial. Imaging can
identify the primary tumor, demonstrate local and distant disease
progression, help define radiation fields, evaluate treatment efficacy,
and facilitate tracking of disease relapse after treatment. Using deep
learning techniques, the paper attempts to determine the efficiency of
computed tomography (CT) and magnetic resonance imaging (MRI)
as cancer imaging agents for cervical cancer. To classify between
medical images (MRI and CT) as belonging to three classes: normal,
benign, and malignant, the model used was the CNN-based LVM
model, as well as Internlmage based on InceptionV3. Output from
both models was derived independently. For the improvement of
classification accuracy, the Shark Optimization Algorithm (SOA) was
used to optimize the performance of the two models. Cervical CT scans
and MRI were categorized into three classes based on two new datasets,
KAUH-CCTD and KAUH-CCMD, gathered from King Abdullah
University Hospital (KAUH) in Jordan. The proposed model
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achieved the best performance in diagnosing CT images, with an
accuracy of 98.49%, while it achieved an accuracy of 92.92% in
diagnosing MRI images.

In the future, we hope to create a multimodal computer-aided
design system for cervical cancers by combining pertinent CT and MRI
information. In the upcoming version, additional photos will be
included to improve clarity and balance and assist researchers in
creating algorithms for identifying cervical tumors. A variety of
datasets will be used to assess the suggested model’s efficacy.
Furthermore, current and upcoming research suggests that computer
vision models could help patients and physicians by increasing the
effectiveness of diagnostic procedures, saving time, and speeding up the
identification of benign and malignant cervical cancers. The current
model’s architecture allows for clinical growth even though its primary
function is to classify cervical pictures into three categories: benign,
malignant, and normal. By adding more state-of-the-art deep learning
models like ConvNeXt, Vision Transformer (ViT), Swin Transformer,
and EfficientNetV2, we hope to broaden the comparative study. These
architectures have demonstrated excellent performance in medical
image processing and may shed more light on the possibilities of
transformer-based and sophisticated CNN models for cervical cancer
diagnosis. Furthermore, future research may use spatial feature
extraction from LVM to infer tumor staging measures. Lastly, to
improve clinical trust and support risk-based decision-making,
uncertainty estimating techniques like Monte Carlo dropout can be
used to generate confidence scores with every prediction.
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