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Cervical cancer, one of the most common female cancers, can be detected with

computed tomography (CT) and magnetic resonance imaging (MRI). Computer-

aided diagnosis (CAD) methods based on artificial intelligence have been widely

explored to improve traditional screening methods for cervical cancer detection.

This study aims to compare the accuracy of CT and MRI in diagnosing cervical

cancer using a novel methodology that combines the Large Vision Model (LVM)

and InternImage, which reduces the misclassification of cervical tumors,

especially in benign and malignant cases. InternImage (based on InceptionV3)

extracts pre-trained deep features, making it more sensitive to tumor-specific

patterns. At the same time, LVM focuses on fine-grained spatial features, helping

to classify early changes in cervical pathology. In the Shark Optimization

Algorithm (SOA), the procedure dynamically selects the optimal weight

parameter, avoiding overreliance on a single model. This application improves

generalization across different CT and MRI datasets. The performance of the

proposed model is evaluated on two new datasets, KAUH-CCTD and KAUH-

CCMD, collected from King Abdullah University Hospital (KAUH) in Jordan. The

proposed model classified images into three categories: benign, malignant, and

normal. The proposed model achieved the best performance in diagnosing CT

images, with an accuracy of 98.49%, while achieving an accuracy of 92.92% in
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diagnosing MRI images. CT imaging, especially MRI, can detect tumor extension

into the cervical stroma, which could change treatment approaches. Additionally,

imaging plays a crucial role in monitoring treatment and patient progress to

detect early disease relapses.
KEYWORDS

gynecologic oncology, cervical cancer, classification medical image, deep learning,
computer aided diagnosis, MRI image, CT image
1 Introduction

Cervical cancer is one of the most common tumors amongst

women worldwide, ranked fourth according to the 2022 Global

Cancer Observatory (1). With approximately 660,000 new cases and

350,000 deaths reported, it is the primary cause of cancer-related

deaths in 25 countries, in terms of incidence and mortality. Due to a

lack of funding and resources for public health infrastructure,

prevalence and mortality rates are up to ten times higher in

developing countries (2). These challenges impede access to

preventive measures, early detection, and treatment compared to

developed countries. However, with advances in diagnostic

methods, there has been a leap in detecting cervical cancer early

on, thus increasing survival rates (3).

Magnetic resonance imaging (MRI), incorporating T2-weighted

imaging (T2WI), contrast-enhanced T1-weighted imaging (CE-

T1WI), and diffusion-weighted imaging (DWI) (4), is the optimal

imaging tool in staging cervical cancer according to the 2018 FIGO

(International Federation of Gynecology and Obstetrics) guidelines

(5). In addition, emerging evidence highlights the amplified role of

computed tomography (CT) in this domain (6). A systematic review

indicated that the specificity of both MRI and CT for detecting

parametrial tissue invasion and lymph node involvement is

comparable, at approximately 80% (7). Nevertheless, their

sensitivity varies significantly. Pelvic MRI exhibits a higher

sensitivity, with a 74% rate for detecting parametrial tissue invasion

and 60% for identifying regional lymph node involvement. In

contrast, pelvic CT exhibits lower sensitivity, measuring 55% and

43% for those respective parameters (8).

Considering these points, artificial intelligence (AI) has

significant potential in oncology. AI-based algorithms resorting to

deep learning techniques have shown substantial promise in

analyzing screening and diagnostic methods. These systems can

detect subtle patterns and abnormalities that are overlooked by

human examiners by processing extensive datasets, thereby

reducing diagnostic errors (9). The previous few years have seen

extensive use of AI for tumor detection, including skin tumors (10)

and imaging-based tumor diagnosis (11). Screening and early

diagnosis of cervical cancer are the most important applications

of AI, wherein it can contribute to the alleviation of medical

resource shortages as well as enhanced diagnosis accuracy (12).
02
This paper reflects upon recent advancements in AI technology and

its utility in early cervical cancer diagnosis. It further debates

existing barriers to AI application within the health field and

suggests research opportunities for the future.

The main objective of this study is to develop a reliable model

for cervical cancer diagnosis using MRI and CT data, leveraging two

new datasets collected from King Abdullah University Hospital, as

well as advances in deep learning and computer vision techniques.

The main contributions of this research paper are:
• This study offers two new data sets from cervical CT and

MRI scans gathered at King Abdullah University Hospital

in Jordan to detect and diagnose cervical cancer.

• A hybrid technique combining InternImage and Large

Vision Model (LVM) is presented in this paper.

The findings of the two models were combined, and

cervical MRI and CT scans were classified using the

Shark Optimisation Algorithm (SOA) to increase

classification accuracy.

• A comparison was made between MRI and CT scanning in

cervical cancer diagnosis.

• A comprehensive analysis and evaluation of the proposed

model was conducted on datasets and compared with a set

of pre-trained models, and its performance was analyzed.
The following sections of this work are detailed as follows:

Section 2 discusses the approaches used, a comprehensive

description of the dataset, the hybrid approach combining LVM

and InternImage, and the training protocols. Section 3 summarizes

the results analysis, evaluating the performance of the proposed

model in cervical cancer diagnostic tests. Section 4 discusses the

most important studies in cervical cancer diagnosis, and Section 5

concludes with key findings and suggestions for future research.
2 Materials and methods

The proposed ensemble model is designed for cervical cancer

diagnosis based on MRI and CT scans. As shown in Figure 1. The

proposed model integrates the Large Vision Model (LVM) and the

InternImage model, reducing misclassification of cervical tumors,
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especially benign and malignant cases. InternImage (based on

InceptionV3) extracts pre-trained deep features, making it more

sensitive to tumor-specific patterns. At the same time, the LVM

model focuses on fine-grained spatial features, helping to classify

early changes in cervical pathology. The Shark Optimization

Algorithm (SOA) dynamically selects the optimal weight

parameter, avoiding overreliance on a single model. This

implementation enhances generalization across diverse MRI and

CT datasets. Medical data, including MRI and CT images, is

expected to vary in complexity, including resolution, contrast, and

noise. These variations are learned from the ensemble, emphasizing

high reliability during predictions in real-world clinical cases.

Clinical impact, early detection, and accurate differentiation

between normal, benign, and malignant conditions contribute to

early diagnosis and treatment planning. Therefore, the accuracy of

our comprehensive model reduces the likelihood of false negatives

and ensures the identification of malignant conditions.
2.1 Dataset description (KAUH)

The records of 500 women who underwent cervical MRI and CT

scans between early 2018 to late December 2024 were retrospectively

reviewed. This study was conducted under guidelines and with
Frontiers in Oncology 03
institutional review board approval (IRB No. 21/171/2024) at King

Abdullah University Hospital (KAUH), Jordan University of Science

and Technology (JUST), Jordan. Institutional review board approval

was granted. The data collection period spanned five months, from

October 2024 to February 2025. The KAUH-CCMD and KAUH-

CCTD datasets consist of three sections (sagittal, coronal, and axial)

classified by hospital physicians as normal, benign, or malignant.

The KAUH-CCMD dataset includes MRI scans captured using

an Ingenia Ambition 1.5T scanner. The KAUH-CCTD dataset

includes CT scans stored on a Philips Brilliance 64-channel CT

scanner. Both datasets contain 1,974 images each, classified into

three groups: normal, benign, and malignant. Table 1 shows the

distribution of the KAUH-CCTD and KAUH-CCMD datasets,

while Figure 2 provides a sample from each dataset.
2.2 Input image representation and
preprocessing

Preprocessing medical images in machine learning and deep

learning models is an important step, impacting the accuracy and

generalization of the model (13). This study partitions the dataset

into three subsets: 80% for training, 10% for testing, and 10% for

validation. The detection of cervical cancer consists essentially of
FIGURE 1

Process for methodology.
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the analysis of medical images like, for instance, Pap smears or

colposcopy images, to identify signs of possibly cancerous cells. The

idea is to take meaningful features from these images to classify

benign, malignant, or normal conditions. As far as image

representation for cervical cancer detection is concerned, medical

images have come to be represented as matrices (14), more
Frontiers in Oncology 04
specifically, as 3D tensors as shown in Equation 1:

S   ∈  RH�W�C (1)

Where S input data,H is height (number of rows of pixels), W is

width (number of columns of pixels), C is the number of color

channels, which could vary with the imaging methodology (for

example, RGB channels in colored images or gray levels in CT and

MRI) (15).

Normalizing an input image would be vital for the stability and

performance of deep learning models in training (16). For the case

of cervical cancer detection incorporated into input images,

associated with the pixel values from 0 to 255, it prompts that

normalization be applied to scale the input into a more suitable

range for the convergence of the model: Standardization could then

be applied, where pixel values become normalized concerning the

mean (m) and standard deviation (s ) of the dataset as shown in

Equation 2:

S0 =
S − m
s

(2)

Medical imaging is characterized by limited datasets, thus

making data augmentation necessary (17). Augmentation creates
TABLE 1 Distribution of images in each KAUH-CCTD and KAUH-CCMD
category.

Dataset Case Images (n)

KAUH-CCTD

Normal 639

Benign 680

Malignant 655

Total 1974

KAUH-CCMD

Normal 639

Benign 680

Malignant 655

Total 1974
Bold values indicate the total number of images in each dataset.
FIGURE 2

Sample from the KAUH-CCTD and KAUH-CCMD datasets.
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variations in training data, which equips the model with the ability

to handle different variations (18). The model gets used to ingesting

variations due to very slight rotations, size differences, and

horizontal shifts. By rotating the image, the model learns to view

cancerous cells from different angles. The rotation of angles is

carried out by applying the rotation matrix Rq , as shown in

Equation 3. Scaling modifies image sizes, which is essential

because cancerous cells may differ in size a is a randomly chosen

scaling factor and thus allows the model to learn scale-invariant

features using Equation 4. To avoid biasing the model towards one

side, random horizontal flipping mirrors the image across its central

axis, as described in Equation 5, while translation helps to adapt to

object positioning. Shearing simulates distortions that render the

model much stronger against variations in image quality.

S
0
new = Rq · S

0 (3)

S
0
new = a · S0 (4)

S
0
i,j = S

0
i,W−j (5)
2.3 Large vision model

Large Vision Models (LVMs) are a special kind of deep learning

architecture designed to handle high-dimensional visual data. These

models have achieved remarkable success in solving quite

complicated image classification problems, especially concerning

the medical imaging domain, with an even higher significance

towards the diagnosis (19). LVMs apply some methods of

building complex architecture using convolutional layers,

attention mechanisms, and multi-scale feature extraction

techniques for understanding complicated visual patterns such as

those in cervical cancer detection scans. The inherent strength of

LVMs is built on describing spatial hierarchies and representing

long-range spatial dependencies in images. The conventional form
Frontiers in Oncology 05
of a convolutional neural network (CNN) focuses more on

capturing sliding filters for local feature extraction, whereas

transformer-type LVMs use self-attention for global contextual

relationships throughout the image. Thus, fine-grained features,

which could be essential in distinguishing normal, benign, and

malignant cervical MRI and CT images, are indeed captured by the

LVMs (19). Figure 3 Illustrates the working architecture of

the model.

In this sense, the LVMs hierarchically extract the image features

(20), beginning from low features to the highest-level representation,

low-level features are detected with the use of convolutional layers,

followed by high-level features. The convolution operation in LVMs

can be expressed as shown in Equation 6:

F(l)(i : j) = (so
m
o
n
W(l)(m, n) · F(l−1)(i −m, j − n) + b(l)) (6)

Where F(l)(i : j) is the feature map at layer l at spatial location (i : j)

, W(l)(m, n) is the filter weight of size (m� n), F(l−1)(i −m, j − n) is

the input feature map from the previous layer, b(l)   is the bias term

used, s, is an activation function, such as rectified linear unit (ReLU).

Usually, pooling layers follow the convolution operation in a deep

learning neural network. Pooling reduces the spatial dimensionality of

the feature maps while keeping relevant information. The max-

pooling operation process as shown in Equation 7:

P(l)(i : j) =
max

(m, n)eR
    F(l)(i +m, j + n)​ (7)

It consists of pooling windows R, P(l)(i : j)   being a pooled

feature at position (i : j). This process improves computational

efficiency and mainly focuses on the most meaningful activations

to avoid overfitting (21). After the feature has been extracted from

these high-level features, they are sent to fully connected layers

where the classification decision is made.

yk =
ezk

oje
zj

(8)
FIGURE 3

LVM methodology architecture.
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Where zk denotes the logit score for class k, yk represents the

probability of the input belonging to class k as shown in Equation 8.

Now, the denominator ensures that the outputs get normalized to 1.

Transformer-based LVMs such as Vision Transformers (ViTs) process

images by cutting the images into smaller patches and modeling the

relationships between them through self-attention mechanisms. What

this self-attention mechanism does is largely capture the long-range

dependencies and general global contextual relations rather than only

capturing local spatial patterns. These projection matrices, Equations

10, 11, 12, respectively WQ, WK , WV , respectively, dk is the

dimensionality of the key vectors, Q and KT by dot products will

get the attention scores. Further, these attention scores are normalized

using the softmax function as described in Equation 9.

Attention(Q,K ,V) = softmax(
QKTffiffiffiffiffi

dk
p )V (9)

Q = SWQ (10)

K = SWK (11)

V = SWV (12)

The dot product between the query and key is taken to determine

how much attention should be given to the different regions of the

image by allowing LVMs to emphasize relevant spatial relationships

that are significant in making the distinction between malignant and

benign cervical MRI and CT images. To increase feature diversity,

LVM implements multi-head self-attention, whereby several

attention functions are applied in parallel according to Equation

13, where WO   is the output-projection matrix, and h is the number

of attention heads as shown in Equation 14.

MHSA(Q,K ,V) = Concat(head1,  head2,  head3,  … headh)W
O (13)

headi = Attention(QWQ
i ,KW

K
i ,VW

V
i ) (14)

Multi-headed attentions whereby LVMs can pick up several

relationships in the image instantaneously, hence enhancing the

chances of classifying it correctly. For instance, one head can be

used to identify the tumor margins while the other investigates the

texture variations indicating malignancy. Position encoding

becomes necessary in vision transformers since transformers do

not hold an embedded spatial hierarchy like CNN architecture;

some position encoding is needed for retaining spatial information.

The position encoding function is usually defined as shown in

Equations 15, 16:

PE(pos:2i) = sin (
pos

100002i=d
) (15)

PE(pos:2i+1) = cos (
pos

100002i=d
) (16)

Here, pos denotes the position in the sequence, d indicates the

embedding dimension, while i represents the feature index.

The position encodings are added to the input image patches
Frontiers in Oncology 06
before passing them through the transformer layers to retain

spatial information.
2.4 InternImage

InternImage is a hybrid model that blends the efficiency of the

CNNs with the flexibility that ViTs afford (22). We built an

InceptionV3-based model through which we brought in

multiscale feature extraction combined with dynamic

convolutions and self-attention to improve performance. This

proposed model brings forth a detailed mathematical explanation

of InternImage with InceptionV3 as the backbone model.

InternImage comprises the following major components.

InceptionV3, the base feature extractor, extracts low and middle-

level features through Inception modules, processing images over

multiple scales (23). Dynamic Convolutional Blocks replace static

convolution filters with input-dependent kernels for enhanced

adaptability. Self-Attention Mechanism Captures long-range

dependencies for better feature representation. Hierarchical

Representation Learning: pyramidal feature extraction at several

levels for image processing. Fully Connected Layers for Final

Classification Prediction Layer with Softmax Activation.

Multi-scale feature extraction, in principle, takes place with

different convolutional filters, in parallel, having diverse sizes of

kernel (1� 1,  3� 3,  5� 5). This process captures spatial features

at different scales, which makes it robust for the detection of

heterogeneous structures in medical images (24). Instead of making

use of the standard 3×3 convolution, InceptionV3 uses 2 consecutive

convolutions of 1 and 1×3 to factorize the same. This helps to reduce

the number of parameters and the computation cost. In this paper, an

additional classifier has been integrated into the intermediate layer so

that it can improve the flow of gradients during training and mitigate

the chances of vanishing gradients in deep networks. Normalizes the

feature maps to stabilize and accelerate the training. Figure 4

Illustrates the working architecture of the model.
2.4.1 Mathematical formulation of inception
modules

The mathematical formulation of an Inception module consists

of multiple convolutional layers operating in parallel, as shown in

Equations 17–21:

F1�1 = s (W1�1*S + b1�1) (17)

F3�3 = s (W3�3*S + b3�3) (18)

F5�5 = s (W5�5*S + b5�5) (19)

Fpool = s (Wpool*S + bpool) (20)

Fconcat = ½F1�1, F3�3, F5�5, Fpool� (21)

Where S is an input feature map. Fk�k, bk�k is weights and biases

for convolutional layers. s is an activation function (e.g., ReLU).
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Fconcat is a concatenated feature representation from different filters.

This structure ensures that both fine-grained details and large-scale

structures are captured effectively.

2.4.2 Dynamic convolution mechanism in
InternImage

Traditional CNNs use static convolutional filters that remain

unchanged once trained (22). However, InternImage introduces

dynamic convolutions, where filters adapt based on the input. A

CNN convolution operation is defined by Equation 22, Dynamic

convolution in InternImage. Instead of using fixed kernels,

InternImage generates convolutional filters dynamically using by

Equations 23, 24.

Fl = s (Wl*S + bl) (22)

Wl = g(S) · Wbase (23)

F1�1 = s ((g(S) · Wbase)*S + bl) (24)

Here, Fl depicts the feature map at the layer. l S is the input

feature map.Wl , bl convolution filters, and biases. s is an activation

function (e.g., ReLU).Wbase. It is the base convolutional kernel. The

learnable function g(S) generates a new kernel conditioned on

the input.

CNNs use local receptive fields, whereas InternImage

establishes long-range dependencies based on the self-attention

mechanism, inspired by Vision Transformers. The mathematical

formulation of self-attention is computed using query (Q), key (K),

and value (V) matrices by Equation 9. InternImage extracts features

through multiple levels of image processing, like Feature Pyramid

Networks (FPNs). During the hierarchical feature-extraction

phases, Low-Level Features (Shallow CNN Layers) are obtained in

the early convolutional layers to capture basic textures and edges.
Frontiers in Oncology 07
2.5 Shark optimization algorithm

Shark Optimization Algorithm (SOA) is a kind of swarm

intelligence-based method that imitates sharks in foraging and

predatory behavior in the ocean (25). Sharks maintain a balance

between exploration and exploitation so that prey can be tracked

and sufficiently captured. In SOA, this is all mathematically

modeled to handle some complex optimization problems (26).

The algorithm iteratively works. A population of candidate

solutions (sharks) evolves toward the optimal solution.

Each shark is a candidate solution randomly initialized in the

search space. Where Si   position of the ith   shark. Smin, Smax   are the

lower and upper bounds of the search space, as shown in Equation 25:

and r is a random number drawn from the uniform distribution [0,1].

Si   = Smin + r � (Smax − Smin) (25)

Each shark evaluates its fitness based on the objective function

f (Si), which depends on the optimization problem. The shark with

the best fitness is recorded as the current best solution S*. For a

minimization problem by the Equation 26, or for a maximization

problem by the Equation 27.

S* = argminf (Si) (26)

S* = argmaxf (Si) (27)

Movement strategy sharks update their position based on two

key components. Cognitive component sharks remember their best-

known position. The social component sharks adjust their

movement based on the best-performing shark. As shown in

Equations 28, 29:

V (t+1)
i = V (t)

i + C1r1(S* − S(t)i ) + C2r2(Sbest − S(t)i ) (28)
FIGURE 4

Architecture design of the internimage.
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V (t+1)
i = S(t)i + S(t+1)i (29)

Where V (t)
i is the velocity of the ith   shark at iteration t. C1,C2

are acceleration coefficients controlling cognitive and social learning

(27). r1, r2 are random numbers in [0,1]. Sbest   is the position of the

current best-performing shark. S(t)i is the current position of the

shark. S*   is the best position found globally so far.

Exploration and exploitation balance sharks alternating

between searching for new areas (exploration) and refining the

best-known solution (exploitation). A control factor a is introduced

to balance these phases, a   gradually decreases to encourage more

exploitation in later iterations as shown in Equation 30:

S(t+1)i = S(t)i + aV (t+1)
i (30)

Adaptive behavior and convergence to avoid getting stuck in

local optima, the velocity update includes an adaptive random

movement term as shown in Equation 31:

V (t+1)
i = bV (t)

i + (1 − b)(S* − S(t)i ) + g � randn() (31)

Where b is a momentum coefficient (typically 0.5–0.9). g
controls the strength of random movement (higher values

encourage more exploration). randn()   is a normally distributed

random number. The algorithm runs for a fixed number of

iterations, stopping when no significant improvement is observed.

Figure 5 illustrates the Bayesian optimization flowchart.
2.6 Build of proposed model

The proposed model is an advanced ensemble deep learning

framework for the classification of cervical MRI and CT images into

the applicable categories of Benign or Malignant, or Normal. The

model tries to integrate the pros of two deep learning architectures
Frontiers in Oncology 08
(28). LVM-A custom convolutional neural network (CNN) that

extracts deep spatial and structural features from cervical medical

images. InternImage (An InceptionV3-based Model)-A pre-trained

feature-extraction model to level up classification performance. The

ensemble obtains optimal accuracy in the classification using the

Shark Optimization Algorithm (SOA) for determining the best

weight coefficients (29).

To enhance the diagnostic accuracy of cervical cancer

classification, this study proposes a novel hybrid framework that

combines the strengths of the Large Vision Model (LVM),

InternImage, and the Shark Optimization Algorithm (SOA). The

proposed architecture introduces a unique synergy between spatial

and semantic feature representations.

InternImage, built upon the InceptionV3 backbone, is utilized

to extract deep pre-trained features that are highly sensitive to

tumor-specific patterns, which are particularly useful in

distinguishing benign from malignant cases. In contrast, the Large

Vision Model (LVM) contributes fine-grained spatial features,

enabling the detection of early pathological changes in cervical

tissue morphology.

To effectively integrate the outputs of both models, we adopt the

Shark Optimization Algorithm (SOA) as a dynamic weighting

mechanism. SOA simulates the intelligent hunting behavior of

sharks, wherein it explores the solution space adaptively to

optimize the weight parameters assigned to each model’s output.

Unlike traditional fusion techniques such as fixed-weight averaging

or majority voting, SOA dynamically adjusts these weights based on

performance feedback during training. This allows the model to

avoid overfitting and improves generalization across datasets with

different imaging modalities (CT and MRI).

The advantage of using SOA lies in its adaptive learning

capability, which enables the system to better respond to

variations in data quality, imaging characteristics, and class
FIGURE 5

A flow graph for the shark optimization algorithm (SOA).
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distributions. This dynamic fusion process significantly reduces

misclassification, especially in challenging borderline cases, and

outperforms conventional static ensemble approaches.

2.6.1 Individual models and their mathematical
formulation

The LVM comprises several convolutional layers and max-

pooling operations, which are then followed by fully connected

layers, all designed to extract features from cervical MRI and CT

images (21). Mathematically, forward propagation in LVM is

defined as shown in Equation 32:

FLVM(S) = Softmax(W3 · s (W2 · s(W1 · S + b1) + b2) + b3) (32)

Where S is the cervical MRI or CT input image. The different

weight matrices for the different layers are W1, W2, W3. b1, b2 , b3
are the bias terms. s is the activation function (ReLU) (30). The

score is generated through Softmax over three classes: Benign,

Malignant, and Normal. The very purpose of the LVM is to

capture minute anatomical differences as a way of understanding

malignant and benign tumors in cervical cancer diagnosis.

InternImage is built on InceptionV3, which is a pre-trained

model serving as a feature extractor (31). The last classification

layers are fine-tuned to classify cervical MRI and CT images, as

shown in Equation 33:

FInternImage (S) = Softmax(Wdense · G(S) + bdense) (33)

G(S) denotes deep feature embeddings extracted via

InceptionV3. The variables Wdense   and   bdense denote the last

layer’s weight matrix and bias, respectively. The Softmax function

assigns probabilities to the three classes: Benign, Malignant,

and Normal. InternImage retains robust generalization using

pre-trained deep features to reduce overfitting on small

medical datasets.

2.6.2 Ensemble learning with shark optimization
algorithm

Instead of considering a model in isolation, the ensemble

method improves classification accuracy by aggregating

predictions from various architectures (32). The ensemble

decision function is Equation 34. Where PLVM , PInternImage . With

probability outputs from LVM and InternImage. w1,w2 are optimal

ensemble weights. These weights are determined using the Shark

Optimization Algorithm (SOA) to ensure model fusion for the

classification of cervical cancer.

Pensemble   = w1PLVM + w2PInternImage  (34)
2.6.3 Shark optimization algorithm for weight
optimization

SOA optimizes the weights using a given fitness function (33).

Where Ŷ i is max (Pensemble  , i) meaning the predicted class. Y i is the

true class label (Benign, Malignant, or Normal). d (Ŷ i,Yi) =1 if the

prediction is correct, otherwise 0. N is the total cervical MRI and CT

samples. SOA updates the ensemble iteratively for maximum
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classification accuracy, as shown in Equation 35:

Fitness(w1,w2) =
1
No

N

i=1
d (Ŷ i,Yi) (35)

LVM and InternImage will carry out cervical MRI and CT

classification. Optimized ensemble learning by SOA increases the

accuracy and generalization. Successfully isolates Benign from

Malignant and Normal cases. Facilitates early detection of cervical

cancer, which allows for timely medical intervention.

Hyperparameter tuning was conducted to optimize the

performance of the developed deep learning model (34). The

values selected were optimal on systematic experimentation, using

the Shark Optimization Algorithm (SOA) in Table 2. The learning

rate of 0.001 turned out to be optimal for training to have a stable

and efficient model development environment. Batched 32 achieved

good speed in the computation as well as convergence of the model.

Adam, of all the optimizer functional forms tested, produced the

highest performance. The dropout rate for overfitting was set at 0.3,

having a very general model. The model’s robustness further

increased with L2 regularization of 0.0005. On training with the

model for 50 epochs, learning was sufficiently done not to require

intense computation. A hidden layer size of 256 turned out to be

quite productive.

while controlling an exploding gradient with a gradient clipping

value of 1.0, which helped stabilize the training process. Such

hyperparameters worked well for this model to get high

validation accuracy.

To ensure a fair comparison between the proposed model and

baseline architectures, all models underwent a dedicated

hyperparameter optimization process. For the proposed model,

the Shark Optimization Algorithm (SOA) was used to

dynamically optimize parameters such as learning rate, dropout

rate, and model fusion weights. For the baseline models, a grid

search approach was applied to determine optimal values for key

parameters, including learning rate, number of hidden units, and

regularization strength. All models were trained and validated using

the same 5-fold cross-validation strategy.
TABLE 2 Hyperparameter optimization results using the shark
optimization algorithm.

Hyperparameter Value range Best value

Learning Rate 0.0001 - 0.01 0.001

Batch Size 8 - 64 32

Optimizer Adam, SGD, RMSprop Adam

Dropout Rate 0.2 - 0.5 0.3

L2 Regularization 0.0001 - 0.01 0.0005

Number of Epochs 10 - 100 50

Hidden Layer Size 64 - 512 256

Gradient Clipping 0.1 - 5.0 1.0
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2.7 Methods of transfer learning

Transfer learning is an excellent technique under deep learning,

where the model or with pre-trained parameters to help improve

the performance of the model on a new dataset (35). Rather than

developing a deep neural architecture from scratch, the model

would probably depend on the knowledge gained from a

larger dataset scale, such as ImageNet, that improves feature

extraction and classification. In this study (36), five advanced

deep learning architectures (ResNet50, DenseNet121,

NASNetLarge, InternImage, and LVM) were utilized to classify

cervical MRI and CT images into three categories: Benign,

Malignant, and Normal. As shown in Figure 6.
2.8 Evaluation proposed method

The evaluation of the cervical cancer classification model uses a

standardized set of evaluation metrics to assess the ability of the

model to distinguish Benign from Malignant and Normal cases

using MRI and CT images (37). The effectiveness of the model is

quantified through the metrics outlined below. In simple terms,

accuracy considers how many predictions made by the model are

correct in general. Precision tells us how many out of those

predicted to be positive by the model are positive. Sensitivity, also

called Recall or True Positive Rate TPR, indicates the proportion of

actual positives that are identified correctly. Specificity evaluates the

correct identification of negative cases by the model. The F1 Score,

being defined as an inverse relationship between Precision and

Sensitivity, balances false positives and false negatives, as shown in
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Equations 36–40:

Accuracy =
TP + TN

TP + TN + FP + FN
(36)

Precision =
TP

TP + FP
(37)

Sensitivity  =
TP

TP + FN
(38)

Specificity  =
TN

TN + FP
(39)

F1 Score = 2*
Precision*Sensitivity
Precision + Sensitivity

(40)

The Area Under the Curve (AUC) is a statistical measure

evaluated to assess the performance of the model in classification.

It represents the probability that a randomly chosen positive case

(Benign, Malignant, or Normal) ranks higher than a randomly

chosen negative case. The AUC is calculated from the relation

between True Positive Rate (TPR) and False Positive Rate (FPR) as

shown in Equations 41–43:

TPR =
TP 

TP + FN
(41)

FPR =
FP 

FP + TN
(42)

AUC =
Z 1

0
TPRd(FPR) (43)
FIGURE 6

Working methods of transfer learning.
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By using the trapezoidal rule for numerical approximations.

Thus, a high AUC value (closer to 1) offers a better ability to

discriminate among the three classes: Benign, Malignant, and

Normal as shown in Equation 44. Such a kind of evaluation

assures the proposed model is true, reliable, and clinically

applicable for the classification of cervical MRI and CT images.

AUC = o
n−1

i=1
(FPRi+1 − FPRi)*

FPRi + FPRi+1

2
  (44)
3 Result analysis

This research compares MRI and CT imaging to make a cervical

cancer diagnosis. A hybrid model that integrated with an LVM

model from Convolutional Neural Networks (CNNs) and an

InternImage model from InceptionV3 was employed to make

predictions on its own. The Shark Optimization Algorithm (SOA)

was employed to optimally fuse the outputs of the two models and

enhance classification performance by finding the optimal weights

for each model and classifying cervical MRI and CT scans into

normal, malignant, and benign. The King Abdullah University

Hospital in Jordan served as the source for the KAUH-CCMD

and KAUH-CCTD datasets. The identical set of parameters was

used to train each model: 50 epochs, learning rate of 0.001, Adam

activation function, and class cross-entropy loss function. For this

study, the dataset is split into three subsets: 80% for training, 10%

for validation, and 10% for testing. Additionally, the models were

trained locally using an RTX 3050 GPU and a Jupyter laptop.
3.1 Model performance evaluation and
analysis on KAUH-CCTD

The proposed model appears to have performed best based on

the provided evaluation metrics. The proposed model had the

highest precision, AUC, sensitivity, specificity, F1 score, and

accuracy compared to all the other models for cervical cancer

diagnosis from CT images. Precision represents the ratio of

correctly predicted positive cases out of all the predicted positive

cases. High accuracy means a low false positive rate in the model,

which means it is more accurate to predict positive cases. As can be

seen from Table 3. The proposed model’s accuracy was 98.49%,
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specificity was 99.23%, and AUC was 99.54%, proving its efficiency

for the diagnosis of cervical cancer using CT images. The LVM and

DenseNet121 model accuracy was approximately equal for the CT

image classification task, with LVM correctly classifying 84.84% and

DenseNet121 correctly classifying 85.35%. The lowest accuracy was

recorded by the ResNet50 model in cervical cancer diagnosis, with

an accuracy of 60.10%. The result indicates the effectiveness of the

suggested model in cervical cancer diagnosis using the CT image.

Figure 7 demonstrates the model’s performance.

Figure 8 shows six confusion matrices for comparing the

performance of different deep models, ResNet50, DenseNet121,

NASNetLarge, InterImage Model, LVM Model, and the proposed

model in classifying cervical CT scans of three classes: benign,

malignant, and normal. Each confusion matrix displays the correct

and incorrect predictions within these classes. The model suggested

has the highest classification rate among cervical CT scans with near-

perfect diagonal values (67, 65, 61), whichmeans perfect classification

of all three classes with minimal misclassification. DenseNet121 and

NASNetLarge perform well in CT image diagnosis. ResNet50 and the

InterImage Model experience much confusion among classes, with

high misclassification of benign and normal CT scans. The results

confirm the superiority of the new model in accurately diagnosing

cervical cancer CT images for all classes.
3.2 Model performance evaluation and
analysis on KAUH-CCMD

In this section, the performance of the model was evaluated with

the KAUH-CCMD dataset for the diagnosis of cervical cancer from

MRI images. When trained, the suggested model gave an impressive

accuracy of 92.92%, indicating that it predicted the result correctly for

all the test set samples, as shown in Table 4. When comparing the

performance of the proposedmodel with other models, it outperformed

the others. The specificity was 96.46%, and the AUC was 97.01%,

demonstrating the model’s effectiveness in diagnosing cervical cancer

onMRI images. LVM ranked second in diagnosing cervical cancer with

an accuracy of 86.86%. DenseNet121 andNASNetLarge also performed

the same, with the accuracy of 73.79% and 75.75%, respectively. The

worst-performing model among the models was ResNet50 with an

accuracy of 59.59%. The results demonstrate the effectiveness of the

proposed model for cervical cancer diagnosis from MRI. Figure 9

demonstrates the effectiveness of the model.
TABLE 3 Evaluating the effectiveness of models using the KAUH-CCTD dataset.

Model Accuracy Precision Sensitivity Specificity F1 score AUC

ResNet50 60.10 61.99 60.36 80.11 58.98 80.90

DenseNet121 85.35 85.41 85.37 92.69 85.32 94.82

NASNetLarge 78.28 78.25 78.28 89.14 78.25 92.82

InternImage 69.19 69.51 69.22 84.57 69.19 87.15

LVM 84.84 84.86 84.89 92.43 84.85 94.83

Proposed model 98.49 98.51 98.48 99.23 98.49 99.54
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Figure 10 shows six confusion matrices to analyze the

performance of different deep learning models (ResNet50,

DenseNet121, NASNetLarge, InterImage, LVM, and Proposed

Model) to classify MRI scans into three classes: Benign-MRI,

Malignant-MRI, and Normal-MRI. Each matrix illustrates the

correct and wrong predictions for each class in a graphical

format, with the best predictions on the diagonal. The Proposed
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Model stands out clearly with high accuracy and low

misclassifications as indicated by its high diagonal values (65, 61,

60). The LVM Model is also satisfactory, with somewhat more

errors. ResNet50 and DenseNet121, on the contrary, show high

confusion, particularly between malignant and other classes,

indicating lower discriminatory power. The NASNetLarge and

InterImage models provide moderate performance, better than
FIGURE 7

Model performance analysis using KAUH-CCTD.
FIGURE 8

Confusion matrix for all models using KAUH-CCTD.
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ResNet50 but still lower compared to the Proposed and LVM

models. Overall, the Proposed Model is seen to provide improved

classification for MRI-based diagnosis in all classes.
3.3 Comparison of MRI and CT in the
diagnosis of cervical cancer using the
proposed model

The main objective of the present study is to analyze the ability

of the suggested model for the proper diagnosis of cervical cancer

between CT scan andMRI. According to the comparison of KAUH-

CCMD and KAUH-CCTD datasets, the suggested model is more

precise in diagnosing cervical cancer in CT than MRI, with an

accuracy of 98.49% and an area under the curve (AUC) of 99.54%.

Figure 11 shows the ROC plots of the true positive rate (TPR) for

each class versus the false positive rate (FPR). The AUC values

indicate good performance in classification in that both benign and

malignant possess 0.99 and 1.00 accuracy, respectively. A random

classifier is depicted as a dashed diagonal line; the better the model

performs, the closer the curves are to the upper left corner.
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The model provided a diagnosis accuracy of 92.92% and an area

under the curve (AUC) of 97.01% for MRI-based cervical cancer

diagnosis. The AUC values were 0.96 for benign, 0.98 for malignant,

and 0.97 for normal, as reflected in Figure 12.

The proposed model demonstrated a higher diagnostic accuracy on

CT images (98.49%) compared to MRI images (92.92%). This

performance gap can be attributed to several factors. First, CT images

generally provide higher spatial resolution and more consistent contrast

levels, which facilitates more precise feature extraction by the model. In

contrast, MRI scans are prone to variability due to differences in

scanning protocols, magnetic field strength, and susceptibility to noise

and artifacts, which can hinder deep feature learning.

Second, specific pathological features of cervical cancer, such as

tumor boundaries and calcifications, tend to be more clearly visible

in CT scans. These distinct patterns enhance the model’s ability to

differentiate between benign, malignant, and normal tissues. Finally,

the current hybrid architecture, which leverages spatially focused

features (LVM) and deep semantic features (InternImage), may be

more compatible with the structural consistency present in CT

images. These factors combined contribute to the observed

difference in modality-specific classification accuracy.
TABLE 4 Evaluating the effectiveness of models using the KAUH-CCMD dataset.

Model Accuracy Precision Sensitivity Specificity F1 score AUC

ResNet50 59.59 61.83 59.54 79.75 59.03 80.35

DenseNet121 73.79 74.05 73.79 86.91 73.52 89.06

NASNetLarge 75.75 77.09 75.84 87.94 76.02 88.72

InternImage 68.68 69.16 68.46 84.30 68.14 84.59

LVM 86.86 87.47 86.96 93.47 86.93 96.94

Proposed model 92.92 93.09 92.87 96.46 92.93 97.01
FIGURE 9

Model performance analysis using KAUH-CCMD.
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3.4 Statistical analysis

To assess the consistency and comparative strength of the

evaluated models, we conducted a statistical analysis based on

their accuracy scores using the KAUH-CCTD (CT) and KAUH-

CCMD (MRI) datasets. Table 5 and Table 6 present the

classification accuracy of each model alongside the performance
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deviation from the best-performing proposed model, and their

respective 95% confidence intervals (CI).

On the CT dataset, the proposed model achieved the highest

accuracy of 98.49%, with a narrow 95% CI indicating high reliability

and minimal variation across folds. Models such as DenseNet121

and LVM also demonstrated strong performance, yet showed a

performance gap of 13.14% and 13.65%, respectively, compared to
FIGURE 10

Confusion matrix for all models using KAUH-CCMD.
FIGURE 11

ROC curves for the classification of cervical cancer using KAUH-
CCTD.
FIGURE 12

ROC curves for the classification of cervical cancer using KAUH-
CCMD.
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the proposed model. The lowest-performing model, ResNet50, had

a significantly wider CI and a performance drop of 38.39%,

indicating higher variability and lower consistency.

Similarly, on the MRI dataset, the proposed model reached an

accuracy of 92.92%, with a narrow CI. The LVM model followed at

86.86%, within 6.06% of the proposed model, while ResNet50 again

showed the lowest performance, trailing by 33.33%.

Overall, the results reveal a direct relationship between higher

accuracy and narrower confidence intervals, suggesting that more

accurate models tend to deliver more stable and reliable

performance. The proposed model consistently outperformed all

other baselines across both datasets, both in absolute performance

and statistical stability.
3.5 Study limitations

This study has several limitations that should be considered

when interpreting the results. First, the retrospective nature of the

data collection introduces potential selection bias, which may affect

model performance. Second, the use of data from a single institution

may limit generalizability to other clinical settings. Third, despite

efforts to balance the dataset, some variability in image quality,

acquisition protocols, and potential class imbalance remain.

Additionally, while the proposed model performs well in

classification, it does not yet support tumor localization, staging,

or uncertainty estimation. These aspects represent important

directions for future development. There are certain limitations to

follow when data collection is conducted in hospitals. Legal

obligations and patient confidentiality result in stripping off

identifying information, making a public statement of clear intent

for the study, and protecting data from inappropriate individuals.

Proper authority and ethics approval must be sought. Adherence to

data minimization policies is essential in that only necessary

information is retained and kept for a given period before they

are disposed of. Although the dataset used in this study was

collected from a single hospital and includes a total of 1,974

images per modality, several data augmentation and validation

techniques were applied to mitigate the risks of overfitting and

enhance model generalization. Nevertheless, future work will focus
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on validating the model using multi-center datasets from diverse

imaging environments to further assess its robustness and clinical

applicability. One of the significant weaknesses of AI systems in

healthcare involves a lack of transparency that detracts from

reliability and interpretability. Interpretable AI techniques need to

be employed to remove this deficiency.

Although the model achieved high classification accuracy,

particularly for CT images, the possibility of overfitting remains a

valid concern due to the relatively small dataset size and the

complexity of the hybrid architecture. To mitigate this, several

precautions were implemented, regularization, data augmentation,

and early stopping. However, further external validation on

independent, multi-center datasets is necessary to fully assess the

model’s generalizability and confirm its robustness in broader

clinical settings.
4 Discussion

Magnetic resonance imaging (MRI) and computed tomography

(CT) have facilitated the identification and classification of cervical

tumors. Numerous approaches have been explored, including model-

based deep learning approaches, radiation-based approaches, and

hybrid systems for grading multimodal images. While studies

demonstrate the advantage of CT in the detection of endometrial

cancer, they also indicate limited datasets, heterogeneity in imaging

protocols, and the absence of external validation.

While previous hybrid models (38) have demonstrated strong

results on tasks such as colorectal (39) and skin cancer (40)

classification, they often relied on fixed architectural blocks or

overlooked the limitations of image variability and dataset

generalizability. Unlike (41), which focuses solely on cervical

cancer with static transformer layers. Moreover, we address the

challenge of interpretability by incorporating Grad-CAM

visualizations and statistical significance testing to support our

claims (42). Thus, this study fills a critical gap by offering a

robust, interpretable, and clinically deployable solution for skin

lesion classification.

The contributions made by different strategies for improving

tumor classification and diagnostic accuracy are discussed below.
TABLE 5 Accuracy, 95% confidence intervals, and deviations – CT
Dataset (KAUH-CCTD).

Model
Accuracy

(%)
95% CI (±)

Deviation from
proposed (%)

Proposed
Model

98.49 ± 0.45 0.00

LVM 84.84 ± 1.22 -13.65

DenseNet121 85.35 ± 1.30 -13.14

NASNetLarge 78.28 ± 1.70 -20.21

InternImage 69.19 ± 2.45 -29.30

ResNet50 60.10 ± 3.12 -38.39
TABLE 6 Accuracy, 95% confidence intervals, and deviations – MRI
Dataset (KAUH-CCMD).

Model
Accuracy

(%)
95% CI (±)

Deviation from
proposed (%)

Proposed
Model

92.92 ± 0.67 0.00

LVM 86.86 ± 1.15 -6.06

NASNetLarge 75.75 ± 1.72 -17.17

DenseNet121 73.79 ± 2.05 -19.13

InternImage 68.68 ± 2.47 -24.24

ResNet50 59.59 ± 2.96 -33.33
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4.1 Literature review on computed
tomography in the diagnosis of cervical
cancer

They proposed in a study (43) to develop a multimodal deep-

learning model to predict lymph node metastasis (LNM) in cervical

cancer from a collection of 233 contrast-enhanced multiphase CT

images. Their model blended a three-dimensional MedicalNet pre-

trained model for feature extraction and employed the least absolute

shrinkage and selection operator (LASSO) regression for feature

selection. The model was 88% accurate, with an AUC of 82%, a

sensitivity of 83%, and a specificity of 89%. Even though the model

was robust, some limitations to the studies were few, including their

retrospective nature, potential biases from the collection of data at

one center, and external validation required from a larger multi-

center dataset for the determination of its generalizability.

A study (44) proposed a deep learning method of automatic

segmentation of interstitial needles from post-operative cervical

cancer brachytherapy using a database of 70 three-dimensional CT

scans. Their model was trained on the detection of metal needles

and was evaluated in terms of geometric accuracy metrics with Dice

similarity coefficients (DSC) of 88%, 89%, and 90% for three

needles. The method demonstrated high accuracy in needle

positioning with little dosimetry difference from manual

reconstruction. However, the study was constrained by limited

dataset size, lack of external validation across modalities, and

possible generalizability issues on account of the single-

institutional dataset.

A study (45) proposed an artificial neural network (ANN)

model for the identification of cervical abnormality from

computed tomography (CT) images. Their study employed a

dataset of 212 CT images, of which 106 were normal and 106

were abnormal cervical images, sampled from three hospitals. The

techniques employed included preprocessing, segmentation by

using a region-based snake model, and feature extraction by using

a gray-level co-occurrence matrix (GLCM). ANN was then used for

classification with a support vector machine (SVM) as the control.

ANN was 95.75% accurate as opposed to 92.9% for SVM. While its

accuracy was extremely high, the study was hampered by having a

limited diversity dataset because cervical CT images were not very

large in number, and variations in cancer staging were not

extensively tested.

The study (46) proposed a machine learning-based model for

predicting the occurrence of malignant cells in pelvic lymph nodes-

pelvic lymph node metastasis (PLNM), in the early stages of cervical

cancer. It used 832 preoperative computed tomography (CT) scans

of patients as a basis for the study. Seven machine learning models,

such as logistic regression, random forest, and support vector

machine, were compared. Accuracy between the models ranged

from 89.1% to 90.6%, sensitivity ranged from 77.4% to 82.4%, and

specificities ranged from 92.1% to 94.3%. The study was limited:

relatively small dataset size, exclusion of patients who did not

undergo CT scans would introduce selection bias, and CT results

were not centrally read by radiologists.
Frontiers in Oncology 16
4.2 Literature review on magnetic
resonance imaging in the diagnosis of
cervical cancer

In a study by Qin (47), deep multiple-instance learning (D-

MIL) was employed to predict lymph node metastasis (LNM) in

operable cervical cancer patients using MRI data from a cohort of

392 patients. The model used for imaging feature extraction with no

manual tumor annotation was based on ResNet-50, which achieved

AUC scores of 75.7%, 71.4%, and 76.5% for the training, internal,

and external cohorts, respectively. The introduction of clinical

parameters led to a hybrid model (M3) attaining AUC scores of

83.8, 76.4, and 83.5. The study was limited mainly due to its

retrospective nature and small sample size, which might have

introduced bias.

The study (48) investigated the detection of cervical cancers

using a dataset that comprises 900 cancerous and 200 non-

cancerous MRI images. Four machine-learning models have been

applied for image classification, namely VGG16, CNN, KNN, and

RNN. Additionally, robust preprocessing techniques, including

standardization, normalization, and noise filtering, have been

employed to enhance the dataset’s quality. The best-performing

model was VGG16, with an accuracy of 95.44%. The accuracies of

CNN, KNN, and RNN were 92.3%, 89.99%, and 86.23%,

respectively. Although VGG16 achieved good accuracy, according

to the authors, factors limiting its performance included dataset

imbalance, dependency on pre-trained models, and variations in

MRI acquisition settings.

In the study (49), MRI is considered the gold standard for local

staging in cervical cancer, as it offers better soft tissue contrast and

assesses tumor size, the extent of stromal infiltration, and pelvic

lymph node involvement. The study revealed that a high-resolution

T2-weighted MRI had an accuracy of 88% and a negative predictive

value of 94-95% for detecting parametrial invasion. It also

demonstrated that DWI-MRI improved sensitivity and specificity

to 86% and 84%, respectively, for lymph node metastasis diagnosis.

Its limitation is high cost, longer scanning time, and reduced accuracy

in the evaluation of retroperitoneal disease. The study also argued

that MRI, together with imaging modalities such as PET-CT, would

improve overall diagnostic yield as well as for treatment planning.

The study by (50) aimed at predicting the response of patients

hav ing loca l ly advanced cerv ica l cancer (LACC) to

chemoradiotherapy (CRT). This research was based on a dataset

comprising 252 subjects who underwent pre-treatment MRI scans.

Two models were created: a handcrafted radiomics (HCR) model

that involved feature extraction of 1,890 imaging features and

adopted the use of an SVM classifier, and a deep learning

radiomics (DLR) model that introduced the use of a 3D

convolutional neural network for the same purposes. The model

DLR scored higher than HCR, with an accuracy of 73.2% compared

to the latter’s 59.8%. For clinical factors, integrated accuracy was

raised to 77.7% for DLR and 67.6% for HCR. Limitations included

the sample size and the lack of external validation, which affected

the study’s generalizability.
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The research work conducted in (51) It is about the detection of

cervical cancer using a multiparametric MRI dataset containing 177

images. The purpose of this research was to create a radionics-based

model capable of predicting lymph-vascular space invasion (LVSI).

From T2-weighted MRI (T2WI), diffusion-weighted imaging (DWI),

and dynamic contrast-enhanced T1-weighted imaging (DCE T1WI),

the techniques of maximum relevance and minimum redundancy

(mRMR) and LASSO regression were used to select thirteen

significant features. The resultant area under the curve (AUC) was

found to be equal to 83.8% in the training cohort and equal to 83.7%

in the testing cohort for this radiomics nomogram, with 78.0% and

72.2% accuracy in the respective cohorts.

An experiment by (52) utilized convolutional neural networks

(CNNs) to detect cervical cancer in MRI images with a focus on

deep imaging features critical for accurate classification. The MRI

scans were conducted for various types of cancer, thereby providing

adequate and diverse input to train deep learning models. They

applied LearningWithout Forgetting (LwF) to save knowledge from

previous sets of data and improve the classification of new data. The

top one was MobileNetV3 Small with 86% accuracy. Xception and

Inception V3 architectures were also applied for further

improvement, as the immense computational processing demands

of MRI data were given top priority.

While previous studies have achieved promising results using deep

learning in cervical cancer diagnosis, most of them rely on either single-

modality data or fixed-weight fusion approaches. In contrast, our work

introduces a novel hybrid framework that combines semantic and

spatial feature extractors (InternImage and LVM) and applies dynamic

fusion using SOA. This enables more adaptive learning across

heterogeneous inputs. Furthermore, by using both CT and MRI

modalities, our model overcomes limitations of modality-specific

training seen in prior research. These innovations directly address

the gaps identified in the literature and demonstrate a more clinically

adaptable and technically robust approach.
5 Conclusions and feather work

When diagnosing cervical cancer patients, computed tomography

(CT) and magnetic resonance imaging (MRI) are crucial. Imaging can

identify the primary tumor, demonstrate local and distant disease

progression, help define radiation fields, evaluate treatment efficacy,

and facilitate tracking of disease relapse after treatment. Using deep

learning techniques, the paper attempts to determine the efficiency of

computed tomography (CT) and magnetic resonance imaging (MRI)

as cancer imaging agents for cervical cancer. To classify between

medical images (MRI and CT) as belonging to three classes: normal,

benign, and malignant, the model used was the CNN-based LVM

model, as well as InternImage based on InceptionV3. Output from

both models was derived independently. For the improvement of

classification accuracy, the Shark Optimization Algorithm (SOA) was

used to optimize the performance of the twomodels. Cervical CT scans

andMRI were categorized into three classes based on two new datasets,

KAUH-CCTD and KAUH-CCMD, gathered from King Abdullah

University Hospital (KAUH) in Jordan. The proposed model
Frontiers in Oncology 17
achieved the best performance in diagnosing CT images, with an

accuracy of 98.49%, while it achieved an accuracy of 92.92% in

diagnosing MRI images.

In the future, we hope to create a multimodal computer-aided

design system for cervical cancers by combining pertinent CT andMRI

information. In the upcoming version, additional photos will be

included to improve clarity and balance and assist researchers in

creating algorithms for identifying cervical tumors. A variety of

datasets will be used to assess the suggested model’s efficacy.

Furthermore, current and upcoming research suggests that computer

vision models could help patients and physicians by increasing the

effectiveness of diagnostic procedures, saving time, and speeding up the

identification of benign and malignant cervical cancers. The current

model’s architecture allows for clinical growth even though its primary

function is to classify cervical pictures into three categories: benign,

malignant, and normal. By adding more state-of-the-art deep learning

models like ConvNeXt, Vision Transformer (ViT), Swin Transformer,

and EfficientNetV2, we hope to broaden the comparative study. These

architectures have demonstrated excellent performance in medical

image processing and may shed more light on the possibilities of

transformer-based and sophisticated CNN models for cervical cancer

diagnosis. Furthermore, future research may use spatial feature

extraction from LVM to infer tumor staging measures. Lastly, to

improve clinical trust and support risk-based decision-making,

uncertainty estimating techniques like Monte Carlo dropout can be

used to generate confidence scores with every prediction.
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