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Cancer stem cells (CSCs) exhibit self-renewal and multidirectional differentiation

capacities. The stemness of CSCs is the fundamental cause of tumor progression

and treatment resistance. The stemness index, evaluating the number and activity

of CSCs, is a crucial indicator predicting various aspects of tumor behavior such

as growth, metastasis, and prognosis. With the advancements in artificial

intelligence (AI), particularly in data analysis and machine learning, the

identification and understanding of CSCs’ stemness characteristics have

improved. The AI-based analysis allows for processing vast datasets and

recognizing patterns that assist in comprehending the role of CSCs in cancer

development. The utilization of AI to analyze and compute the stemness index

holds significant clinical relevance in tumor diagnosis and treatment. This

approach provides more precise and personalized information, potentially

influencing treatment strategies. Therefore, tailoring treatments specifically

targeting CSCs is highly imperative and may enhance therapeutic efficacy and

outcomes in cancer patients.
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1 Introduction

Cancer stem cells (CSCs) refer to the existence of a small subset of cells within a tumor

that exhibit stem cell-like properties. These CSCs possess the ability to self-renew and

differentiate into various cell types within the tumor, contributing to tumor growth and

heterogeneity. This property of self-renewal allows CSCs to sustain their population within

the tumor, acting as a source of cells that propagate and regenerate the tumor mass.

Furthermore, CSCs have the capacity to prompt multidirectional differentiation, thus,

generating different cell types within the tumor, often referred to as cancer-initiating cells

(1–3). CSCs exhibit characteristics encompassing self-renewal, multidirectional

differentiation, multi-drug resistance and radiation resistance, and signaling pathways

that are common to both tumor and normal stem cells (4–6), hence, rendering them highly

drug-resistant, evading conventional treatment, and more prone to cancer relapse and
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metastasis. Comprehending the molecular regulation of CSCs self-

renewal is crucial for advancing cancer biology research and

revolutionizing cancer treatment. However, there are numerous

challenges that impede extensive apprehension and effective

targeting of CSCs in cancer. For instance, the absence of highly

effective and specific techniques for CSCs identification and

isolation presents a significant challenge, which may be attributed

to their small subset representation within tumors (7). Additionally,

the intricate molecular mechanisms governing CSCs self-renewal

are not yet fully elucidated, thus, hampering the development of

targeted therapies that specifically address CSCs populations (8).

Therefore, a clearer understanding of CSCs and their role in driving

cancer progression is necessary, as imprecise knowledge of the

molecular underpinnings of CSCs behavior may obstruct the

development of effective anti-cancer treatments (9). Moreover,

advanced tools and breakthroughs are highly required in regards

to CSCs isolation and characterization, that would facilitate efficient

identification, isolating and assessment of CSCs, thus, propelling

advancements in the niche of CSCs research (10). Regardingly, state

of the art techniques such as single-cell sequencing, advanced

imaging techniques, and more refined biomarker identification

methods, may aid in optimum CSCs identification and

characterization (11, 12). Moreover, collaborative efforts between

researchers from various disciplines will be essential to unravel the

complex nature of CSCs, thus, paving way for innovative clinical

treatments targeting these cells. In 1994, Dick et al. used stem cell

surface antigen labeling and flow cytometry for the first time to

isolate and identify leukemic CSCs with stem cell markers (CD34

+/CD38-) from human leukemia cells, which have potential to self-

renew in acute myeloid leukemia (7).Subsequent studies used a

similar approach to isolate and identify CSCs in different cancers

such as breast (8), brain (9, 13), head and neck squamous cell

carcinoma (10), pancreatic (11) and lung cancer (12) and prostate

cancer (14). Most of the limitations of current methods for isolating

and identifying cancer stem cells (CSCs) include insufficient

precision, low yield of isolated cells (13), inability to mimic the

complex tumor microenvironment (TME) (15), high-cost and

procedural complexities, and inability to establish stable cellular

models for subsequent future studies (16).

Integration of Artificial Intelligence (AI) in oncology has shown

promising prospects in characterizing cancer stem cell properties,

explicitly ‘stemness’. The complexity and high dimensionality of

cancer-related data, including genomics, transcriptomics, and

epigenomics, underscore the need for Artificial Intelligence (AI)

in oncology (17). Traditional analytical methods often fall short in

capturing intricate, nonlinear patterns within large datasets. AI,

particularly machine learning and deep learning models, has

enabled the identification of hidden biomarkers, classification of

tumor subtypes, and prediction of treatment responses with

improved accuracy. In cancer stem cell (CSC) biology, AI

facilitates the integration of multi-omics data to define stemness

signatures and identify rare CSC populations (18). It also aids in

modeling CSC dynamics, predicting resistance mechanisms, and

uncovering novel therapeutic targets. Clinically, AI is expected to

support the development of personalized therapies by stratifying
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patients based on CSC-related risk and treatment sensitivity. As AI

tools continue to evolve, they hold significant promise in bridging

the gap between CSC research and real-world clinical applications

(19). Rapid evolution of the high-throughput detection technologies

entailing advanced imaging, genomic sequencing, and other -omics

techniques, has enabled extensive data generation in regards to

tumor histology (17, 18). This typically includes comprehensive

tumor databases{TCGA(The cancer genome atlas), ICGC

(International Cancer Genome Consortium), COSMIC, UCSC

Cancer Genomics Browser, canEvolve, CGWB (Cancer Genome

Workbench)}, Genome Database{Array Map, BioMuta, Cancer

Hotspots, Mitelman Database, SomamiR, CGP (The Cancer

Genome Project)}, DNA methylation database{MethHC,

MethyCancer, MethDB, NGSmethDB, PubMeth, SurvivalMeth,

DiseaseMeth2, MethSurv, MethBank, Lnc2Meth, MEXPRESS},

Transcriptome Database{Oncomine, GEO(Gene Expression

Omnibus), ArrayExpress, ChiTaRS, miRCancer, OncomiRDB,

UALCAN, CRN (Cancer RNA-Seq Nexus)}, Proteome. Database

{Cancer3D, CancerPPD, Cancer Proteome Variation Database

(CanProVar), Clinical Proteomic Tumor Analysis Consortium

(CPTAC), DbDEPC}, Database of tumor-related genes

{DriverDB, Network of Cancer Genes (NCG), TP53MULTLoad,

UMDTP53} and oncology and drug databases {CancerDR,

CancerResource, canSAR, Genomics of Drug Sensitivity in Cancer

(GDSC), Platinum}. This synergy between AI technologies and

high-throughput detection methods holds tremendous promise in

advancing our understanding of CSCs and their role in cancer

biology. The amalgamation of AI-driven technologies with tumor-

related databases presents a plausible tool for uncovering

characteristic gene expression patterns, signaling pathways, and

molecular markers associated with CSCs, thus, enhancing our

ability to comprehensively and systematically understand the

stemness characteristics of (CSCs) (20, 21). Moreover, this would

significantly advance both basic tumor research and subsequent

clinical treatment strategies, hence, fueling discoveries that may be

translated into practical applications, potentially revolutionizing

cancer treatment and patient care.

This review presents a novel synthesis by integrating cancer

stem cell (CSC) biology with emerging artificial intelligence (AI)-

driven analytical approaches, offering a unique perspective on

stemness indices across various cancers. While numerous studies

have explored CSCs or AI separately, few have critically examined

their intersection, particularly in the context of mRNAsi, mDNAsi,

DMPsi, and ENHsi. By comparing methodologies, highlighting

limitations, and evaluating translational potential, this review

bridges a critical knowledge gap. Additionally, the compilation of

databases and tools provides a practical guide for researchers,

making this review both timely and valuable for advancing

precision oncology and CSC-targeted therapeutic strategies.
2 Biological basis of stemness of CSCs

Stem-like characteristics of CSCs include self-renewal capacity,

differentiation potential, and high tumorigenicity (4, 5), as indicated
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in the Figure 1. Most distinguishing feature of CSCs is the capacity

for self-renewal, generating specialized mitoses of one (asymmetric)

or two (symmetric) daughter stem cells (4). When CSCs

predominantly undergo symmetric divisions, they give rise to two

identical CSCs, thus, culminating into an increased pool of CSCs

within the tumor. Consequently, there is increased self-renewal

capacity and an expansion of the stem cell population, contributing

towards tumor aggressiveness, increased heterogeneity, and higher

chances of malignancy. In contrast, asymmetric divisions generate

one CSC and one differentiated progenitor or non-stem cell,

maintaining a balance by replenishing the CSC pool while

simultaneously producing cells that contribute to the tumor’s

differentiated cell population, therefore, resulting in a more stable

tumor phenotype (22). Once this balance between the symmetric

and asymmetric CSCs divisions is attained, the tumor tends to

stabilize; whereas, when the balance is tilted towards symmetric

divisions, the proportion of CSCs increases and the tumor manifests

itself as highly malignant (23).

Some researchers have begun working on developing methods

aiming to control the malignant transformation of tumors using

asymmetric division regulatory mechanisms (24). CSCs exhibit high

stemness in a variety of tumors such as leukemia (25), breast (26),

brain (9, 13), colon (27)and lung cancer (28), and are involved in

tumor growth, maintenance, and progression. Furthermore, the

plasticity of CSCs (29) suggests that tumor cells can activate the

stemness of CSCs by dedifferentiating and obtaining specific stimuli,

leading to tumor recurrence. Additionally, CSCs stemness has a

significant impact on cancer initiation, proliferation, metastasis, and
Frontiers in Oncology 03
therapy resistance (30, 31). Figure 2 provides a comprehensive

overview of how these stemness characteristics contribute to these

processes. Firstly, the stemness of CSCs affects the direction and

difficulty of cancer initiation and influences augmented cellular

carcinogenesis. It is closely related to cell proliferation, whereby, the

stronger the stemness, the higher the proliferation ability, as shown in

Figure 2A. Tumor proliferative capacity and malignancy can be

influenced by genetic, epigenetic, and proliferative modes of division

regulation in CSCs. Secondly, the stemness of CSCs is also closely

related to the ability of tumor metastasis, and their self-renewal and

differentiation are often accompanied by cell motility and migration,

allowing tumor cells to metastasize (32, 33). Figure 2B shows that the

stemness genes of cancer stem cells mainly affect cancer metastasis

through epithelial-mesenchymal transition (EMT)-related pathways

(34). Studies have shown that EMT and the metastatic process of CSCs

are quite similar, and their genes and transcriptomes have great

overlap, suggesting that EMT cells and primary CSCs may be highly

overlapping concepts (34). Although the same genetic markers are

found in metastatic EMT and CSCsmodels, CSCs with highmetastatic

potential may not be a completely new type of cancer cell, but rather a

subtype of CSCs or the result of a cellular gene mutation (35). For

instance, in D133+ pancreatic CSCs, the migratory ability of the cells

with high expression of CXC-chemokine receptor 4 (CXCR4) is

significantly higher than those cells with low expression. As well, the

patients with a high proportion of CD133+ and CXCR4+ cells in the

cancerous tissues have higher probability of cancer metastasis (36).

Briefly, the higher the stemness, the stronger is the metastatic ability.

Finally, the characteristics of CSCs are closely linked to tumor therapy
FIGURE 1

Symmetric and asymmetric division patterns of CSCs in tumor development.
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resistance. Specifically, when the stemness of CSCs is in a dormant

state, they are insensitive to external physicochemical factors that kill

tumor cells and can evade treatment (37, 38), leading to therapy

resistance (39). Mechanisms of resistance vary with treatment and

primarily include high expression of drug transporters that assist in the

transfer of intracellular toxic chemicals, as seen in Figure 2C.

Additionally, CSCs possess strong DNA repair capacity, enabling

them to resist radiation genome disruption (Figure 2D).

Furthermore, CSCs recruit non-cancerous stem cells to form a

protective microenvironment that further contributes to resistance

for CSCs (40). Comprehensively, identification of the stemness features

of CSCs is crucial to gain insight into the molecular mechanisms of

tumor progression. These stemness features are not only relevant to

tumor progression and therapeutic resistance, but also important for

timely diagnosis, selection of the therapeutic strategies, and patient

prognosis monitoring.
3 Methodology for assessment of
stemness indices

With the rapid development of gene sequencing technology and

the improvements in data processing technologies, AI has become a

hot spot in tumor research (41, 42). Of these, Network Analysis
Frontiers in Oncology 04
(NA) is an analytical method that uses genes or proteins as nodes

and their interactions as edges (43). By constructing gene co-

expression networks or protein interaction networks, a collection

of genes related to a specific biological process, known as functional

modules, can be identified (44), and ultimately the functional genes

related to stemness can be identified by the relevance of these

modules (45). Data mining through network analysis generates

large-scale gene expression data, which can be utilized to identify

stemness genes using machine learning with high accuracy and

reliability (46). Currently, the methods employed for recognizing

stemness genes based on machine learning algorithms are mainly

categorized into (i) supervised learning, and (ii) unsupervised

learning (47). One representative implementation of stemness

index modeling is the work by Malta et al. (48), where the

authors trained a one-class logistic regression (OCLR) model

using stem cell-specific transcriptomic and epigenomic profiles

obtained from the Progenitor Cell Biology Consortium (PCBC).

The model was trained to capture the gene expression features of

pluripotent stem cells and then applied to bulk tumor data from

TCGA to generate a stemness index—referred to as (i) mRNAsi

(based on transcriptome), derived via Spearman correlation

between OCLR weights and tumor gene expression; (ii) mDNAsi

(based on DNA methylation) (49), constructed by integrating three

types of features: differentially methylated probes (DMPs) between
FIGURE 2

Roles of cancer stem cells in tumor proliferation, metastasis, and therapy resistance. (A) Mechanisms of CSC-driven tumor proliferation. (B) CSCs
promotes metastasis primarily through EMT-related pathways. (C) CSCs express high levels of drug transporters, leading to chemoresistance.
(D) CSCs resist radiation through enhanced DNA repair and microenvironmental protection.
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stem cells and progenitors, methylation markers of stem cell-

specific enhancers (via Roadmap Epigenomics ChromHMM

data), and epigenetically regulated genes identified by ELMER, as

comprehended in Figure 3. Following the establishment of stemness

indices by Malta et al., subsequent studies—such as the

development of the TS score in bladder urothelial carcinoma

(BLCA)—have leveraged tumor stemness quantification to classify

subtypes, predict prognosis, and assess immunotherapy

responsiveness based on CSC and EMT features (50). These

indices quantitatively reflect the similarity between a tumor

sample and the stem-like transcriptional or epigenetic phenotype.

Importantly, high mRNAsi scores and mDNAsi scores were found

to correlate with dedifferentiation, poor prognosis, and therapy

resistance across multiple cancer types, supporting the relevance of

stemness-based metrics in oncology. Since then, many studies have

been conducted to develop and refine stemness indices using

machine learning algorithms and gene expression signatures (17,

50, 51) to assist in the prediction of tumor growth, metastasis, and

prognostic information, which are clinically significant in tumor

diagnosis and treatment (5, 24, 42).
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4 Artificial intelligence driven
stemness techniques in stemness
analysis

4.1 Calculation of DNA methylation-based
stemness index

The process workflow for calculation of DNA Methylation-

based Stemness Index has been illustrated in Figure 4. DNA

methylation is the addition of methyl groups to cytosine residues

in the DNA molecule, which regulates gene expression and cell

differentiation, and is widespread in epigenetic modifications in

eukaryotes, including CpG island methylation and non-CpG island

methylation (52). During cell differentiation, stem cells usually have

low levels of DNA methylation, whereas non-stem cells have high

levels of DNA methylation (53). Malta (48) defined the mDNAsi

using OCLR by combining: supervised classification between ESC/

iPSC and their progenies, iPSCs and their progeny. Roadmap in the

ChromHMM software as well as ELMER (Enhancer Linking by
FIGURE 3

Process workflow depicting “Calculation of DNA methylation-based stemness index” and “Calculation of mRNA expression-based stemness index.”.
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Methylation/Expression Relationships, ELMER) define mDNAsi on

the basis of known methylation patterns of stemness and non-

stemness genes using statistical models or machine learning

algorithms to compute stemness indices including Euclidean

distance, Pearson correlation coefficient and methylation

clustering. The stemness index (SI) calculated from DNA

methylation data involves the identification of specific CpG sites

that exhibit differential methylation patterns between stem cells and

non-stem cells. The differences in methylation levels at these CpG

sites serve as a basis for quantifying the stemness of a particular cell

sample or a tumor. The process typically involves identification of

differential CpG Sites; calculation of Stemness Index; and

quantification of Stemness (54). However, DNA methylation

stemness features cannot be deciphered through a range of

probes, however, different methylated regions are used as inputs,

whereby, three methods are being employed depending on the

input features (14, 48): (i) DMPsi (differentially methylated probes-

based stemness index) uses differentially methylated probe regions

(containing many filtering conditions) as input to the OCLR

algorithm to construct predictive models; (ii) ENHsi (enhancer-

based stemness index) uses methylated probes of enhancer regions

as input to the OCLR algorithm to construct predictive models; and
Frontiers in Oncology 06
(iii) EREG-mDNAsi uses the ELMER package to reconstruct gene

regulatory networks from DNA methylation and transcriptome

expression data, and use the identified features as inputs to the

OCLR algorithm to construct predictive models, which can generate

methylated probes and genes as output. The DNA methylation-

based approach for calculating stemness index consists of two steps

(55): (i) Firstly, “stemness genes” specifically expressed in stem cells

are identified based on Gene Set Enrichment Analysis (GSEA),

Principal Component Analysis (PCA), and Machine Learning, and

(ii) Secondly, the DNA methylation level of each CpG site in the

promoter region is determined using microarray or sequencing-

based methods to calculate the methylation score for each gene.

Once the methylation levels are scored for each gene, the DNA

methylation-based SI was calculated using the “EpiScore” algorithm

(56), which identifies CpG sites that are specifically methylated in

stem cells and also differentially methylated in cancer cells.

Subsequently, the SI scores are used to determine the average

methylation level of CpG sites within the stem cell-specific CpG

set. For instance, Liu (57) et al. characterized copy number

alteration and genome-wide DNA methylation of meningioma

subtypes using random forests and constructed a meningioma

progression score (MPscore) using the stemness index.
FIGURE 4

Calculation of the stemness index.
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4.2 Calculation of mRNA expression-based
stemness index

The process for calculation of mRNAsi has been illustrated in the

Figure 4. The mRNAsi was calculated based on gene expression

patterns, functional annotations, gene networks, and gene differential

expression data while using statistical models or machine learning

algorithms (58). The most commonly used data are single-cell RNA

sequencing data, gene chip data, or RNA sequencing data (44). By

using gene co-expression networks to analyze co-expression patterns

between genes, functional annotation information, and gene or

protein interaction networks, stemness indices are calculated using

random walk algorithms, network clustering, and modular analysis

(36). Pertinently, Malta (48) validated mRNAsi by applying it to an

external dataset consisting of stem and somatic differentiated cells

and scored the molecular subtypes of breast cancers and gliomas with

higher SI values for all stem cell samples than for differentiated cell

samples. Likewise, Tan (59) obtained potential molecular subtypes of

GBM patients from the GlioVis dataset by using the Consensus

Cluster Plus (CC) R package based on unsupervised clustering

analysis into gene.clusters.C1 (C1), gene.clusters.C2 (C2) and gene.

clusters.C3 (C3), followed by the analysis of the TME variants,

immune cell infiltration, and stemness indices for the three

subtypes. Similarly, Sun (60) used a non-negative matrix

decomposition algorithm to efficiently reduce the dimensionality of

the integrated dataset (an effective dimensionality reduction method

widely used to differentiate molecular patterns in high-dimensional

genomic data), classified the expression of anoikic-related genes into

Cluster 1 and Cluster 2, and analyzed the differences between the two

clusters in terms of TME, stemness indices, and clinical traits and

constructed the risk-scoring model to evaluate the relationship

between risk scores of glioblastoma and pan-cancers and the TME,

stemness, clinical traits, and response to immunotherapy. Da (45)

first used the hclust function to cluster the samples and remove the

outliers, followed by the use of the soft Power = sft$powerEstimate

command to select the optimal soft threshold to ensure that the

interactions between lncRNAs conformed to the scale-free
Frontiers in Oncology 07
distribution to the greatest extent possible and constructed the

neighbor-joining matrix by calculating the topological overlap

matrix (TO). Afterwards, hierarchical clustering using (1-TO) was

used as the distance metric, selecting keymodules by identifying them

through the dynamic shear tree algorithm, defining the lncRNAs in

the key modules as stemness index-associated lncRNAs, and finally

constructing stemness index-associated lncRNA markers for

predicting prognosis in breast cancer patients. Li (61) et al. used a

one-class logistic regression machine learning algorithm (OCLR) to

extract the transcriptomic and epigenetic feature sets derived from

untransformed pluripotent stem cells and their differentiated progeny

to calculate the mRNAsi values (mRNAsi ranges from 0 to 1, the

closer the mRNAsi is to 1, the stronger the stem cells’ features are),

and found that the distribution of immune cells differed significantly

between high and low mRNAsi lung cancer subtypes. Additionally,

Table 1 summarizes the characteristics of four commonly used

stemness indices—mRNAsi, mDNAsi, DMPsi, and ENHsi—

highlighting their underlying molecular basis, data sources,

strengths, limitations, and typical applications. mRNAsi is based on

gene expression data and reflects transcriptional activity, while

mDNAsi utilizes genome-wide DNA methylation patterns to

capture epigenetic regulation. DMPsi refines mDNAsi by focusing

on differentially methylated positions, thereby improving specificity

in stemness evaluation. ENHsi further emphasizes enhancer-

associated methylation, offering insights into non-coding regulatory

mechanisms. Each index provides a distinct perspective on tumor

stemness, complementing one another in cancer classification,

prognosis prediction, and the study of epigenetic plasticity.
5 Clinical applications of AI-based
stemness indices in cancer

The Stemness Index (SI) has gained significant importance in

cancer research as a valuable metric for quantifying the extent of

stem cell-like characteristics within a tumor cell population (62). By

examining gene expression patterns and identifying genes that are
TABLE 1 Comparative analysis of common stemness indic.

Stemness
index

Basis Data source Advantages Limitations Applications

mRNAsi Gene expression
(mRNA)

TCGA, GEO
(bulk RNA-seq)

Widely used; captures
transcriptional activity;
applicable across cancers

May miss epigenetic
regulation; sensitive to
tumor heterogeneity

Identifying stem-like
phenotypes; correlating with
prognosis and
immune infiltration

mDNAsi DNA
methylation
patterns

TCGA, GEO
(450K/850K arrays)

Reflects epigenetic regulation;
more stable than RNA-
based indices

Limited to methylation sites;
may not fully capture
transcriptional dynamics

Cancer classification;
predicting therapy resistance
and epigenetic reprogramming

DMPsi Differentially
methylated
positions

TCGA, GEO Focuses on informative CpG
sites; increased specificity

Dependent on high-quality
DMP identification; limited
cross-cohort comparability

Distinguishing tumor subtypes
with differential stemness

ENHsi Enhancer-
associated
DNA methylation

ENCODE, TCGA Targets regulatory regions;
reflects enhancer activity
driving stemness

Complex analysis pipeline;
enhancer regions less
annotated in some cancers

Understanding non-coding
regulatory influence on
stemness and
cancer progression
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commonly expressed in stem cells, the stem cell index can be used to

predict tumor aggressiveness, patient prognosis, and response to

therapy (63), providing new targets and strategies for cancer

management (50).
5.1 Stemness index in cancer therapy
response

Currently, common treatment modalities for cancer include

traditional radiotherapy, targeted therapy, and immunotherapy

(42). The stem cell index identifies patients with tumors that have

high levels of stem cells, reduces the number of patients who

develop resistance to traditional chemotherapy and radiation,

provides targeted therapies against CSCs, and improves treatment

response rates (Figure 5A). CSCs are thought to be responsible for

tumorigenesis, progression, and recurrence, and targeting these

cells may improve overall therapeutic outcomes in cancer patients

(42). In this regard, Guo (64) et al., screened 16 genes related to

stem cell characteristics of IGC and 43 genes of DGC using

mRNAsi. They preliminarily analyzed the relationship between

the clinical features of gastric adenocarcinomas and the mRNAsi

scores, and found that the tumor samples had higher stemness
Frontiers in Oncology 08
indices than the normal samples, whereby, there was a significant

difference between intestinal-type and diffuse-type gastric

carcinomas; and that the stemness-properties-related genes were

related to the cell cycle, and they could be used as a therapeutic

target for inhibiting the stem cells of gastric cancer.

Furthermore, using the mRNAsi from The Cancer Genome

Atlas (TCGA) to assess and correct tumor purity, along with the

exploration of gene modules and key genes through weighted gene

co-expression network analysis (WGCNA), has shown that grade

III and IV tumors have higher mRNAsi and corrected mRNAsi

scores than grade I and II tumors (65). This research verified the

expression of 13 key genes between advanced platinum-resistant

and sensitive SOC samples in two Gene Expression Omnibus

(GEO) datasets, which showed CDC20 to be a potential

platinum-sensitive indicator in advanced SOC (65). Moreover, the

CTSF gene as a risk factor for resistance to a variety of tested drugs

through drug susceptibility analysis, extensive resistance in the

CTSF gene may be a potential reason for affecting disease

outcome in patients with basal breast cancer, and selumetinib,

SB590885, PLX4720, and Dabrafenib may be potential therapeutic

or adjuvant therapeutic agents (66). Additionally, Shi (67) et al.

screened 380 tumor stemness and immune (TSI)-related genes.

Using a machine learning method, they constructed a five-gene TSI-
FIGURE 5

The clinical applications of AI-based stemness indices in oncology (A) Clinical application of stemness index in CSCs therapy resistance. (B) Stemness
index as a potential biomarker for tumor grading, staging, and predicting prognosis. (C) The roles of stemness index in TME and Immune Evasion.
(D) In single-cell analysis, the stemness index is helpful for identifying tumor subpopulations within heterogeneous tissues.
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specific signature (TSISig) comprising CPS1, CCR2, NT5E, ANLN,

and ABCC2. This process involved integrating the tumor stemness

index (based on mRNA expression, mRNAsi), immune score,

mRNA expression profiles, and clinical data from the TCGA

database. TSISig demonstrated robust prognostic predictive ability

and served as an effective indicator for tumor recurrence and

response to radiotherapy and immunotherapy in LUAD patients.

Moreover, the stem cell index can also be used to identify potential

therapeutic targets for CSCs by analyzing the gene expression

patterns of stem cell-like tumor cells and identifying signaling

pathways and proteins that are critical for the maintenance of

stemness and tumorigenicity for the development of new drugs and

therapies against CSCs. The mRNA expression-based stemness

index (mRNAsi), which can represent degrees of dedifferentiation

of HCC samples, was calculated by Feng (68)et al. to predict the

drug response of sorafenib therapy and prognosis. Unsupervised

cluster analysis was conducted to distinguish mRNAsi-based

subgroups, and gene/gene set functional enrichment analysis was

employed to identify key sorafenib resistance-related pathways. By

analyzing the core regulatory genes of the PPAR signaling pathway,

they identified four candidate target genes, (i) retinoid X receptor

beta (RXRB), (ii) nuclear receptor subfamily 1 group H member 3

(NR1H3), (iii) cytochrome P450 family 8 subfamily B member 1

(CYP8B1), and (iv) stearoyl-CoA desaturase (SCD), as a signature

to distinguish the response of sorafenib. They proposed and

validated that the RXRB and NR1H3 could directly regulate

NR1H3 and SCD, respectively. The results endorsed the

combined use of SCD inhibitors and sorafenib as a promising

therapeutic approach (68).

Finally, the stemness index has shown promise in identifying

cancer patients who may benefit from targeted therapy or

immunotherapy (42). In this regard, Wang (69) et al. retrieved

gene expression data of 60 patients with gastrointestinal

mesenchymal stromal tumor GIST from the Array Express

database, applied CIBERSORT to calculate the immune

infiltration level, used ssGSEA and ESTIMATE to calculate the

cancer stemness index and the tissue purity, and implemented the

connectivity map (CMAP) database to screen target drugs based on

GIST’s CSC-like properties to screen targeted drugs. Consequently,

the results suggested that there were differences in immune

infiltration levels between metastatic and non-metastatic GIST

groups and that low levels of T-cell infiltration were associated

with high tumor purity and tumor stemness index, with correlation

coefficients of -0.87 and -0.61 (p < 0.001), respectively (69). In

addition, the cancer stemness index was positively correlated with

cell purity (p < 0.001) and was higher in the metastatic group than

in the non-metastatic group (p = 0.0017). Through the

pharmacological mechanism of topoisomerase inhibitors, six

molecular complexes may serve as the targets for GIST treatment

(69). Studies for non-small cell lung cancer found that patients with

a high stemness index responded better to immune checkpoint

inhibitor therapy (PD-1/PD-L1 blockade) (70).
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5.2 The stemness index serves as a
potential biomarker for cancer progression
and prognosis

Currently, the main factors affecting the prognosis of tumor

patients include tumor grade, treatment modality, and independent

prognostic influences. The stemness index has been investigated as

a potential biomarker for predicting prognosis in patients with

various types of cancers and identification of distant metastases in

patients with high-risk cancers (57).

In a study of 355 breast cancer patients, the stemness index was

found to be an independent predictor of distant metastasis-free

survival and overall survival, suggesting that the stemness index can

be used as a prognostic biomarker in breast cancer (71). Guo (72)

analyzed gastric adenocarcinoma STAD cases in The Cancer

Genome Atlas (TCGA) based on mRNAsi. mRNAsi analysis was

performed on STAD by differential expression, survival analysis,

clinical stage, and gender. Weighted gene co-expression network

analysis (WGCNA) was used to identify useful modules and key

genes, and enrichment analysis was carried out to annotate the

functions and pathways of key genes. Finally, the expression levels

of key genes in all the cancers were validated using the Gene

Expression Omnibus (GEO) database in STAD, and the protein-

protein interaction network was used to determine the relationship

between the key genes. The results showed a decrease in mRNAsi

scores with increasing tumor stage and T-stage, and a higher overall

survival in highly grouped patients (72). Lyu (73) found that

stemness index based on corrected mRNA expression was up-

regulated in renal clear cell carcinoma (KIRC) tissues compared

to non-tumor tissues and increased with tumor stage and grade.

Similarly, EZH2 expression was associated with tumor-infiltrating

immune cells, and epigallocatechin-3-gallate (EGCG) was

determined to be the most potent inhibitor of EZH2. Notably, the

percentage of FoxP3+ Treg cells in the peripheral blood

mononuclear cells of ccRCC patients was significantly lower when

cultured in spheroids pretreated with sunitinib, thus, Zhao (74)

calculated mRNAsi from more than 500 lung adenocarcinoma

patients from TCGA database based on a one-class logistic

regression machine learning algorithm for pluripotent stem cells

and their post-differentiation mRNA expression. mRNAsi-related

key genes were identified by weighted correlation network analysis,

and the results suggested that the mRNAsi was significantly higher

in LUAD compared to normal lung tissues, whereby, patients with

advanced LUAD demonstrated higher mRNAsi and poorer overall

survival (OS). EZH2 was identified as a CSC marker and prognostic

factor in KIRC patients. Huang (66) found that basal-like breast

cancer carries the highest mRNAsi among all four breast cancer

subtypes, and 385 mRNAsi-related genes were positively correlated

with high mRNAsi values of basal breast cancer. High mRNAsi is

closely associated with active cell cycle, DNA replication and

metabolic reprogramming in basal-like breast cancer. Among

them, TRIM59, SEPT3, RAD51AP1 and EXO1 can be used as
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independent protective factors, and CTSF and ABHD14B are used

as risk factors, and the establishment of a prognostic model

containing mRNAsi-related genes can effectively predict the

survival in patients diagnosed with basal type breast cancer

subtypes. Tan (75) classified gliomas into low-grade gliomas and

glioblastomas based on mRNAsi-related genes by consensus

clustering of TCGA dataset, and developed prognostic features

related to stemness subtypes, which could effectively predict the

prognosis in glioma patients. Tang (76)used single-sample gene set

enrichment analysis (GSEA) to calculate the relative activities of the

metabolic pathways in pancreatic ductal adenocarcinoma (PDAC)

samples, and found that the overall survival (OS) of patients with

high mRNAsi values was significantly lower than the patients with

low mRNAsi values (P = 0.003). Moreover, weighted gene co-

expression network analysis (WGCNA) revealed eight independent

gene modules significantly associated with mRNAsi and 12

metabolic pathways, and two PDAC subgroups were identified

based on unsupervised clustering of the key genes in each

module, which demonstrated that PDAC samples with high

mRNAsi values exhibited aberrant activation of multiple

metabolic pathways, and the patients exhibited poor prognosis.

Overall, the AI-based Stem Cell Index stands as a powerful and

evolving tool in cancer research with profound implications for

understanding tumor grading, staging, and predicting prognosis

(Figure 5B).The ongoing use, refinement, and integration of the AI-

based Stem Cell Index in cancer research promises to revolutionize

cancer treatment by offering more precise diagnostics, tailored

treatments, and a deeper understanding of the intricate

mechanisms governing tumor development and progression, thus,

significantly improving patient outcomes and quality of life in

cancer affected individuals.
5.3 Stemness index in tumor
microenvironment and immune evasion

In the TME, a high stemness index is often associated with

aggressive tumor behavior, therapy resistance, and poor prognosis.

CSCs, which typically have high stemness scores, interact

dynamically with components of the TME encompassing immune

cells, stromal cells, and extracellular matrix (ECM) to maintain their

stem-like state (77, 78) (Figure 5C). These interactions promote

immune evasion by inducing immunosuppressive signaling

pathways, modulating antigen presentation, and recruiting

regulatory T cells and myeloid-derived suppressor cells. The

TME, thus, becomes a sanctuary for CSCs, shielding them from

immune surveillance and enhancing their survival (79, 80).

Understanding the relationship between stemness and immune

evasion offers valuable insights for therapeutic strategies aimed at

disrupting CSC niches, reactivating anti-tumor immunity, and

improving the efficacy of immunotherapies in cancers with high

stemness signatures. Additionally, integrating stemness indices into

prognostic models may aid in patient stratification and personalized

treatment design (81).
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5.4 Stemness index in single cell analysis
and tumor evolution

In the context of single-cell analysis, the stemness index is

particularly valuable for identifying subpopulations within

heterogeneous tumor tissues. Figure 5D illustrates how the

stemness index facil itates the identification of tumor

subpopulations in heterogeneous tissues during single-cell analysis.

By applying transcriptomic profiling at single-cell resolution,

researchers can calculate stemness scores for individual tumor cells,

uncovering gradients of differentiation and identifying (CSCs). These

CSCs are often associated with therapy resistance, metastasis, and

poor prognosis (82). Understanding the stemness index in single-cell

data provides insights into tumor evolution, as cancer progresses

through branching paths of clonal expansion, differentiation, and

selection. Tumor cells with high stemness indices may serve as

founders of new subclones, driving tumor heterogeneity and

adaptive evolution under treatment pressure. Moreover, the spatial

and temporal dynamics of stemness across a tumor can reveal how

specific microenvironmental niches support CSC maintenance (50).

Incorporating stemness indices into single-cell and spatial

transcriptomics datasets helps reconstruct tumor lineage trajectories

and evolutionary hierarchies (83, 84). Ultimately, this approach can

inform therapeutic strategies by targeting CSC populations and their

supporting environments, potentially improving long-term treatment

outcomes by disrupting the cellular plasticity that fuels tumor

progression and recurrence.
6 Cancer specific insights into
applicability of the AI-driven methods
in various cancer types

AI-driven stemness indices have been widely applied across

various cancers to reveal prognostic patterns, immune landscapes,

and therapeutic vulnerabilities, as shown in Table 2.
6.1 Lung cancer – lung adenocarcinoma

In LUAD, the AI-derived mRNA stemness index (mRNAsi) is

significantly higher in tumors than in normal lung tissue and

increases with tumor stage. Patients with high mRNAsi had

notably worse overall survival. A study combining OCLR-based

mRNAsi with immune profiling identified a set of 144 “immune-

stemness” genes. Hub genes including IL-6, FPR2, RLN3 were

linked to poor prognosis and correlated with immune

checkpoints and tumor mutational burden (TMB) (85).
6.2 Colorectal cancer

AI-based analysis stratified CRC patients into high- and low-

mRNAsi groups. High-mRNAsi was associated with poorer overall
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survival in stage IV CRC, increased TMB, and altered immune

infiltration patterns. Prognostic stemness signature: Weighted gene

co-expression network analysis (WGCNA) and LASSO-Cox

regression identified a three-gene prognostic signature (PARPBP,

KNSTRN, KIF2C). This signature was validated via tissue

immunofluorescence and incorporated into a nomogram

outperforming TNM staging. High-stemness CRC tumors showed

lower immune/stromal scores and reduced infiltration by

macrophages, but higher CD8+ and T follicular helper cells,

suggesting specific immune microenvironment remodeling (86).
6.3 Breast cancer

WGCNA of breast cancer transcriptomes linked mRNAsi to

hub cell cycle genes (CDC20, PLK1, BUB1/BUB1B, NCAPG,

KIF20A). These genes were overexpressed in advanced tumor

stages and are promising therapeutic targets. Breast cancer stem

cells (BCSCs) often display CD44+/CD24– phenotypes, undergo

epithelial-mesenchymal transition (EMT), and are driven by Notch,

HER2, and NF-kB signaling. Their metabolism supports self-

renewal and therapy resistance (87).
6.4 Bladder, pancreatic, and gastric cancer

In bladder Cancer, AI-based clustering helps identify stemness-

driven subtypes that are associated with poor prognosis and

immune evasion. For example, TNFAIP6 was discovered as a

critical gene in high-stemness tumors (88). AI combined with

spatial pathology can reveal how cancer stem cells are arranged

within the tumor and how they interact with the immune system

(e.g., CD133+ cells co-located with immune suppression zones) in
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Pancreatic Ductal Adenocarcinoma (PDAC) (89). In Gastric

Cancer (GC), stemness indices are used to stratify patients and

predict drug sensitivity. Moreover, certain pathways (like Wnt

signaling) are often enriched in high-stemness subtypes in GC (90).
6.5 Glioblastoma

While direct mRNAsi studies are limited, deep learning-based

radiogenomic pipelines have been used to automatically segment

tumors and predict survival in GBM. A 3D CNN radiomic signature

yielded a C-index of 0.67 (vs. 0.64 for traditional methods), with

significant patient stratification (91). Wnt/b-catenin stemness

signaling: Preclinical work highlights Wnt pathway activation in

glioblastoma stem cells (GSCs), with elevated b-catenin, TCF/LEF1,
LGR5, and c-Myc—suggesting a possible basis for integrating AI-

based signaling pathway quantification (92).
7 Challenges and limitations

Despite the promising advances in applying artificial

intelligence (AI) to develop stemness indices in cancer, several

challenges and limitations remain, which need to be addressed

before these tools can be fully integrated into clinical practice.

One major challenge is the biological complexity of cancer

stemness. Cancer stem cells (CSCs) are highly heterogeneous,

existing in dynamic states that vary not only between tumor types

but also within a single tumor. Capturing this heterogeneity

through AI models is difficult, particularly when using bulk

transcriptomic data that averages signals from diverse cell

populations. This can obscure important variations, limiting the

accuracy of stemness indices (93). Another significant limitation is
TABLE 2 Cancer specific insights into applicability of the AI-driven methods in various cancer type.

Cancer type Application of stemness
index

Key findings AI/ML methods
used

Notable
biomarkers/
pathways

NSCLC (Lung) Classification into stemness subtypes;
prognosis and
immunotherapy prediction

High-stemness linked to poor survival
and immune exclusion

LASSO, XGBoost,
Random Forest

ARTN, CD8+ T-cell
exclusion, EMT

HCC (Liver) Prognostic modeling; immune
profiling; methylation integration

High-stemness associated with low
immune scores and worse prognosis

OCLR, LASSO, Multi-
omics models

Wnt signaling,
methylation patterns

CRC (Colon/Rectum) Risk stratification and
chemotherapy sensitivity

High-stemness tumors resistant to
standard therapies

LASSO Cox, SVM EMT, angiogenesis, tumor
mutation burden

BLCA (Bladder) Subtype identification and immune
evasion prediction

High-stemness subtypes show immune
suppression and worse outcome

Boruta, SVM,
Consensus Clustering

TNFAIP6,
immune checkpoints

PDAC (Pancreas) Spatial distribution of CSCs and
immune interaction analysis

AI revealed immune-suppressive
niches near stem-like cells

Pathology AI +
spatial transcriptomics

CD133+, CD8+
spatial mapping

GC (Gastric) Drug sensitivity prediction and
subtype classification

High-stemness linked to
chemotherapy resistance

GSVA, XGBoost Wnt/b-catenin,
MAPK signaling

Pan-Cancer Cross-cancer stemness comparison
and biomarker discovery

Universal links between high
stemness, immune evasion, and
mutation load

Deep Learning, Multi-
omics AI

Shared CSC markers,
immune escape genes
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the lack of standardized frameworks for defining and measuring

stemness. Different studies use varying gene sets, computational

methods, and cutoffs to calculate stemness scores, leading to

inconsistent results that are hard to compare or reproduce. This

heterogeneity complicates efforts to validate stemness indices across

cohorts and cancer types (94). Data-related issues also pose

challenges. Heterogeneity across datasets, including differences in

sequencing platforms, sample processing, and patient

demographics, can introduce biases. Many AI models are trained

on retrospective public datasets such as TCGA, which may not

represent the diversity of clinical populations, affecting the

generalizability of findings (95).

Another critical limitation is the lack of prospective clinical

validation. Most studies rely on retrospective analyses, and few have

demonstrated how AI-based stemness indices perform in predicting

patient outcomes or guiding therapy decisions in real-time clinical

settings. Moreover, overfitting remains a concern, especially with

complex machine learning models applied to relatively small

datasets. This can lead to overly optimistic performance metrics

that do not hold up in independent validation. Finally, integrating

AI-derived stemness indices with existing clinical workflows

requires models to be interpretable and explainable, yet many AI

methods remain “black boxes,” which limits clinician trust and

adoption. Addressing these challenges through rigorous

methodological standardization, large-scale prospective studies,

and explainable AI will be essential for translating stemness

indices into practical cancer care tools (96).

While stemness indices such as mRNAsi and mDNAsi have

demonstrated promising applications in cancer research, several

studies have reported contradictory or limited findings. For

instance, the predictive value of stemness scores varies across

tumor types; in some cancers, high stemness correlates with poor

prognosis, while in others, no significant association is observed

(97). Additionally, discrepancies arise when comparing indices

derived from different data platforms (e.g., TCGA vs. GEO), often

due to batch effects and data normalization inconsistencies. Some

AI-based models show reduced reproducibility when applied to

external validation cohorts, highlighting concerns about overfitting

and lack of generalizability (98). Moreover, stemness scores

sometimes fail to reflect the functional heterogeneity of cancer

stem cells (CSCs) within the tumor microenvironment. These

inconsistencies underscore the need for standardized

methodologies, cross-cohort validation, and integration of multi-

omics data to improve the reliability of stemness-based metrics in

cancer biology.
8 Future directions

The application of artificial intelligence (AI) to quantify cancer

stemness is a rapidly evolving field with substantial promise, but

several key areas warrant further development to maximize clinical

impact. One important future direction is the integration of spatial

transcriptomics and pathology-based AI. By combining gene

expression data with spatial localization of cells within the tumor
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microenvironment (TME), researchers can gain a more nuanced

understanding of how cancer stem cells (CSCs) interact with

immune and stromal cells, potentially revealing new therapeutic

targets. Another promising avenue is the advancement of single-cell

stemness models. Current AI-based stemness indices primarily rely

on bulk tumor data, which can obscure heterogeneity. Single-cell

technologies, coupled with machine learning, will allow more

precise identification of CSC subpopulations and their dynamic

states, improving prognostic accuracy and therapy stratification.

Furthermore, the transition from retrospective computational

analyses to prospective clinical trials is essential. Validating AI-

derived stemness scores in real-world patient cohorts will help

establish their utility in guiding treatment decisions and predicting

outcomes. Developing pan-cancer deep learning frameworks that

integrate multi-omics data across tumor types can uncover

universal and cancer-specific stemness signatures, enhancing

personalized medicine. Finally, synergizing AI with mechanistic

biology is crucial for drug discovery. Understanding the molecular

underpinnings of AI-identified stemness features will facilitate

development of novel therapies targeting CSCs, addressing

therapy resistance and relapse. Overall, these directions

emphasize a multidisciplinary approach to fully harness AI’s

potential in stemness research and precision oncology.

Collectively, these challenges highlight the need to refine

stemness modeling—potentially through transfer learning, data

augmentation, multi-omics integration, and single-cell approaches

—to enhance its reliability and clinical applicability, particularly in

the context of rare tumors.
9 Conclusions

The stemness index, constructed on the basis of artificial

intelligence, is a measure of the extent of stem cell-like features in

cancer cells that has recently emerged as a promising biomarker for

identifying different cancer subtypes, thus, aiding in prognostication

and therapeutic decision-making in breast, colorectal, lung,

hepatocellular carcinoma, and glioblastoma. However, its clinical

utility encounters various challenges and limitations that are

required to be addressed for enhanced applicability in cancer

management. Most importantly, lack of standardized methods for

calculating the Stemness Index is one of the major challenges,

leading towards variability and potential biases in results across

studies and datasets. Therefore, establishing standardized protocols

is crucial for ensuring consistency and comparability of the results,

thus obtained. Additionally, limited availability of high-quality

datasets, especially for rare or less common cancer subtypes is a

significant constraint. Since training and validation of the Stemness

Index models require diverse and comprehensive datasets, the

scarcity of such datasets for less prevalent cancers hinders the

accuracy and generalizability of the Index. While promising, the

clinical utility and reliability of the cancer stemness indices need

rigorous validation through large-scale prospective studies.

Validating its effectiveness in predicting prognosis, treatment

response, and guiding therapeutic decisions in diverse patient
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populations is essential for its implementation in a clinical setting.

Various factors, including TME, patient demographics, and

comorbidities, could influence the applicability of the Stemness

Index. Therefore, it is critically important to apprehend and

account for the confounder to ensure the accuracy and reliability

of the stemness index in reflecting accurate stemness characteristics

in various cancer subtypes. Nonetheless, additional research studies

are highly necessitated to overcome existing challenges and address

the aforementioned limitations, and to establish the clinical

relevance and utility of the stemness index as a putative biomarker

for various cancer subtypes, at large.
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