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Objectives: Ultrasonography is the primary imaging modality for evaluating 
thyroid nodules, and artificial intelligence (AI) has advanced the automated 
diagnosis of thyroid cancer. However, existing AI-assisted methods often suffer 
from limited diagnostic performance. 

Methods: In this study, we propose a novel multi-instance learning (MIL) 
convolutional neural network (CNN) model tailored for ultrasound-based 
thyroid cancer diagnosis. The model extracts nodule-level ultrasound features 
from instance-level images using CNNs, and employs an attention mechanism to 
assign importance scores and aggregate features across instances. This enables 
effective feature extraction and localization of key instance features, facilitating 
risk assessment of thyroid nodules. The dataset consists of ultrasound images 
from 2000 patients at the Affiliated Hospital of Hangzhou Normal University, 
collected between 2018 and 2024. The images were divided into training (75%, 
1500 patients) and testing (25%, 500 patients) sets. The model's performance was 
evaluated using metrics, including accuracy, precision, recall, F1-Score, and AUC. 
To assess the statistical significance of the model’s performance relative to other 
methods, a paired t-test was conducted based on the prediction results. 

Results: The performance of the model developed in this study was evaluated 
and compared with popular ultrasound image classification models for thyroid 
nodules. The model outperformed the other two classification models (accuracy 
0.8386±0.0334, 0.7999±0.0188, 0.7839±0.0267; precision 35 0.8512±0.0301, 
0.9039±0.0154, 0.9267±0.0235; recall0.8427±0.0313, 0.7497±0.0163, 
0.6987±0.0249; F1-Score 0.8380±0.0344, 0.8196±0.0178, 0.7967±0.0251; 
AUC 0.8900±0.0309, 0.8851±0.0124, 0.6340±0.0200), where values are 
under 95% confidence interval. Statistical analysis showed that the 
performance differences were statistically significant (p <0.0001). 
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Conclusions: These results demonstrate the effectiveness and clinical utility of 
the proposed MIL-CNN framework in non-invasively stratifying thyroid nodule 
risk, supporting more informed clinical decisions and potentially reducing 
unnecessary biopsies and surgeries. Codes will be available at GitHub - rrrr­

ops/Thyroid-AI. 
KEYWORDS 

multi-instance learning, convolutional neural network, thyroid nodule, ultrasound 
image feature, thyroid cancer diagnosis 
1 Introduction 

In 2020, the World Health Organization’s International Agency 
for Research on Cancer (GLOBOCAN) Global Cancer Statistics 
showed that thyroid cancer had a worldwide incidence of 
approximately 586,000 cases, which ranked 9th in incidence, with 
the highest percentage being papillary thyroid cancer, which 
accounted for approximately 84% of all thyroid cancers (1, 2). 
Thyroid cancer may occur in any sex, with women accounting for 
approximately 75% of all thyroid cancer patients (3). Chinese 
scholars counted the epidemiological characteristics of 9,662 cases 
of thyroid cancer from 2014 to 2019 and found that the number of 
thyroid cancer cases showed an increasing trend year by year, and 
the growth rate of 2017–2019 was significantly higher than that of 
the previous three years (4). In 2019, 230,000 new cases and 45,000 
deaths were associated with thyroid cancer worldwide, with China 
accounting for 16.71% and 15.88% of cases, respectively. China has 
the highest incidence and mortality rates of thyroid cancer 
worldwide, and the incidence of thyroid cancer in Zhejiang 
Province has risen sharply (5–7). In parallel with economic 
development and advancements in early detection, thyroid 
nodules have drawn increasing clinical attention (8). Thyroid 
cancer has a significant impact on public health, and despite its 
relatively low mortality rate, the rising incidence of thyroid cancer 
has increased the demand for healthcare resources and put 
tremendous pressure on the public health system. With the aging 
of the population, the incidence of thyroid cancer is likely to 
increase further, posing an even greater challenge to the public 
health system. 

The Expert Committee of the Superficial Organs and Vascular 
Group of the Division of Ultrasound Medicine of the Chinese 
Medical Association (CMA) formulated the Chinese Guidelines for 
Ultrasound Malignancy Risk Stratification of Thyroid Nodules 
(C-TIRADS) in 2020, which is more in line with China’s actual 
situation (9). This classification system integrates multiple 
ultrasound features of nodules, such as nodule morphology, 
margins, internal echogenicity, and calcification, to classify 
nodules into different categories, from category 1 (no nodule, 0% 
risk of malignancy) to category 6 (biopsy-confirmed malignancy), 
with an increased risk of malignancy. The C-TIRADS classification 
02 
provides critical guidance for clinical decision-making. For nodules 
classified as category 2 by C-TIRADS (0% malignancy probability), 
fine-needle aspiration (FNA) biopsy is usually not necessary, 
whereas for nodules in categories 4B to 5 (10% to >90% 
malignancy probability), FNA is required for further evaluation 
(10). The C-TIRADS classification helps clinicians determine which 
patients are suitable for surgical treatment and which patients 
provide more conservative treatment options with active 
monitoring for follow-up or ultrasound-guided thermal ablation 
(11). Accurate nodule stratification with C-TIRADS facilitates early 
identification of high-risk nodules and timely therapeutic 
intervention, thereby improving patient outcomes. In particular, 
low-risk papillary thyroid microcarcinoma (PTMC) may be 
managed with active surveillance to avoid overtreatment, whereas 
high-risk nodules require prompt surgical intervention (12). 

C-TIRADS plays an important role in the diagnosis and 
treatment of thyroid cancer; however, its practical application faces 
some challenges. First, sample heterogeneity was a key issue. Thyroid 
nodules exhibit diverse characteristics, including cystic nodules, 
homogeneous hypoechoic nodules, nodular goiter, calcified 
nodules, microcalcifications, and diffuse microcalcifications, which 
can be benign, malignant, or suspected malignant, with varying 
degrees of severity (13). Since the ultrasound manifestations of 
thyroid nodules may be similar, and their biological characteristics 
and treatment options may be very different, C-TIRADS should be 
able to accurately differentiate between different types of thyroid 
nodules. Second, the subjectivity of the diagnosis is challenging. The 
diagnosis of ultrasound images is highly subjective, and there are 
differences in the interpretation of ultrasound features of thyroid 
nodules by sonographers with different experiences and inter- and 
intra-observer variations in the assessment of ultrasound metrics of 
the nodules, which may affect the accuracy and consistency of the 
C-TIRADS classification (14, 15). These subjective variations 
underscore the clinical need for automated diagnostic systems that 
can provide standardized and reproducible assessments across 
institutions and operators. In addition, the C-TIRADS provides 
detailed management recommendations and clinical guidance; 
however, many thyroid surgeries in China are based on ultrasound 
diagnostic reports rather than FNA results, sometimes in 
combination with other relevant clinical bases. Appropriate 
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adjustments are required for practical applications according to 
regional differences, national characteristics, cultural traditions, and 
medical systems (9). 

Artificial intelligence (AI) has been widely applied to medical 
tasks including detection, classification, and segmentation (16, 17). 
In particular, with the rapid advancement of AI technologies, 
machine learning and deep learning have become promising 
approaches for the automatic classification of thyroid nodules, 
and are now extensively used in ultrasound imaging, fine-needle 
aspiration (FNA) biopsy, and thyroid surgery (18). The general 
steps of AI for the diagnosis of thyroid nodules include: (i) 
modeling optimized preprocessing of ultrasound images and 
selecting the region of interest from them, (ii) applying feature 
extraction methods for training to classify thyroid nodules, and (iii) 
diagnosis of benign or malignant nodules. AI is increasingly used in 
the field of ultrasound with the continuous progress of algorithm 
iterations and accumulation of clinical data (19–21). Compared to 
traditional thyroid cancer diagnostic methods, such as FNA biopsy, 
AI promises to provide a non-invasive alternative for classifying 
thyroid cancers with higher accuracy by analyzing their 
histopathological features, clinical manifestations, and prognosis. 
For example, Li et al. collected more than 40,000 patients with 
thyroid nodules and jointly used two models commonly used in 
deep learning, ResNet and DarkNet, to differentiate between benign 
and malignant thyroid nodules, and obtained an AUC of more than 
0.9 (22).These findings suggest that AI has the potential for cross-
center use in the diagnosis of thyroid nodules. Peng et al. developed 
an AI deep learning model (ThyNet) to differentiate between 
thyroid cancer and benign thyroid nodules (23), and the results 
showed that the AUC of the features obtained by the ThyNet 
model-assisted diagnosis was 0.922, which is significantly higher 
than that of the physician’s 0.839. The percentage of patients with 
fine-needle aspiration biopsies decreased from 61.9% to 35.2% and 
the percentage of missed thyroid cancer lesions decreased from 
18.9% to 17.0% when using the ThyNet-assisted system. The 
ThyNet model showed better diagnostic specificity and accuracy 
than specialized physicians. 

However, traditional AI-assisted thyroid cancer diagnostic 
techniques have some limitations that need to be addressed. First, 
the diagnostic technique based on a single ultrasound image is 
limited by the one-sidedness of the information, which is easily 
affected by a variety of factors, such as imaging quality, patient 
position, and physician experience, leading to misdiagnosis or 
missed diagnosis (23–25). Second, traditional techniques are 
difficult to apply to highly heterogeneous ultrasound image 
features presented by different patients or even the same patient 
in different disease courses, making it difficult to cope with complex 
and changing conditions. In addition, annotation based on a single 
image not only increases the burden on medical resources but also 
easily leads to inconsistent diagnostic results due to physician 
qualifications and regional differences (26). Therefore, these 
models face challenges in clinical applications because they lack 
the ability to integrate information regarding the patient as a whole. 

In recent years, multiple-instance learning (MIL) techniques 
have provided new ideas for solving these problems (27–29). MIL is 
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a subfield of machine learning, a paradigm that learns data 
relationships from a set of instances and bags, and by virtue of 
the unique structure of bag-instances, is able to not only solve the 
problem of computational resources in large-scale images. Existing 
MIL methods have made significant progress in the field of 
pathology images, achieving substantial improvements in 
computational efficiency, instance feature extraction, and instance 
aggregation mechanisms, making them an important for the 
pathological image analysis. However, the application of MIL in 
ultrasonography remains to be explored. 

Unlike conventional deep learning methods based on single-
frame ultrasound images, our model uses a multiple-instance 
learning framework to aggregate information across frames, 
enhancing robustness and aligning more closely with clinical 
practice. The model can receive a collection of patient ultrasound 
examination video frames as input, and by synthesizing and analyzing 
the information in these image frames, it can comprehensively 
evaluate the patient’s condition and provide accurate thyroid cancer 
diagnosis results. In addition, we compared the feature extraction 
capabilities of multiple classification networks in the ultrasound 
diagnosis of thyroid cancer to further improve diagnostic accuracy 
and model robustness. We further analyzed the interpretation of the 
model predictions and compared the computational costs, which has 
proven that our model has potential to be applied in practice. 
2 Materials and methods 

2.1 Thyroid nodules risk prediction model 
based on multi- instance learning 

2.1.1 Multi-instance learning framework and 
problem definition 

MIL, as a weakly supervised learning method, is particularly 
suitable for dealing with the situation where there are multiple 
relevant instances in the image data but only the overall label is 
known. Traditional single-instance learning assumes that each 
training sample has an explicit label, whereas multi-instance 
learning assumes that each training sample consists of multiple 
instances, and only the overall label is known. MIL requires that the 
data be represented in a package-instance structure; when there are 
positive instances within the package, the whole package is labeled 
as a positive package; otherwise, the package and all its instances 
are negative. 

The rationale for selecting MIL in this study, as opposed to 
other algorithms, is driven by the objective of performing thyroid 
nodule risk assessment based on the patient’s comprehensive 
information. Specifically, the ultrasound examination process of a 
patient can be collected as a set of images, referred to as a bag, where 
each image is considered an instance. The number of instances per 
patient can vary flexibly according to the actual examination 
conditions, without the need for consistency. The attention 
mechanism in the MIL framework is capable of handling 
dynamically changing instance numbers, effectively adapting to 
this variable-length input structure. The risk reflected in a single 
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image may not always correspond to the patient’s actual risk level. 
For instance, certain images from high-risk patients may not 
directly indicate any evident risk. Given the multifaceted nature 
of thyroid nodule risk assessment, relying solely on individual 
images may lead to inaccurate predictions. In this context, MIL is 
employed to analyze all images of a patient collectively, synthesizing 
the information from each instance to yield a more accurate and 
holistic risk assessment (30, 31). Therefore, the architecture of MIL 
makes it relevant to the context of medical image analysis and 
risk assessment. 

In the MIL model, the instance feature extraction network and 
instance feature aggregation mechanism are two core components. 
Instance feature extraction networks are typically designed based on 
CNN and transformers. In this study, we adopt a CNN-based 
backbone network. Compared to transformer-based models, 
CNNs offer two key advantages: (1) they are more effective at 
capturing local spatial features through multi-layer convolution and 
pooling operations, which is particularly important for texture-rich 
ultrasound images (32); and (2) their relatively simple architecture 
and fewer parameters help reduce the risk of overfitting—a critical 
consideration given the size of our dataset (2,000 patients, including 
1,500 in the training set). The learning objective of these networks is 
to extract the representative features from each instance. By 
contrast, instance feature aggregation mechanisms are used to 
integrate features from multiple instances into package-level 
features. Commonly used aggregation methods include global 
average pooling (GAP), maximum pooling (MP), and attention 
mechanisms. The attention mechanism plays an important role in 
this study as it can guide the model to focus on key image segments 
with diagnostic significance, thus improving the accuracy of 
diagnosis and interpretability of the model. In addition, the 
feature fusion strategy is optimized to enhance the accuracy of 
bag-level prediction using methods such as multi-layer perceptron 
(MLP) to effectively fuse instance features. 

In this paper, we propose a thyroid nodules risk prediction 
algorithm based on multi-instance learning, which aims to reduce 
reliance on image-level labels and focuses on the extraction and 
analysis of key instance features. In this algorithm, the set of 
ultrasound images of each patient was considered a package, 
whereas each image in the image set was treated as an instance, 
and the overall risk label of the package was determined based on 
the comprehensive examination results without the need to label 
each instance individually. For thyroid nodules risk prediction, the 
model can extract discriminative key representations from 
ultrasound images using an improved instance feature extraction 
network based on convolutional neural networks. Subsequently, in 
the instance feature aggregation mechanism, the model can select 
the key ultrasound images that match the clinical experience as the 
basis for judgment and locate the location and extent of the lesions 
in the key images. During the training process, the MIL model 
derives bag-level labels by learning the instance-level information, 
thereby effectively addressing the challenges of data heterogeneity 
and complexity. Combined with the MIL approach, the model can 
simultaneously analyze multiple related images of ultrasound 
Frontiers in Oncology 04
species, jointly analyze the patient’s condition, and provide a 
more accurate diagnosis. 

2.1.2 Model architecture 
In this study, we constructed a package containing the 

ultrasound images of each patient’s thyroid ultrasound results. 
The model designs a VGG13 based instance feature extraction 
module and implemented the aggregation of instance features 
using an attention mechanism. 

First, in the example feature extraction module, the model 
employs the VGG13 network pretrained on ImageNet, a large-
scale natural image dataset, and is further trained on thyroid 
ultrasound images. VGG13 is known for its unique convolutional 
layer stacking structure, which progressively extracts features at 
different levels in an image through multiple consecutive 
convolutional and pooling layers. It relies on successive 3×3 
convolutional kernels and rectified linear unit activation functions 
to deepen the network. Each convolutional layer is typically 
followed by a pooling layer to reduce the spatial resolution of a 
feature map. To enhance the adaptability of the VGG13 network to 
thyroid ultrasound images, we introduced various data 
enhancement techniques, such as random rotation, scaling, and 
panning, during the training process to improve the generalization 
ability of the model and enhance its robustness to data noise. The 
instance feature extraction module extracts the deepest feature 
maps of VGG13, and after pooling them, the features of each 
instance are obtained for subsequent attentional learning. After 
obtaining multiple instance features, it is crucial to know how to 
aggregate these instance features to obtain patient-level thyroid 
cancer diagnosis features. To this end, the algorithm refers to the 
classical attention-based multi-instance learning method AB-MIL 
(33) which learns the importance of each instance in the final 
diagnosis through matrix operations and tanh(.) function and 
assigns different weights to each instance to obtain patient-level 
feature representations through weighted summation. 

Specifically, given a set of instance features H = ½h1, h2, …, hn ] 
∈ RNx512, where N is the number of instances and each hi is a 
feature vector with 512 dimensions, the attention weights are 
computed using two fully connected layers followed by a softmax 
function: 

A = Softmax(W2 · Tanh(W1H
T + b1) + b2) 

where W1 ∈ R512x128 and W2 ∈ R128x1 are learnable weight 
matrices, and b1 ∈ R128 and b2 ∈ R128 are bias terms. The 
attention weights of each instance can be simplified as: 

exp(WT · Tanh(W1hi + b1) + b2))2 ai = N oj=1exp(W
T · Tanh(W1hj + b1) +  b2)2 

This approach automatically assigns higher weights to 
important instances, thereby improving overall discriminative 
power. The weighted feature vector M is then obtained by: 

N 
M =  oaihi 

i=1 
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Eventually, the aggregated feature vectors are passed through 
the fully connected layer and dichotomized (benign or malignant) 
using the sigmoid activation function. 
 

2.2 Experiment 

2.2.1 Datasets 
The thyroid ultrasound image data used in this study were 

obtained from the Affiliated Hospital of Hangzhou Normal 
University, and the images were acquired using ultrasound 
equipment (Mindray DC-8 and Mindray Resona 7EXP) with 
different numbers of ultrasound images obtained in a single 
examination. A total of 2000 patients were enrolled between 
January 2018 and July 2024. Ultrasound reports were collected for 
each examination. According to the C-TIRADS diagnostic criteria 
(9), the dataset includes 1000 patients with category 3 nodules, 975 
patients with category 4 nodules, and 25 patients with category 5 
nodules. Nodules classified as C-TIRADS category 3 were 
considered low-risk, while those in categories 4 and 5 were 
considered high-risk. A total of 16229 ultrasound images from 
2000 patients with thyroid nodules were collected for this study. Of 
these, 12,283 images from 1500 patients were used for the training 
set, 750 patients had low-risk nodules and 750 patients had high-
risk nodules. The test set consisted of 3946 ultrasound images from 
500 patients, of which 250 patients were low-risk nodules and 250 
patients were high-risk nodules. The mean age of the patients in the 
training and test sets was (49.83 ± 11.72) and (46.23 ± 11.46) years, 
respectively. The demographic characteristics of the two data sets 
are shown in Table 1. 

In this study, all images from a single examination shared the 
same label, indicating that the examination had a high-risk nodule. 
All examinations were classified into two categories: high-risk and 
low-risk for thyroid nodules and were labeled according to the 
ultrasound report. The labeling process was performed by a single 
sonographer. The study was conducted in accordance with the 
Helsinki Declaration, and approved by the Ethics Committee of our 
institution (Approval number: 2024 (E2) -KS-160). 
Frontiers in Oncology 05 
2.2.2 Data preprocessing 
The dataset was randomly divided into a training set and a test 

set at a ratio of 3:1, where 75% of the data were used for training the 
model and 25% of the data were used for the final evaluation of the 
model. The entire dataset division process ensured that different 
patient categories were distributed in both training and test sets. All 
the images were preprocessed uniformly before being fed into the 
model to ensure stability and robustness. First, the images were 
resized to 512 × 512 pixels. To enhance the generalization ability of 
the model, the images were enhanced using random flipping and 
contrast enhancement. These transformations simulate different 
imaging conditions and increase the robustness of the model. 
Finally, the images were normalized to the pixel values. 

2.2.3 Training strategies 
The model was trained using the Adam optimizer with an initial 

learning rate of 0.00005 and a batch size of 1 (one patient per batch). 
The loss function was chosen as the Binary Cross-Entropy (BCE). 
NVIDIA RTX3090 was used for model training. The entire training 
process was conducted in an end-to-end manner, taking 
approximately 12 hours to complete over 100 epochs. 
3 Results 

3.1 Assessment of indicators 

Several commonly used classification evaluation indices were 
used in this study to comprehensively assess the performance of the 
model for thyroid risk diagnosis. The accuracy rate was used to 
measure the proportion of overall correct classifications of the 
model, and the precision indicated the proportion of actual 
positive cases when the model predicted a positive case, thereby 
reflecting the model’s ability to determine a positive class. On the 
other hand, recall measures the proportion of all actual positive 
cases correctly predicted by the model, reflecting the model’s ability 
to detect high-risk patients. The F1-Score serves as the reconciled 
mean of precision and recall, which combines the precision and 
recall of the model. In addition, we plotted receiver operating 
characteristic (ROC) curves to evaluate the model’s ability to 
discriminate between dichotomous classification tasks under 
different thresholds. The higher area under the curve (AUC) 
value, the better is the overall classification ability of the model. 
Together, these evaluation metrics measure the performance of the 
model in thyroid nodules risk diagnosis and validate its accuracy, 
reliability, and ability to detect high-risk cases from various 
perspectives. Additionally, we utilized Cohen’s d to quantify the 
effect size and assess the magnitude of differences between the 
proposed model and comparison methods. Cohen’s d is a measure 
of the standardized difference between two means. It provides 
insight  into  the  practical  significance  of  the  model ’s 
improvements. In this study, a Cohen’s d  value around 0.2

indicates a small effect size, around 0.5 represents a medium 
TABLE 1 Demographic data for two data sets. 

Parameter Total Training set Test set 

Patients 2000 1500 500 

Male, n (%) 1008 (50.4%) 780 (52%) 272 (54.4%) 

Female, n (%) 992 (49.6%) 720 (48%) 228 (45.6%) 

Age (years) 48.93 ± 11.76 49.83 ± 11.72 46.23 ± 11.46 

Total images 16229 12283 3946 

low-risk nodules 
patients, n (%) 

1000 750 (50%) 250 (50%) 

high-risk nodules 
patients, n (%) 

1000 750 (50%) 250 (50%) 
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effect size, and around 0.8 corresponds to a large effect size. This 
effect size measurement helps to evaluate not only statistical 
significance but also the practical impact of the improvements 
made by our model. 
 

3.2 Analysis of feature extraction networks 

In this experiment, we used several different convolutional 
neural networks as feature extractors and comparatively evaluated 
the performance of these networks in the risk diagnosis of thyroid 
nodule ultrasound images under an attention-based multi-instance 
learning framework. The selected networks include the ResNet 
family, AlexNet, the VGGNet family, the MobileNet family, and 
the DenseNet family, which represent typical current deep learning 
models of different complexity and structural design. 

As can be observed from the results in Table 2, VGG13
performed well on several evaluation metrics and became the best 
feature extraction network for this task. Specifically, VGG13 
significantly outperforms the other networks in accuracy (0.8386), 
precision (0.8512), recall (0.8427), and F1-Score (0.8380), 
demonstrating the advantages of its deep convolutional structure 
in capturing the features of ultrasound images of the thyroid 
nodule. Notably, the comparison between VGG13 and other 
models, such as ResNet34, AlexNet, VGG11, MobileNetv3-small, 
and DenseNet161, yielded statistically significant differences 
(p<0.0001). The performance of VGG16 is slightly inferior to that 
of VGG13, even though its F1 Score is closer in performance, but it 
is slightly inferior in precision and recall. This may be due to the fact 
that VGG16 has more convolutional layers, resulting in a model 
that is more prone to overfitting. In contrast, ResNet50, another 
deep residual network, performed well in terms of accuracy 
(0.7375), precision (0.7375), and recall (0.6875). The residual 
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structure of ResNet helps avoid the problem of gradient vanishing 
in deep networks, making it a more stable performer for processing 
complex image data. However, the results also indicate that 
ResNet50’s performance is statistically inferior to VGG13 
(p<0.0001). On the contrary, AlexNet performs poorly on all 
metrics, and its F1-Score is only 0.3623, which is much lower 
than that of the other models. This indicates that AlexNet’s shallow 
structure cannot effectively extract deep features in thyroid 
ultrasound images, resulting in its weak classification ability. The 
large effect size (Cohen’s d = 0.3903 compared to VGG13) 
underscores the substantial gap between these two models. The 
MobileNet series and DenseNet series perform in the middle of the 
list, especially MobileNet as a lightweight network, although its 
precision (0.6420) and recall (0.6416) are not outstanding, it has the 
limited computational resources still has some advantages. The 
DenseNet series performed well in terms of recall (0.6560) through 
the densely connected design of the feature graph, but the overall 
performance failed to outperform VGG13 and ResNet50. Although 
VGG13 demonstrates clear numerical advantages over ResNet18, 
VGG16, DenseNet169, and DenseNet201 across various metrics, it 
does not exhibit statistically significant differences. Furthermore, 
the Cohen’s d effect size is small (less than 0.02), indicating that, 
despite numerical differences, these variations may have minimal 
impact on patient predictions. However, due to the numerical 
superiority of VGG13, we still consider it to be a more suitable 
feature extraction network compared to the others. 

As shown in Figure 1, the AUC-ROC curves further 
demonstrate the performance of each model under different 
classification thresholds. We measured the comprehensive 
classification ability of the models using the AUC value, and the 
results showed that VGG13 had the highest AUC value of 0.8900, 
which further proved the excellent performance of VGG13 in 
thyroid nodules ultrasound image feature extraction. 
’

TABLE 2 Results of feature extraction networks (VGG13 as the reference model, a=0.05 for statistical significance). 

Feature extraction network Accuracy Precision Recall F1-Score P-value Cohen s d  

ResNet (34) 

ResNet18 0.8169 ± 0.0353 0.8341 ± 0.0318 0.8218 ± 0.0321 0.8158 ± 0.0348 0.5642 0.0200 

ResNet34 0.5256 ± 0.0323 0.5920 ± 0.0302 0.5417 ± 0.0311 0.4600 ± 0.0337 < 0.0001 0.6734 

ResNet50 0.6772 ± 0.0342 0.7375 ± 0.0331 0.6875 ± 0.0335 0.6625 ± 0.0346 < 0.0001 0.3203 

AlexNet (35) AlexNet 0.4016 ± 0.0413 0.3777 ± 0.0489 0.4131 ± 0.0357 0.3623 ± 0.0392 < 0.0001 0.3903 

VGGNet (36) VGG11 0.7303 ± 0.0394 0.7741 ± 0.0350 0.7386 ± 0.0343 0.7233 ± 0.0396 < 0.0001 0.1886 

VGG13 0.8386 ± 0.0334 0.8512 ± 0.0301 0.8427 ± 0.0313 0.8380 ± 0.0344 / / 

VGG16 0.7933 ± 0.0355 0.8073 ± 0.0338 0.7978 ± 0.0343 0.7923 ± 0.0364 0.4918 0.0240 

MobileNet (37) MobileNetv2 0.6398 ± 0.0429 0.6420 ± 0.0417 0.6416 ± 0.0416 0.6397 ± 0.0424 0.0347 0.1111 

MobileNetv3 
small 

0.7067 ± 0.0414 0.7134 ± 0.0434 0.7100 ± 0.0385 0.7061 ± 0.0426 0.0004 0.1717 

DenseNet (38) DenseNet121 0.6299 ± 0.0415 0.6291 ± 0.0410 0.6287 ± 0.0412 0.6288 ± 0.0416 < 0.0001 0.2461 

DenseNet161 0.6280 ± 0.0431 0.6277 ± 0.0427 0.6248 ± 0.0415 0.6242 ± 0.0418 < 0.0001 0.3391 

DenseNet169 0.6516 ± 0.0413 0.6614 ± 0.0416 0.6560 ± 0.0407 0.6497 ± 0.0425 0.8145 0.0120 

DenseNet201 0.6575 ± 0.0418 0.6694 ± 0.0415 0.6623 ± 0.0402 0.6551 ± 0.0420 0.5302 0.0321 
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3.3 Comparative with SOTA networks 

To further validate the effectiveness of the proposed model, we 
designed an experiment to compare its performance with other 
models commonly used for thyroid nodules ultrasound image 
classification. The selected comparison models included LoGoNet 
(22) and ThyNet (23), both which are currently popular thyroid 
nodules classification models. All the models were trained on the 
same dataset and evaluated using the same metrics. 

As can be seen from the experimental results in Table 3, 
LoGoNet has accuracy (0.7839) and precision (0.9267), but its 
low recall (0.6497) suggests that it may miss some malignant 
cases. The combination of high precision and low recall may 
reflect the model’s superior performance in avoiding misdiagnosis 
of benign cases but at the cost of overlooking high-risk patients. In 
contrast, ThyNet has a better recall rate than LoGoNet, but its 
precision rate is slightly lower, suggesting that ThyNet performs 
better in capturing malignant cases but also has a higher false 
positive rate. Overall, ThyNet strikes a balance between recall and 
precision but is still inferior to our proposed model. 

Our proposed multi-instance learning model based on VGG13 
performs well on several metrics, especially with significant 
advantages in recall (0.8427) and AUC (0.8900). This indicates 
that the model is more reliable for identifying high-risk thyroid 
nodules patients and effectively reduces the leakage rate. Recall, 
which measures the proportion of all actual positive cases that are 
correctly predicted as positive by the model, is particularly 
important for thyroid nodules classification. A higher recall 
means that the model can capture more malignant cases, thus 
reducing the risk of underdiagnosis. The experimental results show 
that the recalls of LoGoNet, ThyNet, and our model were 0.6497, 
0.7497, and 0.8427, respectively. Our proposed model significantly 
outperformed the other two comparative models in terms of recall, 
indicating that it is more reliable in detecting high-risk patients and 
reduces the likelihood of missed diagnosis. Thus, our model has 
important implications for clinical diagnosis and is particularly 
superior in avoiding missed diagnoses, which may pose serious 
health risks. 

However, a high recall usually leads to a decrease in precision 
because more positive class predictions may contain false positives. 
Therefore, whether the model has achieved a balance between 
precision and recall is a key question that we need to analyze 
further.The F1-Score is the reconciled mean of precision and recall, 
and combines the measures of how well the model is balanced on 
both metrics.The F1-Score is particularly important in unbalanced 
classification tasks, such as the thyroid cancer classification task, as 
it captures the model’s performance in identifying positive cases 
and avoiding false positives as a trade-off. The experimental results 
show that the F1-Score of LoGoNet, ThyNet, and our model are 
0.7967, 0.8196, and 0.8380, respectively.Our proposed model also 
leads in F1-Score, indicating that the model achieves a better 
balance between precision and recall, which avoids a large 
number of false positives and is able to efficiently capture 
malignant cases. 
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In addition to the above metrics, statistical significance and 
effect size further validate the superiority of the proposed model. 
The p-values for both LoGoNet and ThyNet compared to our 
model are less than 0.0001, indicating that the differences are 
statistically significant. This highlights the reliability of our 
model’s improvements in classification performance. Cohen’s d,

which measures the effect size, provides additional insights into the 
practical significance of these improvements. For LoGoNet and 
ThyNet, the Cohen’s d values are 0.1824 and 0.3762, respectively, 
suggesting small to medium effect sizes. This indicates that the 
improvements achieved by our model over ThyNet are more 
pronounced than those over LoGoNet. 

Moreover, compared to SOTA networks, our model diagnoses 
at the patient level rather than on individual images, avoiding 
misdiagnoses due to poor image quality. Our attention 
mechanism operates across different images from the same 
patient, selecting critical diagnostic images and filtering out low-
quality or misleading ones. These design choices enhance diagnostic 
reliability and improve model interpretability by highlighting 
clinically meaningful image segments. 

In summary, the model proposed in this study demonstrates a 
comprehensive performance superior to that of existing models in 
the thyroid nodules ultrasound image classification task, especially 
in the identification and classification accuracy of high-risk patients, 
showing its great potential in clinical applications. 
3.4 Analysis of attention mechanism 

To evaluate the effectiveness of the attention mechanism in our 
MODEL, we conducted an ablation study comparing different 
instance aggregation strategies: max pooling, mean pooling, and 
our proposed attention-based aggregation. As shown in Table 4, the 
attention mechanism significantly outperformed both baseline 
pooling methods across all evaluation metrics. Specifically, our 
model achieved the highest accuracy. 

These results demonstrate that replacing simple pooling 
operations with an attention mechanism allows the model to 
adaptively assign different importance weights to each instance, 
thereby capturing more informative and discriminative features for 
patient-level classification. The superior performance confirms the 
critical role of attention in our MIL-based architecture. 
3.5 Interpretable analysis 

To increase the interpretability of the model, we used Grad-CAM 
(39) to visualize and analyze the decision-making process of the model. 
Grad-CAM is a visualization technique that highlights the regions of an 
input image that most influence the model’s prediction, by leveraging 
the gradient information flowing into the final convolutional layer. 
Using Grad-CAM, a heat map of attention for each ultrasound image 
can be generated, as shown in Figure 2, thus revealing the key areas that 
the model focuses on when making classification decisions. 
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Based on the thyroid nodule ultrasound image features, the 
warm-toned region in the visualized image is the most important 
part that can be identified by Multi-instance learning convolutional 
neural network, and the darker color represents the higher risk of 
nodule classification. In the left column (A), ultrasonogram shows a 
mixed echogenic thyroid nodule, in which the solid portion has 
irregular morphology, unclear demarcation from the surrounding 
parenchyma, and multiple internal microcalcifications, diagnosed 
as a C-TIRADS category 4 nodule, Figure 2A heat map shows areas 
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of dense aggregation with warm colors; Figure 2B ultrasonogram 
shows an isoechoic thyroid nodule with irregular morphology, an 
aspect ratio of greater than 1, and posterior echogenic attenuation, 
diagnosed as a C-TIRADS category 4 nodule, Figure 2B heat map 
shows warm-toned color as an area of dense aggregation; Figure 2C 
ultrasonogram shows a hypoechoic nodule with regular 
morphology and homogeneous internal echogenicity, diagnosed 
as a C-TIRADS category 3 nodule, and Figure 2C heat map shows 
warm-toned color as an area. 
FIGURE 1 

ROC curves of compared methods on the test set. 
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3.5 Computational analysis 

We further analyzed the computational costs of the compared 
methods by counting the averaging inference time of each patient. 
We listed the counted time in Table 5, where the results show that 
our model still retain outperforming computation efficiency when 
achieving the best accuracy. As our model only predict the 
probability once per patient rather than predict that once per 
image, the inference time of ours is lower than that of other models. 
 

4 Discussion and conclusion 

4.1 Discussion 

This study developed a multi-instance learning convolutional 
neural network model of ultrasound features to automatically 
recognize thyroid nodules and perform risk assessment. 
Ultrasound images of 2000 patients with thyroid nodules 
diagnosed by sonographers based on C-TIRADS were collected. 
The results of this experiment show that the multi-instance learning 
convolutional neural network model outperforms several metrics, 
especially in recall (0.8427) and AUC (0.8900) as shown in Table 2. 
Our model is important for clinical diagnosis, especially for 
identifying and classifying high-risk patients with high accuracy, 
which can effectively reduce the risk of missed diagnoses. 

In clinical applications, when physician encounters a thyroid 
nodule with uncertain or controversial C-TIRADS grading, we 
import multiple thyroid nodule ultrasound images into the multi-

instance learning convolutional neural network model, which 
extracts more subtle features from the images, providing 
diagnostic information that cannot be obtained by the 
sonographer’s naked eye, and assisting the sonographer to make a 
more accurate judgment. In the future, we will also integrate the 
model into the ultrasound workstation, so that after the 
sonographer acquires multiple ultrasound images of thyroid

nodules, the system automatically inputs the images into the 
model, and the model quickly outputs the prediction results of 
the nodule classification, providing real-time references for the 
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physician to help him or her to more accurately perform the C­
TIRADS grading. In the future, the model will further learn a large 
amount of multi-center clinical data to quantitatively assess the risk 
of malignancy of thyroid nodules and give a specific risk value to 
make up for the relative subjectivity of the C-TIRADS classification 
and provide physicians with a more accurate diagnosis basis. 

Compared with previous studies, our study offers several 
advantages. First, while the MIL model has been widely used in the 
preprocessing stage of pathology images, we extended it to ultrasound 
images for thyroid nodule risk assessment. In this study, we 
considered the entire set of ultrasound image features of the 
patient, accounting for differences in lesion presentation across 
multiple views. By aggregating these features using the MIL 
framework, we achieved a more comprehensive and robust 
assessment of the patient’s overall lesion condition. The MIL 
approach enables the model to analyze the entire set of ultrasound 
images (i.e., video frames), rather than relying on a single image, 
which mitigates the risks of misjudgment and annotation 
inconsistencies. Additionally, MIL allows for patient-level 
assessments, where the risk label of the ultrasound image set is 
based on the physician’s diagnosis using C-TIRADS, eliminating 
the need to label each individual image. This significantly reduces 
labeling time and improves accuracy, offering advantages over 
traditional supervised learning models (16). Table 2 compares our 
model with 13 typical deep learning models, including ResNet, 
AlexNet, VGGNet, MobileNet, and DenseNet, showing that our 
model achieves the best experimental results. In Table 2, 
comparisons with ResNet18, VGG16, DenseNet169, and 
DenseNet201 reveal no statistical differences between our model 
and these models. Moreover, VGG13 outperforms the other models 
in accuracy (0.8386), precision (0.8512), recall (0.8427), and F1-Score 
(0.8380), demonstrating the advantage of its deep convolutional 
structure in capturing thyroid ultrasound features. The highest F1­
Score indicates a good balance between precision and recall, 
minimizing false positives while capturing malignant cases 
effectively. Statistical analysis in Table 2 supports the superiority of 
our model, showing significant differences compared to most models 
(p < 0.05). For instance, compared with ResNet34, ResNet50, 
AlexNet, and DenseNet161, our model not only exhibits statistically 
TABLE 4 Ablation studies of attention mechanism. 

Setting Accuracy Precision Recall F1-Score 

Max pooling 0.8110 ± 0.0412 0.8261 ± 0.0425 0.8099 ± 0.0311 0.8110 ± 0.0376 

Mean pooling 0.8012 ± 0.0405 0.8165 ± 0.0377 0.7999 ± 0.0451 0.8012 ± 0.0465 

Ours 0.8386 ± 0.0334 0.8512 ± 0.0301 0.8427 ± 0.0313 0.8380 ± 0.0344 
 

’

TABLE 3 Results of our model and comparison methods. (VGG13 as the reference model, a=0.05 for statistical significance). 

Method Accuracy Precision Recall F1-Score AUC p Cohen s d  

LoGoNet 0.7839 ± 0.0267 0.9267 ± 0.0235 0.6987 ± 0.0249 0.7967 ± 0.0251 0.6340 ± 0.0200 < 0.0001 0.1824 

ThyNet 0.7999 ± 0.0188 0.9039 ± 0.0154 0.7497 ± 0.0163 0.8196 ± 0.0178 0.8851 ± 0.0124 < 0.0001 0.3762 

Ours 0.8386 ± 0.0334 0.8512 ± 0.0301 0.8427 ± 0.0313 0.8380 ± 0.0344 0.8900 ± 0.0309 / / 
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significant differences but also demonstrates substantial 
improvements with large effect sizes (Cohen’s d  >  0.3).
Additionally, the differences between our model and VGG11, the 
MobileNet series, and DenseNet121 are statistically significant (p < 
0.0001). However, their effect sizes are smaller (Cohen’s d  <  0.2),
indicating moderate to minor practical differences. In cases where 
statistically non-significant results were observed, they may still hold 
value in the broader context of this study. For example, when 
comparing our model with ResNet18, VGG16, DenseNet169, and 
DenseNet201, although no statistically significant differences were 
identified, the observed performance metrics consistently favor our 
model. This consistency suggests that our approach is at least 
comparable, if not superior, in these scenarios. Moreover, the lack 
of statistical significance could be attributed to the relatively small 
effect sizes (Cohen’s d < 0.2) or the inherent variability within the 
dataset, rather than a true lack of difference. When compared with the 
baseline methods, our model demonstrated statistical significance, 
with effect sizes of 0.3762 and 0.1824, respectively. Our model has 
satisfactory classification performance, is more reliable in identifying 
high-risk thyroid patients, effectively reduces the leakage rate, and is 
important in clinical diagnosis, helping improve physicians’ ability to 
recognize the benign and malignant nature of thyroid nodules. 
Frontiers in Oncology 10 
The model provides physicians with objective risk assessments by 
extracting aggregated features from thyroid nodule ultrasound images. 
This helps doctors make more informed treatment decisions, 
combining these results with clinical history and other test outcomes. 
Accurate risk assessment is crucial for determining appropriate 
treatment options. The model reduces unnecessary invasive tests 
and treatments while ensuring timely intervention for high-risk 
nodules. By automating feature extraction and risk assessment, the 
model enhances the efficiency of medical treatment, particularly in 
areas with a high prevalence of thyroid nodules, and significantly 
improves the accuracy and efficiency of ultrasound examinations. 
4.2 Limitations 

This study has several limitations. First, demographic 
information was not collected at the time of data collection for 
deeper sensitivity analysis. In future studies, baseline information 
on patients and populations receiving FNA for thyroid nodules 
should be collected to increase the diversity of available data. 
Second, single data modality was used in this study. The absence 
of such multi-modal data limits the model’s ability to provide a 
comprehensive risk assessment. Integrating these additional data 
sources in future studies could enhance diagnostic accuracy and 
personalization. Third, all data used in this study were collected 
from a single medical center, raising concerns about the 
generalizability of our findings. Variations in imaging protocols, 
equipment, and patient populations across institutions may affect 
TABLE 5 Results of our model and comparison methods. 

Method LoGoNet ThyNet Ours 

Inference Time (seconds per patient) 0.576 0.598 0.496 
FIGURE 2 

The heat map of attention for each ultrasound image using Grad-CAM. (A): A includes ultrasonogram and heat map, ultrasonogram shows a mixed 
echogenic thyroid nodule, in which the solid portion has irregular morphology, unclear demarcation from the surrounding parenchyma, and multiple 
internal microcalcifications, diagnosed as a C-TIRADS category 4 nodule, heat map shows areas of dense aggregation with warm colors; (B): B  
includes ultrasonogram and heat map, ultrasonogram shows an isoechoic thyroid nodule with irregular morphology, an aspect ratio of greater than 
1, and posterior echogenic attenuation, diagnosed as a C-TIRADS category 4 nodule, heat map shows warm-toned color as an area of dense 
aggregation; (C): C includes ultrasonogram and heat map, ultrasonogram shows a hypoechoic nodule with regular morphology and homogeneous 
internal echogenicity, diagnose as a C-TIRADS category 3 nodule, and heat map shows warm-toned color as an area. 
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model performance. To address this limitation, we plan to conduct 
cross-center validation and external testing in future work to 
evaluate the model’s robustness and adaptability in diverse 
clinical environments. Fourth, obtaining large-scale, high-quality 
labeled ultrasound datasets remains a significant challenge. Manual 
annotation by expert radiologists is time-consuming, costly, and 
subject to inter-observer variability. These factors can limit the 
scalability and consistency of training data. Future research should 
explore weakly supervised or semi-supervised learning approaches 
to reduce reliance on extensive manual labeling. Fifth, data 
annotation was performed by a single expert radiologist, which 
may introduce labeling bias. Future work should include multiple 
annotatorsm and consensus-based labeling for ambiguous cases. 
Although this study shows potential for assessing the risk of thyroid 
nodules, further research and improvements are needed to increase 
its validity and reliability in practical clinical applications. 
4.3 Conclusion 

In conclusion, the proposed multi-instance learning 
convolutional neural network model enables accurate and objective 
identification of high-risk thyroid nodules using multiple ultrasound 
images. Unlike traditional methods that rely heavily on subjective 
interpretation, our model leverages deep learning and attention 
mechanisms to automatically classify, localize, and assess the 
malignancy risk of thyroid nodules. To support this study, we 
constructed a real thyroid ultrasound dataset and performed a 
comprehensive comparison with existing thyroid nodule 
classification models using ultrasound images. The experimental 
results show that our convolutional classification model based on 
multi-instance learning exhibits an excellent performance. In 
summary, our innovative approach not only provides a new 
direction for expanding the application of multi-instance learning 
in whole-slice images (WSI) but also provides an automated C­
TIRADS-based solution for thyroid nodules risk assessment. 
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