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Objective: This study aimed to identify CT‐based radiomic alterations associated

with radiation pneumonitis (RP) and to evaluate the feasibility of machine learning

classifiers for personalized RP diagnosis in breast cancer patients using these

radiomic signatures.

Methods: A total of 146 planning CT scans (pre- and post-radiotherapy) from 73

breast cancer patients with confirmed RP were retrospectively analyzed. The

entire lung was delineated as the region of interest (ROI), and 1,834 radiomic

features were extracted using PyRadiomics. Feature selection was performed

sequentially using the Mann–Whitney U-test (p < 0.05), Spearman’s rank

correlation (|r| < 0.9), and least absolute shrinkage and selection operator

(LASSO). Eight classifiers [logistic regression (LR), support vector machine

(SVM), K-nearest neighbor (KNN), random forest (RF), Extra Tree (ET), XGBoost,

LightGBM, and multilayer perceptron (MLP)] were trained and evaluated using

accuracy, area under the receiver operating characteristic curve (AUC) with 95%

confidence intervals, sensitivity, and specificity.

Results: In the independent test cohort, LR achieved the highest performance

[accuracy 0.897, AUC 0.929 (95% CI, 0.838–1.000), sensitivity 0.786, and

specificity 1.000]. LightGBM and MLP also exhibited robust discrimination with

AUC values of 0.855 (95% CI, 0.719–0.990) and 0.848 (95% CI, 0.705–0.991),

respectively. Five texture-oriented and four first-order features were retained,
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underscoring the importance of texture-focused extractors [wavelet and local

binary pattern (LBP)].

Conclusion: CT-derived radiomic signatures combined with machine learning

classifiers enable the accurate detection of RP in breast cancer patients. Texture-

oriented feature selection enhancesmodel discrimination, providing potential for

the personalized diagnosis of RP in breast cancer patients and adaptive

treatment planning.
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1 Introduction

The 2020 Global Cancer Statistics found 2.26 million new cases

of breast cancer, making it the most common cancer globally,

surpassing lung cancer (1). Radiotherapy has become a critical

component in treating breast cancer using high-energy rays to

prevent the growth or kill cancer cells, leading to reduced

recurrence rate and improved quality of life for patients (2–9).

However, patients may experience different side effects during the

radiation treatment due to the tumor’s location and anatomical

structures. Radiation pneumonitis (RP), a prevalent side effect after

radiation therapy for breast cancer, impacts subsequent radiation

dosages and treatment strategies and significantly influences

patients’ quality of life and post-treatment recovery. Therefore,

the accurate diagnosis and prediction of RP occurrence can help

clinical oncologists adjust treatment plans rapidly, thereby

improving patients’ prognosis and quality of life.

Radiomics is a cutting-edge technology that converts region of

interest (ROI) image data into high-resolution feature space data

that can be easily processed through advanced data characterization

algorithms (10). Through radiomics, valuable information can be

extracted from image data in an efficient and automated manner,

allowing for accurate diagnoses and prognoses. Therefore,

radiomics is promising to provide an approach to address the

diagnosis and prognosis of RP.

Currently, some studies have attempted to use radiomics to

predict the occurrence and grading of RP (11–14). However, a

majority of them have focused on the occurrence of RP after

radiotherapy for lung cancer treatment, while fewer studies have

been conducted on that after radiotherapy for breast cancer. RP

after radiotherapy for lung cancer mainly appears in the lobes of the
e; GLCM, gray-level co-

rix; GLRLM, gray-level

trix; KNN, K-nearest

n operator; LBP, local

istic regression; MLP,

teristic; ROI, region of

r machine.
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lung where the primary lesion is present. However, radiation-

induced RP for breast cancer is mainly in the first to second

intercostal space. This difference in location can impact the

extracted radiomic features to some extent, affecting the results

obtained from radiomics analysis. Therefore, the present study

aimed to investigate radiomic feature changes on CT images

before and after radiotherapy in breast cancer patients with RP

and to assess the potential of these features for diagnosing RP,

thereby facilitating improved prognosis and personalized treatment

strategies for breast cancer patients.
2 Materials and methods

2.1 Patient population

This study collected a total of 146 samples, consisting of 73 breast

cancer patients’ CT images before and after radiation therapy at a

ratio of 1:1. The patients presented at Yunnan Cancer Hospital

between September 2019 and March 2023 and were complicated

with radiation pneumonitis after radiation therapy. The CT images

before radiation therapy were used as negative samples, while the CT

images after radiation therapy were used as positive samples. Their

ages ranged from 30 to 72 years, with the median age being 48 years,

and the majority of patients underwent modified radical mastectomy,

while a minority received breast-conserving surgery, with all of the

patients having no smoking history. Their TNM clinical stages

ranged from I to III, with Stage II and Stage III accounting for the

majority. The molecular subtypes were predominantly Luminal A

and Luminal B, and all patients received intensity-modulated

radiation therapy (IMRT). Patients meeting the following criteria

were included in the study: 1) patients who had pathologically

confirmed breast cancer, 2) patients whose diagnosis of radiation

pneumonitis followed the GBZ110–2002 guidelines, 3) patients with

complete pre- and post-radiotherapy imaging and clinical data, and

4) patients without severe cardiac or pulmonary disease and other

contraindications to radiotherapy. The dataset was randomly divided

into a training set (n = 117) and a test set (n = 29) at a ratio of 8:2.
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2.2 CT images and ROI acquisition

In this study, a Siemens (Somatom Force) third-generation

dual-source CT system was utilized for image scanning of patients

with breast cancer with a layer thickness of 1–2 mm, a tube voltage

of 120 kV, a tube current of 30 mAs, an image size of 512 × 512

pixels, and image reconstruction algorithm(s) using Filtered Back

Projection. The scanning range included complete and clear lung

organs. The ROI was delineated by two clinical oncologists using

the 3D slicer 4.11 software (15) with the whole lung delineated layer

by layer, and the required ROI was reviewed and corrected by a

senior radiologist (as shown in Figure 1).
2.3 Radiomic feature extraction

To eliminate the influence of image voxel size variation as much

as possible, the images were resampled to 3 * 3 * 3 mm before

extracting features in this study. The Radiomics package (http://

pyradiomics.readthedocs.io) extracted radiomic features from the

ROI (16). Nine image types were used for feature extraction:

original, Laplacian of Gaussian (LoG), wavelet, LBP3D,
Frontiers in Oncology 03
exponential, square, square root, logarithm, and gradient. The

sigma values of LoG were 1, 2, and 3. Wavelet included eight

filters: wavelet-LLH, wavelet-LHL, wavelet-LHH, wavelet-HLL,

wavelet-HLH, wavelet-HHL, wavelet-HHH, and wavelet-LLL. A

total of 1,834 radiomic features were obtained, including 14 shape

features (shape), 360 first-order features, 440 gray-level co-

occurrence matrix (GLCM) features, 280 gray-level dependence

matrix (GLDM) features, 320 gray-level run length matrix

(GLRLM) features, 320 gray-level size zone matrix (GLSZM)

features, and 100 neighboring gray tone difference matrix

(NGTDM) features, as shown in Figure 2. The details of the

features can be found in Supplementary File S1.
2.4 Feature selection

We used Z-score to standardize the extracted features and

performed data screening in three ways: statistical analysis,

correlation analysis, and least absolute shrinkage and selection

operator (LASSO) on the standardized data. First, we used the

Mann–Whitney U-test statistical test for radiomic feature selection

and retained 328 radiomic features with the p-value < 0.05. Second, we
FIGURE 1

Whole lung (ROI) outlined by physicians. ROI, region of interest.
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FIGURE 3

Relationship between lambda and regression coefficients (the optimal value of lambda is 0.0391).
FIGURE 2

Number and ratio of handcrafted features, among which first-order stands for first-order features, shape for shape features, glcm for gray-level co-
occurrence matrix features, glszm for gray-level size zone matrix features, glrlm for gray-level run length matrix features, ngtdm for neighboring
gray tone difference matrix features, and gldm for gray-level dependence matrix features.
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performed Spearman’s rank correlation analysis on the 328 radiomic

features to eliminate redundant features with high repeatability, as

shown in Supplementary Material Figure 1, and retained one of

the two features with a correlation coefficient greater than 0.9,

yielding a total of 82 features. Finally, we constructed the 82

obtained features using the LASSO model, which compressed the

coefficients of the features by adjusting the weights l and changed the

coefficients of some of the features to zero to achieve feature selection.

Our study performed a 10-fold cross-validation to find the optimal

values, as shown in Figures 3 and 4, and we retained the features with

non-zero coefficients for fitting the regression model and combined

them into a radiomic signature. The optimal value of l in this study

was 0.0391.
2.5 Model construction and evaluation
metrics

Our study utilized the sklearn package in Python 3 to build

machine learning models. Specifically, we applied eight different

algorithms: logistic regression (LR), support vector machine (SVM),

K-nearest neighbors (KNN), random forest (RF), Extra Tree (ET),

XGBoost, LightGBM, and multilayer perceptron (MLP). All of them

were employed to discriminate RP, using four different metrics—

accuracy, the area under the receiver operating characteristic curve

(AUC), sensitivity, and specificity—and ROC curves to further

assess their effectiveness.
Frontiers in Oncology 05
3 Results

3.1 Radiomic feature filtering

In this study, the 1,834 features extracted from the ROI were

filtered through several steps, with nine retained radiomic features

for the training and testing of the machine learning models,

including four first-order features, two GLSZM features, and
TABLE 1 Radiomic features obtained after LASSO
dimensionality reduction.

Feature type Features Feature
weights

exponential_firstorder RobustMeanAbsoluteDeviation 0.005837

exponential_glszm ZonePercentage 0.053475

lbp_3D_m1_glcm Imc2 −0.161096

lbp_3D_m1_glszm ZoneVariance −0.022473

logarithm_firstorder RobustMeanAbsoluteDeviation 0.014765

logarithm_glcm SumEntropy 0.014366

squareroot_firstorder 90Percentile 0.052493

wavelet_LHH_firstorder Mean 0.119742

wavelet_LHH_glcm Correlation −0.005163
LASSO, least absolute shrinkage and selection operator.
FIGURE 4

Correlation heat map between 12 features after LASSO feature filtering. LASSO, least absolute shrinkage and selection operator.
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three GLCM features, as shown in Table 1. In order to show the

weight of each feature more visually, the weight histogram and Rad

score of the nine features were plotted, as shown in Figures 5 and 6.
3.2 Radiomics model prediction

We developed eight machine learning models to predict

radiation pneumonitis based on selected radiomic features, as

shown in Table 2. The SVM model demonstrated the highest

accuracy on the test set, while the LR model achieved the best

overall predictive performance, indicated by the highest AUC and

specificity. Most of the models, except the ET model, showed robust

diagnostic potential with AUC scores exceeding 0.7, confirming that

radiomics-based machine learning can effectively identify radiation

pneumonitis in breast cancer patients. ROC curves for these models

further illustrate their comparative performances (Figure 7).
4 Discussions

Previous studies on RP have mainly focused on its prediction

and diagnosis using dosimetric parameters, pulmonary metabolic

activity, etc. (17, 18). However, this predictive approach’s precision

and robustness still need to be improved. With the development of
Frontiers in Oncology 06
artificial intelligence, radiomics provides a novel approach for

diagnosis and prognosis in clinical practice.

Numerous studies have confirmed that radiomics-based models

exhibit robust and superior performance across multiple cancer-

related prediction and classification tasks (19, 20). Therefore,

radiomics can non-invasively extract imaging information and

analyze its potential clinical value in a high-throughput manner

to establish a practical model for prognosis and discrimination in

clinical applications, thus potentially enabling the development of

non-invasive differential models for the diagnosis of RP (11, 21).

Current studies have demonstrated that the integration of

radiomic features with machine learning algorithms substantially

improves predictive accuracy for RP differentiation in radiotherapy

settings, thereby establishing a foundation for developing clinically

applicable RP diagnostic models (21, 22). However, most of these

radiomics studies focused on lung cancer, where the tumors’

anatomical location and adjacent structures may present radiomic

feature alterations in the lung, affecting the prediction results and the

validity of the extracted features for radiolucency after radiotherapy

for lung cancer. RP after the radiotherapy for breast cancer is mainly

in the first to second intercostal space, and the lung is less affected by

the tumor. Consequently, the generalizability and robustness of the

extracted features based on lung cancer may be affected to different

degrees. Therefore, there is a need to personalize the diagnosis and

prognosis of RP for breast cancer patients.
FIGURE 5

Weights of the nine radiomic features.
FIGURE 6

Graph of Rad-score results.
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Our study aimed to detect radiomics changes on CT images

before and after radiotherapy and explore the feasibility of employing

them to discriminate the occurrence of RP in patients with breast

cancer after radiotherapy. We utilized various machine learning

models to diagnose the occurrence of RP after radiotherapy. It is

noteworthy that we initially personalize the diagnosis of RP by

comparing radiomics changes on CT images before and after

radiation therapy in breast cancer patients who develop RP.

Currently, the investigators’ selection of deep learning models or

classification algorithms in their study is usually determined by their
Frontiers in Oncology 07
experience, or they consider factors such as the frequency of being cited

in the literature, data characteristics and quality, and the availability of

simple implementation (23). Parmar et al. (24) found that the choice of

different classification methods had a significant impact on the model

performance (34.21% of the total variance of the models). Therefore, the

appropriate choice of machine learning model is crucial for the

prediction. In this study, eight machine learning models were

constructed for prediction, and the results showed that, except for the

Extra Tree model, the seven other machine learning models presented

AUC values higher than 0.7 in the test cohort. The LR model was
FIGURE 7

ROC analysis of different models on Rad signature. ROC, receiver operating characteristic.
TABLE 2 Predictive performance of eight models in the training cohort and test cohort.

Model
Training cohort (n = 116) Testing cohort (n = 29)

Accuracy AUC (95% CI) Sensitivity Specificity Accuracy AUC (95% CI) Sensitivity Specificity

LR 0.761 0.83 (0.756–0.903) 0.542 0.983 0.897 0.929 (0.8383-1.000) 0.786 1

SVM 0.812 0.901 (0.849–0.952) 0.712 0.914 0.901 0.805 (0.645–0.965) 0.643 0.867

KNN 0.786 0.852 (0.787–0.916) 0.678 0.897 0.724 0.793 (0.625–0.961) 0.786 0.667

Random forest 0.983 0.999 (0.997–1.000) 0.966 1 0.724 0.688 (0.483–0.893) 0.571 0.867

Extra Tree 1 1 (1.000–1.000) 1 1 0.621 0.6 (0.384–0.816) 0.571 0.667

XGBoost 1 1 (1.000–1.000) 1 1 0.793 0.733 (0.534–0.932) 0.571 1

LightGBM 0.872 0.942 (0.904–0.980) 0.881 0.862 0.793 0.855 (0.719–0.990) 0.571 1

MLP 0.778 0.818 (0.741–0.894) 0.797 0.759 0.828 0.848 (0.705–0.991) 0.786 0.867
SVM, support vector machine; KNN, K-nearest neighbor; MLP, multilayer perceptron; AUC, area under the receiver operating characteristic curve.
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optimal for AUC, sensitivity, and specificity metrics in the test set, with

an AUC value of 0.929, which indicated that the radiomic features

obtained from CT images could effectively individualize the diagnosis of

RP in breast cancer patients. It can assist clinical oncologists in rapid

diagnosis and the adjustment of treatment plans. A total of nine

radiomic features were selected in this study, including five textural

features, which may be explained by the fact that lung texture is altered

to varying degrees in the presence of RP, which is consistent with the

assumption that textural features are more suitable for detecting tissue

structural heterogeneity on imaging (25). Mean, 90Percentile, and

RobustMeanAbsoluteDeviation were selected as the first-order

features, probably because of the significant grayscale changes in the

lungs in the presence of RP, which may lead to changes in the mean

grayscale values and 90Percentile and RobustMeanAbsoluteDeviation.

Cunliffe et al. (26) explored the correlation of radiomic features with

radiotherapy dose and the occurrence of RP based on CT images of

patients undergoing radiotherapy for lung cancer. Similarly, they found

that there was a statistically significant relationship between MEAN

features in first-order features and the occurrence of RP (p < 0.0025),

which is similar to the results of the present study. It is worth noting that

most of the radiomic features extracted in this study were features

obtained by the wavelet extractor and local binary pattern (LBP)

extractor, and the wavelet transform can extract features from the

frequency domain and effectively enhance the texture features of CT.

Also, LBP is an operator used to describe local texture features of images.

Jiang et al. (27) used a CT-based wavelet transform radiomics method to

grade lung lesions caused by COVID-19, and the results showed that

wavelet transform could enhance CT texture features, and wavelet

transform radiomics based on CT images can be used to assess the

grading of COVID-19-induced lung lesions effectively. Additionally,

similar findings have proved that all radiomic features with wavelet

filters that were selected using LASSO regression were important

predictors for the prediction of RP grade (21). Therefore, combined

with the results of this study, it can be inferred that texture features are an

important component for the diagnosis of RP in breast cancer patients

and that feature extractors such as LBP and wavelet that can enhance or

amplify texture features may be more advantageous, and it is

recommended that extractors that can focus on texture features

should be added when performing radiomic feature extraction for RP

in breast cancer.

There is still some room for improvement in this study. This

study only used radiomic features for diagnosing RP. In future

studies, it is necessary to consider the influence of patients’ clinical

traits, such as age, gender, smoking status, and lung disease (28).

Dose parameters during treatment planning can affect the incidence

rate of RP and should also be used as a reference (29–32).

Furthermore, future research should implement clinical stage

stratification to identify stage-specific radiomic signature

alterations. Other approaches, such as visual assessment systems

(e.g., radiological scoring scales), should be incorporated to

augment the feature pool. Also, this study is a single-center study

with limited samples, and the models’ robustness and generalization

will be somewhat challenged; additional datasets and multi-center

studies should be conducted in the future.
Frontiers in Oncology 08
5 Conclusions

When RP occurs, radiomics is more likely to exhibit changes in

texture features and first-order characteristics, and feature

extractors that can focus on or amplify texture features, such as

wavelets and LBP, may be more advantageous in discriminating the

RP occurrence. Meanwhile, machine learning models based on

radiomic features can effectively predict the RP occurrence.
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SUPPLEMENTARY FILE S1

Radiomics features.

SUPPLEMENTARY FIGURE 1

Cluster analysis of radiomics features (Darker colors represent more positive

correlations between features, and lighter colors represent more
negative correlations).
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