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Background: the STS is a rare type of tumor, and although its treatment has

improved greatly in recent decades, the treatment of STS and the development of

new drugs remains a major challenge. A new identification of prognostic

biomarkers that reflect the biological heterogeneity of STS could therefore lead

to better interventions for STS patients. In recent years, there has been a growing

interest in the investigation of the impact of immune-related genes on

cancer prognosis.

Methods: based on RNA-seq data obtained from TCGA-STS and GTEx patients,

differential expression analysis, consensus clustering, enrichment analysis, tumor

microenvironment assessment, risk model construction and other data analysis

were performed. Last but not least, CALR, a central regulator inSTS, demonstrated

oncogenic properties through overexpression/knockdown assays, supported by

qRT-PCR and immunofluorescence data.

Results: we constructed a prognostic model containing 8 IRGs for predicting STS

prognosis by using the LASSO regression. Furthermore, the samples were

categorized as either high-risk or low-risk based on the risk score computed by

themodel. Additionally, we compared the tumormicroenvironment of STS samples

using the ESTIMATE and CIBERSORT algorithms. Last, our experimental results

proved that CALR was up-regulated in sarcoma cells compared to in normal cell.

Conclusions: conclusively, IRGPM is a promising immune-related prognostic

biomarker. As a prognostic indicator of immunotherapy, IRGPM might also help

differentiate molecular and immune characteristics in STS.
KEYWORDS

soft tissue sarcoma, immune-related genes, tumor microenvironment, immune cell
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1 Introduction

Soft Tissue Sarcoma (STS) refers to a collection of cancerous

tumors that arise from non-epithelial extraosseous tissues. The

incidence of STS is low, about 29100 in China, and 40% to 60%

of patients develop hematogenous metastasis during the disease

progression (1). The diagnosis and treatment of STS requires

multidisciplinary cooperation. Although chemotherapy is

currently the most widely used systemic therapy, the indications

and protocols of chemotherapy for STS have not been as clear and

uniform as those for other tumors for a long time, mainly because of

the low incidence of STS, the variety of tissue types, and the different

biological behaviors, which have very different sensitivity to

chemotherapy. Therefore, to improve prognosis, STS biomarkers

associated with biological heterogeneity need to be identified (2, 3).

Currently, immune oncology is attracting much attention due to its

particular benefits for cancer patients. Immunotherapy, a new

therapeutic approach, has demonstrated encouraging outcomes in

combating specific types of cancer, including breast cancer and

hepatocellular carcinoma (4, 5). The involvement of immune-

related genes and immune cells is essential in the development

and progression of tumors (6, 7). As a result, this comprehensive

study may provide insight into new treatment and prognostic

factors for STS based on the relationship between immune-related

genes. An 8-immune related gene prognostic model (IRGPM) was

identified to be significantly correlated with prognosis in both

groups of Soft Tissue Sarcoma by utilizing univariate Cox and

LASSO regression analysis. Additionally, we compared the tumor

microenvironment of STS samples using the ESTIMATE and

CIBERSORT algorithms. The immune-related prognostic

biomarker, IRGPM, has been recognized as a promising candidate

for predicting the prognosis of STS. As a prognostic indicator of

immunotherapy, IRGPM might also help differentiate molecular

and immune characteristics in STS.
2 Materials and methods

2.1 Patients and datasets

As shown in Figure 1, The Cancer Genome Atlas (TCGA)-STS and

The Genotype-Tissue Expression (GTEx) database (https://

xenabrowser.net/datapages/) were used to download RNA sequencing

data from 392 samples, including 263 STS samples, 129 normal samples

as well as their clinicopathologic characteristics. The ImmPort

(https://www.immport.org/shared/home) and InnateDB (https://

www.innatedb.com/) databases were used to download immune-

related gene lists.
2.2 Identification of immune-related hub
genes

On the basis of RNA-seq data obtained from TCGA-STS and

GTEx patients (263 tumors vs 129 normal samples), Using the
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package limma, differentially expressed genes (DEGs) (P<0.05, |

log2FC| >1) were identified. Using the immune-related gene (IRG)

lists from ImmPort and InnateDB, and the clusterProfiler package

of R, we acquired and analyzed immune-related differentially

expressed genes based on Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) analyses.

WGCNA was then used to identify hub genes. In the first step,

A correlation coefficient derived from the expression data of a pair

of IRGs was used to calculate the similarity matrix. The similarity

matrix was first converted into an adjacency matrix utilizing a

signed network type and b=14. To construct a scale-free co-

expression network, we calculated the soft-thresholding power (b)
using the pickSoftThreshold function in the WGCNA R package.

The value of b = 14 was chosen based on the criterion that the scale-

free topology fit index (R²) exceeds 0.85, while maintaining mean

connectivity at a reasonable level. This ensures the resulting

network conforms to a scale-free distribution, which is

biologically meaningful for gene co-expression analysis (see

Supplementary Figure X for the scale-free topology plot).

Subsequently, the topological overlap measure (TOM) was used

to transform the adjacency matrix into a topological matrix, which

described the level of gene association. A dynamic pruning tree was

constructed using the 1-TOM distance metric between genes to

identify modules. Last but not least, in order to identify four

modules, the merge threshold function was set to 0.25. The genes

located in the turquoise module were identified as the hub genes. In

order to construct the network, genes with weight > 0.2 from

significant related modules (turquoise module) were connected.

To establish the optimal cut-off value for each hub gene with respect

to overall survival (OS), the survminer package in R was employed.

Forty-six hub genes associated with immune response and

exhibiting significant survival association (log-rank test, P < 0.05)

were selected for further analysis. The maftools package was utilized

to identify relevant mutations in the analysis of the 46 immune-

related hub genes.
2.3 Construction and validation of the
IRGPM Among 187 immune-related hub
genes

In our study, 256 patients with STS were randomly assigned to

one of two groups (2:1). In the training group, a prognostic model

for immune related genes was developed by combining univariate

Cox regression, LASSO Cox regression, and multivariate Cox

regression. As a result of using this prognostic model, an

individual’s risk score was calculated. In accordance with the

formula below, a risk score was calculated: risk score = the

normalized expression level and corresponding correlation

coefficient of each immune related gene were multiplied. The

median risk score was used to categorize the training, testing, and

all patient groups as either high risk or low risk. The high risk and

low risk groups were compared in terms of OS in the training group,

testing group, and all patients, as determined by Kaplan

Meier analysis.
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2.4 Relationship between IRGPM grouping
and other molecular, immune subtypes

We identified the gene sets enriched in each IRGPM subgroup

through GSEA (GO, KEGG), and proceeded to gain additional

biological insight by analyzing gene mutations using R’s maftools

package. The distribution of immune subtypes within the IRGPM
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groups was then examined. In this study, the component of C1, C2,

C3, C4, and C6 between IRGPM-high subgroup and IRGPM-low

subgroup were compared. (P < 0.001). As part of our evaluation of

STS’s immune microenvironment, using the CIBERSORT algorithm,

we calculated the proportion of immune cells that had infiltrated the

tumor in every patient (8) A 0.05 P value was applied to the results

produced by CIBERSORT. In addition, clinicopathologic factors and
FIGURE 1

Workflow of immune-related prognostic modeling and validation in soft tissue sarcoma.
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immune cell proportions between the two IRGPM subgroups were

compared. A correlation analysis was conducted on 256 STS samples

to determine the immune characteristics by examining the connection

between the IRGPM score and the total mutation burden (TMB).

Calculation of the TIDE score was done using a web-based calculator

(http://tide.dfci.harvard.edu/).
2.5 Cell culture and qRT-PCR analysis

Sarcoma cell lines (143B, MG63, U2OS, SaOS, HOS) and

human osteoblasts (hFOB1.19) were obtained from ATCC

(Manassas, VA, USA). Cells were cultured in DMEM medium

(Solarbio, Beijing, China) supplemented with 10% fetal bovine

serum (FBS) and 1% penicillin-streptomycin, and maintained at

37°C with 5% CO2. Total RNA was extracted using TRIzol reagent

(Invitrogen, Carlsbad, CA, USA), and cDNA was synthesized using

the ReverTra Ace qPCR RT Kit with gDNA Remover. Quantitative

real-time PCR (qRT-PCR) was performed using SYBR Premix Ex

Taq II on an Mx3005P real-time PCR system (Stratagene, San

Diego, CA, USA), with GAPDH as an endogenous control. qRT-

PCR conditions included 95°C for 10 min (pre-denaturation), 95°C

for 5 s (denaturation), 60°C for 30 s (annealing), and 45 cycles. Each

sample was analyzed in triplicate, and gene expression levels were

calculated using the 2^(-DDCt) method, with primer sequences

provided in Supplementary Table 1.
2.6 Overexpression plasmid, shRNA and
antibodies

CALR shRNA (#sc-141687-SH) and CALR overexpression

plasmid (#EX-Mm07902-M61) were purchased from Santa Cruz

Biotechnology and GeneCopoeia, respectively. Transfection was

performed using Lipofectamine 3000 reagent (#L3000008,

Thermo Fisher Scientific). Anti-CALR (#10208-1-AP, 1:1000) and

anti-GAPDH (#ab8245, 1:2000) antibodies were purchased from

Proteintech and Abcam, respectively. Anti-Flag antibody (#F3165,

1:5000, Sigma-Aldrich) was used to detect overexpression

constructs (Supplementary Tables 2, 3).
2.7 Western blot, and immunofluorescence
staining

Total proteins from sarcoma cell lines (143B, MG63, U2OS,

SaOS) were lysed using RIPA buffer, separated by 10% SDS-PAGE,

and transferred to PVDF membranes. Following blocking with 5%

skim milk, the membranes were incubated with primary antibodies

overnight at 4°C, then probed with secondary antibodies for 2 hours

at room temperature prior to centrifugation (4°C). Protein bands

were quantified using ImageJ, with statistical analysis performed in

GraphPad Prism 9. Image contrast adjustments were applied

uniformly in Photoshop.
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143B cells were divided into three groups: CALR overexpression

(OE), CALR knockdown, and negative control (NC). Cells were

transfected with CALR overexpression plasmid (EX-H0146-M61,

GeneCopoeia), CALR shRNA (sc-141687-SH, Santa Cruz

Biotechnology), or scrambled shRNA (sc-108060, Santa Cruz

Biotechnology) using Lipofectamine 3000 (#L3000008, Thermo

Fisher) for 48 hours. Cells on coverslips were fixed with 4% PFA,

permeabilized with 0.2% Triton X-100, blocked with 3% BSA, and

incubated with anti-CALR antibody (#10208-1-AP, 1:200,

Proteintech) overnight at 4°C, followed by TRITC-conjugated

secondary antibody (1:500) and DAPI (1 mg/mL) at RT. Images

were captured via Zeiss LSM 880 confocal microscope and analyzed

with ImageJ.
2.8 Statistical analysis

All statistical analyses were performed using R (v4.0.5). To

compare the distributions of transformed categorical variables,

either Chi square or Mann Whitney U tests were conducted. A

significance level of p<0.05 was assumed unless otherwise specified.
3 Results

3.1 Identification of immune-related hub
genes

In tumor samples compared to normal samples, there were a

total of 5045 genes showing differential expression, with 2406 genes

upregulated and 2639 genes downregulated (Figure 2A). Together

with the immune-related genes lists obtained from ImmPort and

InnateDB databases, a total of 495 genes with differential expression

in immune cells have been identified. Among these genes, 311

showed upregulated expression in tumor samples, while 184 genes

showed downregulated expression (Figure 2B). According to a

functional enrichment analysis, 495 differentially expressed genes

showed significant associations with KEGG pathways and GO

terms. GO enriched in items such as regulation of immune

effector process, receptor ligand activity and external side of

plasma membrane (Figure 2C). KEGG enriched in pathways such

as Cytokine−cytokine receptor interaction, MAPK signaling

pathway, PI3K−Akt signaling pathway (Figure 2D). A further

analysis of 495 differentially expressed genes was conducted by

WGCNA. The correlation coefficient of probability of a node was

greater than 0.9 between logarithm log(k) and logarithm log(P(k)),

with the latter correlated negatively with logarithm log(k). We

determined a soft threshold power of 14 by relying on the scale

free network. Four modules were identified by utilizing the average

linkage hierarchical clustering and the optimal soft threshold power

(Figure 3A). Across 4 modules, 495 genes are present. Based on the

module’s Pierson correlation coefficient, it is found that turquoise

module (187 genes) was closely associated with STS tumors

(Figure 3C). We conducted a correlation analysis on the 187 hub
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immune related genes in this module. A total of 25 genes and 35

edges were identified in networks with a threshold weight > 0.2

within the turquoise module (Figure 3B). Based on Cox regression

analysis and K–M analysis, OS showed a strong correlation with 46

hub genes (P = 0.05, logrank test) Figure 3D, Supplementary

Figure 1. Following that, we examined the somatic mutation

characteristics of 46 hub genes. A few of the 46 hub genes related

to immune function were found to have deletion and missense

mutations, with PTK2, TICAM1, and TRIM26 having mutation

rates exceeding 1%. This was a notable discovery. (Figure 4A).
3.2 Construction and validation of the
IRGPM prognostic model

An average ratio of 2:1 was used for dividing 256 STS patients into

two groups: the training group (n = 180) and the testing group (n = 76).

The 187 hub genes in our training group were narrowed by LASSOCox

regression, resulting in 16 hub genes being chosen (Figure 4B).

Following a subsequent multivariate analysis, the 8 IRGs with the

lowest AIC (CALR, PSMD, IGF1, IL10RB, TRIM21, SQSTM1, AZI2,

LGALS8) were identified as being prognostic (Figure 4C). In this

section, we describe how risk scores are computed based on gene

e x p r e s s i o n l e v e l s = C A L R × 0 . 4 3 8 6 6 8 8 5 8 9 8 5 2 9 ,

PSMD10×0.658917776760825, IGF1×-0.382053790602671, IL10RB×-

0.45324723287495, TRIM21×-0.4532805497586, SQSTM1×-

0.26057468186444, AZI2×0.53318212745604, LGALS8×-
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0.770285176804154. Based on median risk scores, we split the

training group into two groups one with high risk (n = 90) and

another with low risk (n = 90). The Kaplan Meier analysis revealed

that the high risk group had a considerably poorer OS compared to the

low risk group. (Figure 5A). We used the same formula to calculate risk

scores in the testing group as we did in the training group to verify the

accuracy of the immune related gene prognostic model. Using the

identical cut off values as those employed for the training group, the

subjects were separated into two categories: the high risk group (n = 42)

and the low risk group (n = 34). A relatively poor prognosis was

observed in STS patients with high risk, according to Kaplan Meier

analysis (Figure 5B). Using the identical formula applied to both the

training and testing groups, a risk score was determined for each patient.

Subsequently, patients were classified into two groups the high risk

group (consisting of 132 patients) and the low risk group (consisting of

124 patients). Similarly, a relatively poor prognosis was observed in STS

patients with high risk according to Kaplan Meier analysis. (Figure 5C).

The AUC was 0.755 at 1 year, 0.738 at 2 years, and 0.757 at 3

years (Figure 5D).
3.3 Relationship between IRGPM grouping
and other molecular, immune subtypes

To identify enriched gene sets in different subgroups of IRGPM,

a GSEA was conducted. It was discovered that the gene collections

in samples characterized by IRGPM-high were enriched in GO,
FIGURE 2

Differentially expressed immune‐related genes in STS. (A) A heatmap is presented to show the DEGs between 263 STS samples and 129 normal
samples. (B) STS exhibited differential expression of immune related genes. (C) Enrichment analysis of immune related DEGs using Gene Ontology
(GO). (D) Enrichment analysis of immune related DEGs using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway.
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such as chromosome segregation, DNA conformation and change,

microtubule-cytoskeleton-organization, muscle and organ

development, contractile fiber (Figure 6A); KEGG, such as cardiac

muscle contraction, cell cycle, dilated cardiomyopathy, homologous

recombination, TGF beta signaling pathway (Figure 6C), while the

gene collections of the IRGPM-low group exhibited an enrichment

in GO, such as adaptive immune response, activation of immune

response, antigen receptor mediated signaling pathways

(Figure 6B); KEGG, such as cytokine-cytokine receptor

interaction, hematopoietic cell lineage, T cell receptor signaling

pathway (Figure 6D). Next, for a deeper understanding of IRGPM

subgroups’ somatic mutations, we analyzed gene mutations. It was

discovered that the IRGPM high group had considerably more

mutations compared to the IRGPM low group. Mutations with

missense are the most common, followed by deletions with

frameshifts and nonsense mutations. Afterwards, the IRGPM

subgroups were analyzed to identify the top 20 genes with the

highest mutation rates. It was discovered that the mutation rates of

TP53, ATRX, and TTN surpassed 10% in both groups (Figures 6E,

F). The IRGPM grouping and proportions such as age, margin

status, metastatic, and gender of 256 patients in TCGA cohort were

shown in (Figure 7A). Based on TCGA database information on the
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microenvironment and mutations, tumors were divided into six

types: C1 (wound healing), C2 (interferon-g-dominant), C3

(inflammatory), C4 (lymphocyte depleted), C5 (immunologically

quiet), and C6 (TGF-bdominant) (9). Following that, the

distribution of immune subtypes within the IRGPI subgroups was

analyzed. In this study, the IRGPI-low subgroup consisted 19%C1,

23%C2, 21%C3, 22%C4 and 15%C6 samples, while the IRGPM-

high subgroup consisted 38%C1, 12%C2, 16%C3, 31%C4 and 3%C6

samples. The number of C1 and C4 samples in the IRGPM high

subgroup was significantly higher than that in the IRGPM low

subgroup (P < 0.001). (Figure 7B).
3.4 Comprehensive analysis of tumor
immune microenvironment in different
IRGPM subgroups

We analyzed the composition of immune cells in various IRGPM

subgroups by comparing their distribution using the Wilcoxon test. We

found that M1 macrophages, in the IRGPM high subgroup, there were

more T cells CD4memory resting andMacrophagesM2, whereas in the

IRGPM low subgroup, there were more T cells with CD8 phenotype,
FIGURE 3

Identification of immune-related hub genes. (A) A soft threshold b = 5 was used for the Weighted Gene Co Expression Network Analysis (WGCNA) of
immune related genes that showed differential expression. (B) The turquoise module is comprised of a network of genes. (C) WGCNA was used to
obtain gene modules that are associated with overall survival. (D) Shown in the forest plots is the univariate Cox regression analysis between IRGPM
and OS of STS. The P-values were obtained by univariate cox regression.
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Monocytes and T cells with regulatory phenotype (Tregs) (Figure 8A).

Our next step was to apply certain gene model to determine immune

functions between different subgroups of IRGPM. As a result, we found

that most immune and molecular functions such as aDCs,

APC_co_inhibition, APC_co_stimulation, B_cells, CCR, CD8

+_T_cells, Check−point, Cytolytic_activity significantly increased in

the IRGPM-low (Figure 8B). As a next step, we investigated the

relationship between TMB and IRGPM score. There was a slight

relation between IRGPM and TMB as a consequence (Figure 8C).

We compared K-M curves for H TMB patients versus L TMB patients

and for H TMB patients versus L TMB patients in high risk and low risk

groups. According to the results, patients who had a higher TMB had a

greater probability of survival, whereas patients with higher TMB who

were at low risk had the greatest likelihood of survival. (Figures 8D, E).

After that, we used TIDE to determine whether immunotherapy would

be effective in different IRGPM subgroups. A higher potential for

immune evasion was indicated by an increase in TIDE prediction

score, which indicated a lower likelihood of immunotherapy benefiting

the patients. Our results indicate that immunotherapy may be more

advantageous for IRGPM high patients since the TIDE score of the

IRGPM high subgroup was found to be lower than that of the IRGPM

low subgroup (Figures 9A–D).
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3.5 CALR expression is upregulated in
different sarcoma cells compared to
normal osteoblasts

To determine the differential expression of CALR between

sarcoma and normal cells, we performed qRT-PCR analysis on

three sarcoma cell lines (MG-63, 143B, HOS) and the human

normal osteoblast cell line hFOB1.19. As shown in Figure 10A,

CALR mRNA levels were significantly elevated in all sarcoma cells

compared to hFOB1.19 (p < 0.05 for MG-63, p < 0.01 for 143B and

HOS; one-way ANOVA), indicating a consistent upregulation of

CALR in malignant cells.
3.6 CALR protein levels are enhanced in
overexpression models

Western blot analysis of untreated sarcoma cells (Saos-2, MG-

63, 143B, U2OS) and CALR-overexpressing 143B cells (OE-CALR)

revealed distinct expression profiles. While endogenous CALR

protein (~55 kDa) was detectable at low levels in all untreated

sarcoma cell lines, its expression was markedly increased in the OE-
FIGURE 4

The construction of a prognostic model in OS patients. (A) There are changes in mutations and expression for 46 DEIRGs in patients. (B) By means
of the LASSO regression model, only 8 genes related to immunity were chosen, meeting the minimum standards. (C) The immune related gene
coefficients were calculated in LASSO regression.
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CALR group (Figure 10B). Densitometric quantification showed a

4.5-fold increase in CALR protein in OE-CALR compared to

untreated 143B cells (p < 0.001, Student’s t-test). GAPDH (37

kDa) served as the loading control.
3.7 Subcellular localization and quantitative
fluorescence analysis of CALR

Immunofluorescence staining in 143B cells further validated

CALR modulation. Overexpression of CALR (OE-CALR) resulted

in strong TRITC signals (red) localized predominantly in the

endoplasmic reticulum, whereas CALR knockdown (sh-CALR)

significantly reduced fluorescence intensity (Figure 10C).

Quantitative analysis demonstrated a 3.1-fold increase in CALR

fluorescence in the OE group and a 68% reduction in the sh-CALR

group compared to the NC control (p < 0.001, Figure 10C, lower

panel). Nuclear staining with DAPI (blue) confirmed preserved

cellular architecture across all groups.
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4 Discussion

With the emergence of targeted therapy and immunotherapy in

the field of tumor treatment, chemotherapy is still the cornerstone

of STS treatment (10). The timing, indications and protocol

selection of chemotherapy need to be combined with the

treatment purpose and the chemotherapy sensitivity and risk of

the tumor as well as the general condition of the patient. To enhance

the chemotherapeutic efficacy of STS, the combined application of

chemotherapy and targeted therapy or immunotherapy will become

an important direction for the next research (11, 12). As a result, we

conducted a study that emphasized the diversity of STS and the

relationship between infiltration of immune cells in tumors and

tumor cells, as this has immense importance in comprehending the

mechanisms of tumor growth and predicting prognosis.

Additionally, these findings may lead to the identification of

novel diagnostic and treatment methods. We selected qRT-PCR,

Western blotting, and immunofluorescence staining as validation

techniques based on their complementary strengths. qRT-PCR was
FIGURE 5

The validation of a prognostic signature in OS patients. (A-C) KM curves illustrate the overall survival in the training group, testing group, and all
patients categorized into high and low risk groups. (D) The ROC curve verified the prognostic accuracy of the risk scores in all patients. ROC,
receiver operating characteristic.
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used to assess mRNA expression levels of CALR in tumor versus

normal cells, while Western blotting confirmed protein expression.

Immunofluorescence further visualized subcellular localization and

relative abundance of CALR in transfected cells. These three

approaches together provided robust and multi-dimensional

validation of the CALR expression profile predicted by our

bioinformatics analyses. Our study identified and validated the 8

immune related gene prognostic model (IRGPM) using mRNA

sequencing data from TCGA and GTEx. Using the risk score

derived from our IRGPM, we categorized the patients into high-

risk and low-risk subgroups. Our next step was to comprehensively

analyze the tumor immune microenvironment features of our

subgroups. As we know, tumorigenesis and progression are not

only related to its own characteristics, but also influenced by the

tumor microenvironment (TME) in which it is located (13, 14).

TME is consisted of stromal cells (fibroblasts, macrophages,

endothelial cells, etc.), ECM components (inflammatory

cytokines, chemokines, etc.) and exosomes (extracellular vesicles

containing small molecules), which play an important role in tumor
Frontiers in Oncology 09
development (15, 16). According to the literature, tumor-associated

macrophages in stromal cells, i.e., M2 macrophages, can promote

angiogenesis and stromal remodeling and are closely linked to the

progression and prognosis of STS (17–19). Our study revealed that

the IRGPI high subgroup exhibited a greater abundance of M1

macrophages, T cells CD4 memory resting, and Macrophages M2,

whereas the IRGPI low subgroup showed a higher presence of T

cells CD8, Monocytes, and T cells regulatory (Tregs). Later,

different IRGPM subgroups were identified for enriched gene sets

through GSEA analysis. The enrichment of the gene sets in GO was

discovered in samples with IRGPM high, such as chromosome

segregation, DNA conformation and change, microtubule-

cytoskeleton-organization, muscle and organ development,

contractile fiber; KEGG, such as cardiac muscle contraction, cell

cycle, dilated cardiomyopathy, homologous recombination, TGF

beta signaling pathway, while the gene sets in the IRGPM samples

with low expression showed enrichment in GO, such as activation

of immune response, adaptive immune response, antigen receptor

mediated signaling pathways; KEGG, such as cytokine-cytokine
FIGURE 6

Molecular characteristics of different IRGPI subgroups. (A) Gene sets (GO) enriched in IRGPM-high subgroup. (B) Gene sets (GO) enriched in IRGPM-
low subgroup. (C) Gene sets (KEGG) enriched in IRGPM-high subgroup. (D) Gene sets (KEGG) enriched in IRGPM-low subgroup.
(E, F) Mutation changes and expression changes of DEIRGs in different IRGPM subgroups.
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receptor interaction, hematopoietic cell lineage, T cell receptor

signaling pathway. Next, for a deeper understanding of IRGPM

subgroups’ somatic mutations, we analyzed gene mutations. It was

discovered that there was a significant increase in mutations in the

IRGPM high group compared to the IRGPM low group. Mutations

with missense are the most common, followed by deletions with

frameshifts and nonsense mutations. Finally, in the IRGPM

subgroups, the 20 genes showing the greatest mutation

frequencies were singled out. In both groups, TP53, ATRX, and

TTN had mutation rates exceeding 10%. Six distinct molecular

subtypes have been consistently reported (9, 20). Following that, the

distribution of immune subtypes within the IRGPM subgroups was

analyzed. In this study, the IRGPM-low subgroup consisted 19%C1,

23%C2, 21%C3, 22%C4 and 15%C6 samples, while the IRGPM-

high subgroup consisted 38%C1, 12%C2, 16%C3, 31%C4 and 3%C6

samples. There were a greater number of C1 and C4 samples found

in the IRGPM high subgroup compared to the IRGPM low

subgroup. Next, we explore the correlation of TMB and IRGPM

score. There was a slight relation between IRGPM and TMB as a

consequence. We compared K-M curves for H TMB patients versus
Frontiers in Oncology 10
L TMB patients and for H TMB patients versus L TMB patients in

high risk and low risk groups. According to the results, patients who

had a higher TMB had a greater probability of survival, whereas

patients with higher TMB who were at low risk had the greatest

likelihood of survival, which were consistent with situation in

various cancers (21–25). After that, we used TIDE to determine

whether immunotherapy would be effective in different IRGPM

subgroups. A higher potential for immune evasion was indicated by

an increase in TIDE prediction score, which indicated a lower

likelihood of immunotherapy benefiting the patients (26–28). Based

on our results, the IRGPM low subgroup had a higher TIDE score

than the IRGPM high subgroup, suggesting that immunotherapy

would be more beneficial to IRGPM-high patients. In recent years,

new technologies, methods, and drugs for immunotherapy are

rapidly emerging, bringing new opportunities for the treatment of

STS, which has been stagnant for many years. However, while

several basic studies have suggested that immunotherapy can

provide additional clinical benefits for patients with STS, the

results of clinical trials conducted with single therapies are often

unsatisfactory, making it difficult to achieve a comprehensive and
FIGURE 7

Relationship between IRGPM grouping and other immune and molecular subtypes. (A) The IRGPM grouping and proportions of 263 patients in
TCGA cohort. Age, margin status, metastatic, and gender are shown as patient annotations. (B) The IRGPM subgroups are displayed in the heatmap,
indicating the distribution of STS immune subtypes (C1,2,3,4,6).
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une cell types differed between the high and low risk groups among all patients. (B) The proportion of
MB and risk scores in our proposed model. (D) The K-M curves of patients with high TMB and low TMB.
< 0.05, **P < 0.01, ***P < 0.001.
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in dysfunction score, exclusion score, TIDE, and MSI among the high risk and low risk groups. ***P < 0.001.
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FIGURE 9

Immunotherapy response between high- and low-risk groups. (A-D) A violin plot reveals the contrast
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effective treatment for STS (29). Several high-profile star drugs have

faltered in the treatment of STS (30, 31). The reasons for this are

that most of the cases included in these clinical trials are relapsed,

progressive and metastatic advanced STS after conventional

chemotherapy, and their immune systems are often severely

destroyed and difficult to achieve good remodeling, which

significantly confine the immunotherapy’s efficacy. In addition,

the immune microenvironment of tumor patients is often

complex and variable, and tumor cells are adept at using multiple

pathways to resist immunotherapy, making it difficult to achieve

success with a single immunotherapy. A number of clinical trials

based on this have achieved good results (32–34). At the same time,

the challenges of personalized selection of immunotherapy,

immunotherapy resistance, and drug toxicity in combination

therapy should be further addressed.
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4.1 Limitations

Several limitations should be admitted in our study. First, there are

insufficient samples and some other clinical pathological

characteristics. Secondly, our prognostic model needs additional STS

datasets to validate its performance. Last but not least, although CALR

have been confirmed from practical experiments, they require

confirmation through cell variability, and proliferation experiments.
5 Conclusions

IRGPM is a promising immune-related prognostic biomarker.

As a prognostic indicator of immunotherapy, IRGPM might also

help differentiate molecular and immune characteristics in STS.
FIGURE 10

CALR is overexpressed in osteosarcoma and modulates cellular phenotypes. (A) qRT-PCR analysis of CALR mRNA levels in osteosarcoma cell lines
(MG-63, 143B, HOS) compared to human normal osteoblasts (hFOB1.19). (B) Western blot showing endogenous CALR protein expression in
untreated osteosarcoma cells (Saos-2, MG-63, 143B, U2OS) and CALR-overexpressing 143B cells (OE-CALR). (C) Immunofluorescence staining of
CALR (TRITC, red) and nuclei (DAPI, blue) in 143B cells under overexpression (OE-CALR), knockdown (sh-CALR), and negative control (NC)
conditions. Fluorescence intensity quantification is shown below. *P < 0.05, **P < 0.01, ***P < 0.001.
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