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Introduction: Prostate cancer (PCa) is one of the most common malignant

tumors in men, with increasing incidence and mortality rates, and its treatment

still faces many challenges and unmet needs. ELAVL1 (human antigen R, HuR) is

an RNA-binding protein that plays a crucial role in the development and

progression of various cancers. Studies have shown that ELAVL1 is highly

expressed in PCa and that inhibiting its expression significantly reduces

prostate cell proliferation and metastasis. However, the clinical application of

ELAVL1-targeting therapies remains limited by the lack of effective delivery

strategies. In this context, recent advances in nanodelivery systems offer

promising solutions, providing both enhanced targeting efficiency and insights

for future prostate cancer treatment strategies.

Objective: This review aims to explore the potential of ELAVL1-targeted therapy

based on nanodelivery systems in PCa, analyze its advantages and challenges,

and provide insights into future research directions.

Methods: A systematic review of recent literature summarizing the expression

characteristics and biological functions of ELAVL1 in PCa was conducted.

Additionally, the advantages, challenges, and applications of various

nanomaterials in cancer therapy are discussed.

Results: Nanodelivery systems have shown significant potential in the treatment

of prostate cancer.
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1 Prostate cancer

1.1 Epidemiology

Prostate cancer (PCa) is one of the most common malignancies

in men and presents a range of treatment challenges. It is the most

prevalent malignant tumor of the male urinary and reproductive

system worldwide (1). Currently, approximately 10 million men are

diagnosed with PCa globally, with approximately 700,000 cases

being metastatic (2). In 2022, 1.5 million new cases of PCa were

reported, accounting for 7.3% of all cancer cases. Among the most

common cancers in men, PCa has the second highest incidence

after lung cancer, with a rate of 14.2%. A total of 397,000 global

deaths from PCa were reported, corresponding to a mortality rate of

7.3% (3). According to statistics from health research centers in

Europe and the United States, in 2024, 299,000 new cases of PCa

and 35,250 related deaths were estimated to occur in the United

States alone (4). The incidence and mortality of PCa are closely

linked to age (3). The average age at diagnosis is approximately 65

years, with early symptoms, including increased urinary frequency,

nocturia, and difficulty urinating. Among men aged 65 years and

older, the prevalence of PCa is approximately 60% (5). Although the

incidence of PCa in China is much lower than that in Western

countries, a gradual increase in cases has been observed in recent

years (6). This trend is likely related to improved living standards, a

greater awareness of health care, widespread health screens, and the

extensive use of prostate-specific antigen (PSA) testing (7).
1.2 Pathogenesis

The pathogenesis of PCa (PCa) is complex and involves

multiple genetic and environmental factors. The development of

PCa is closely linked to the accumulation of somatic mutations in

the genome of prostate epithelial cells (5). Mutations in the BRCA1

and BRCA2 genes significantly increase the risk of PCa (8), whereas

mutations in the HOXB13 gene are associated with familial PCa. In

primary PCa, the most commonly recurrently mutated genes

include TP53 (17%), SPOP (8%), AR (7%), FOXA1 (7%), and

PTEN (6%) (9). FOXA1 is reported to be the third most frequently

mutated gene in PCa (10). As FOXA1 is a suppressor of

neuroendocrine differentiation, the loss of FOXA1 expression can

promote the progression of neuroendocrine prostate cancer

(NEPC) (10). FOXA1 function is altered by both coding and

noncoding mutations, which may contribute to the development

of PCa (11). Additionally, c-MYC is one of the key drivers of the

onset and progression of PCa (12). The c-MYC gene is often

amplified and upregulated in PCa, and its increased expression

correlates with disease progression and castration-resistant prostate

cancer (CRPC) (13). Abnormalities in DNA damage repair (DDR)

pathways are also a significant mechanism involved in the

development of PCa. DDR defects are widespread in PCa, with

common genomic alterat ions such as TMPRSS2-ERG

translocations, SPOP mutations, and deletions of PTEN or
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CHD1, all of which are closely associated with impaired DDR

phenotypes (14).

The androgen receptor (AR) pathway is widely considered to play

a central role in the initiation and progression of PCa. In 1941,

Huggins and Hodges first reported the importance of androgen

signaling in PCa, showing that orchiectomy could induce tumor

regression (15). Androgen deprivation therapy (ADT), which lowers

serum androgen levels and inhibits AR activity, is typically the first-

line treatment for PCa. However, patient responses to ADT are

heterogeneous, with 20–30% of cases progressing to CRPC (4). AR

expression is nearly ubiquitous in both primary and metastatic PCa

(16), and abnormal activation, mutation, or overexpression of AR are

considered critical drivers of PCa initiation and progression (17).

Mutations and amplifications in the AR gene are observed in

approximately 1% of patients with primary PCa (18) and

approximately 60% of patients with metastatic PCa (19). Patients

with metastatic PCa who are treated with AR antagonists exhibit a

higher mutation rate than those receiving only ADT (20). These

mutations can convert AR antagonists into AR agonists, thus

promoting cancer progression (21). Furthermore, these mutations

allow other adrenal-derived androgens, such as progesterone,

dehydroepiandrosterone, and androstenediol, to activate AR (22–

25), which may explain the development of resistance to castration

therapy in tumors harboring AR mutations. FOXA1 is a key regulator

of the AR signaling pathway, and its mutation can affect the

interaction between FOXA1 and AR, altering the androgen

signaling that drives both normal prostate growth and PCa cell

survival (26). The PI3K pathway is another critical oncogenic

signaling pathway in PCa (27). This pathway is often aberrantly

activated in PCa, promoting cell proliferation and survival.

Inflammatory cytokines, such as CCR9, IL-6, and TLR3, participate

in the apoptosis of PCa cells by modulating the PI3K/AKT signaling

pathway. Additionally, the PI3K/AKT pathway is closely associated

with mechanisms involving androgen, 1a,25-dihydroxyvitamin D3

(1a,25(OH)2D3), and prostaglandins and is regulated by ErbB, EGFR,

and the HER family (28). The PIK3R1 gene, which has been identified

as a tumor suppressor, encodes the PI3K subunit p85a, which acts by

regulating and stabilizing p110a (29). Studies have shown that

PIK3R1 can be directly suppressed by androgens in PCa (30),

suggesting that PIK3R1 may be a potential biomarker for PCa

prognosis and progression (27). ADT and AR inhibitors are

frontline treatments for highly aggressive PCa (31). However,

prolonged AR inhibition can trigger the compensatory activation of

the PI3K pathway, typically due to the genomic loss of the tumor

suppressor PTEN, which accelerates disease progression to the CRPC

stage (32). Nikhil et al. (33) elucidated a novel mechanism of PTEN

downregulation triggered by LIMK2. LIMK2 is a CRPC-specific

target, and inhibiting LIMK2 can maintain the activity and stability

of PTEN, thereby preventing progression to CRPC and the

development of ADT resistance. The Tribbles (TRIB) protein

family, consisting of TRIB1, TRIB2, and TRIB3, has been shown to

participate in cancer-related processes (34) and plays a regulatory role

in activating oncogenic signaling pathways such as the MAPK and

PI3K-AKT pathways (35). The TRIB1 gene is located on chromosome

8q24.13, near c-MYC, and is amplified in cancer. Shahrouzi et al. (36)
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observed that TRIB1 is the most highly expressed gene in the c-MYC

amplification locus in PCa and that its aberrant expression is

associated with the pathogenesis of PCa. Furthermore, NFATc1 has

been identified as a crucial molecule involved in the development of

PCa. The overexpression of NFATc1 significantly promotes PCa cell

growth, proliferation, and metastasis via the regulation of multiple

signaling pathways (37). NFATc1 expression is upregulated through

pathways such as the ERK1/2/P28/MAPK, PTEN/AKT, CaN/NFAT,

and RANKL pathways. Given its pivotal role in PCa progression,

NFATc1 has significant potential as an effective target for the clinical

treatment and prevention of PCa metastasis (12).

ELAVL1 is an important RNA-binding protein that has been

shown to be highly expressed in various cancers, including lung

cancer, liver cancer, and pancreatic cancer, where it significantly

promotes tumorigenesis and progression (38, 39). Additionally,

ELAVL1 is associated with chemotherapy resistance (40) and

radioresistance (41), highlighting its role in the treatment response.

Recently, ELAVL1 was identified as one of the m6A regulatory factors

that functions as a “reader” by binding to RNAs carrying m6A

modification sites, thereby increasing RNA stability (41). In cancer

research, ELAVL1 has also been reported to interact with molecules

such as YTHDC1 and IGF2BP1 to synergistically stabilize RNA (42).

Previous studies have shown that ELAVL1 is highly expressed in PCa

and contributes to tumorigenesis and progression (43). Silencing

ELAVL1 significantly inhibits PCa cell proliferation and promotes

apoptosis, suggesting that ELAVL1 acts as an oncogene in PCa (44).

According to data from TCGA database, ELAVL1 expression is

higher in most PCa samples than in adjacent normal tissues, and

its expression increases with an increasing Gleason score, indicating

that elevated ELAVL1 expression is closely associated with tumor

progression in PCa (45). Our preliminary research revealed that

ELAVL1 interacts with the RNA and proteins of several m6A-

binding proteins (46), suggesting that ELAVL1 may act as an

upstream regulatory molecule in the m6A modification process. By

modulating the expression of various downstream m6A regulators,

ELAVL1 likely influences the m6A modification process. Therefore,

ELAVL1 is considered an important target molecule in PCa. In

addition to genetic factors, environmental and lifestyle factors, such

as dietary habits, obesity, smoking, and alcohol consumption, also

increase the risk of PCa (47). Chronic prostatitis and infections

within the prostate may further increase the cancer risk.

Inflammation is thought to contribute to cancer development by

inducing cell proliferation, causing DNA damage, and promoting the

formation of a tumor microenvironment.
1.3 Current diagnostic and therapeutic
challenges in PCa treatment

Early-stage PCa often presents without obvious clinical

symptoms. However, as a tumor progresses to malignancy,

patients may begin to experience symptoms such as increased

nocturia, urinary difficulties, and frequent urination. While

various clinical treatment options are available for PCa (Figure 1),

the mortality rate remains high. Over the past decade, the mortality
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rate for PCa has declined (4), yet the etiology of the disease remains

poorly understood, and its pathogenesis is highly complex (3).

Among PCa cases, adenocarcinomas originating from the acini tend

to have a better prognosis than those originating from the ducts (5).

PCa exhibits high tumor heterogeneity, with significant variations

in mortality and incidence rates (5), and different tumor cells

harbor distinct genetic mutations and phenotypic characteristics.

Multiple tumor foci within the prostate may exhibit genetic

differences, further contributing to varying degrees of metastatic

spread and treatment resistance (48). This heterogeneity

complicates treatment, as it also affects patient responses to

therapy and the development of drug resistance. Currently, the

early detection of PCa relies primarily on serum prostate-specific

antigen (PSA) levels, but considerable controversy exists

surrounding the use of PSA as a screening marker (48). PSA lacks

sufficient specificity for PCa, as elevated PSA levels can also result

from conditions such as benign prostatic hyperplasia (BPH) and

prostatitis (49). PCa patients with distant metastases generally have

a poor prognosis, with a five-year survival rate of only 30% (4). Bone

metastasis is the most common site of distant spread, and it is the

leading cause of death in PCa patients (49). Approximately 5–10%

of patients who are newly diagnosed with PCa present with bone

metastasis (50). Androgen deprivation therapy (ADT) is the

primary treatment for bone-metastatic PCa; however, long-term

ADT often leads to the development of resistance. Amplification,

mutation, and splice variants of the androgen receptor (AR) are

believed to contribute to this resistance (51). Studies have shown

that within 1–3 years of ADT, metastatic castration-sensitive PCa

inevitably progresses to metastatic castration-resistant PCa (49).

Currently, early diagnostic tools are insufficiently precise, making

the identification of high-risk patients in a timely manner

challenging. Additionally, dormant cells within the tumor

microenvironment may contribute to relapse after treatment (52).
2 Role of ELAVL1 in PCa

2.1 Molecular function of ELAVL1

Embryonic lethal abnormal vision-like protein 1 (ELAVL1),

also known as HuR, is a ubiquitously expressed RNA-binding

protein that plays a crucial role in posttranscriptional regulation

by influencing the stability of target mRNAs (53). Under normal

conditions, ELAVL1 is predominantly localized in the nucleus, but

it can translocate to the cytoplasm in response to specific stimuli,

where it performs its primary function—stabilizing mRNA and

regulating its expression (54). ELAVL1 is a member of the ELAVL

protein family, which includes HuR, HuB, HuC, and HuD. Among

these family members, HuR is the only member that is widely

expressed across all human tissues, whereas the other family

members are expressed primarily in neuronal cells. The function

of HuR depends on its three RNA recognition motifs (RRMs),

which allow it to specifically bind target mRNAs (55) and modulate

gene expression at the posttranscriptional level by either inhibiting

degradation or promoting translation (56).
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2.2 Role of ELAVL1 in cancer

ELAVL1 is closely linked to the development and progression of

various inflammatory diseases, metabolic disorders, and cancers (57).

Numerous studies have shown that ELAVL1 is overexpressed in a

range of cancers, including lung, liver, and pancreatic cancers, where it

promotes tumorigenesis by stabilizing the mRNAs of cancer-related

genes. Additionally, ELAVL1 has been implicated in the development

of resistance to cancer therapies in several malignancies, including PCa

(58), pancreatic cancer (59), oral cancer (60), and colorectal cancer

(61). Its role in drug resistance suggests that ELAVL1 may serve as a

novel therapeutic target, as well as a critical biomarker for evaluating

treatment efficacy and prognosis.
2.3 ELAVL1 in PCa

2.3.1 Expression of ELAVL1 and its association
with PCa

Studies have shown that in normal prostate epithelial cells,

ELAVL1 is expressed at low to moderate levels in the nucleus (43).

However, in PCa cells, ELAVL1 expression is significantly upregulated

in both the cytoplasm and nucleus. Immunohistochemical staining
Frontiers in Oncology 04
revealed that the intensity of ELAVL1 staining in PCa tissues is

markedly higher than that in adjacent nontumor tissues (46).

Further investigation of the transcriptomic differences between high-

ELAVL1 and low-ELAVL1 PCa cases indicated that high-ELAVL1

PCa is enriched with genes involved in RNA metabolism. Overall,

ELAVL1 is overexpressed in PCa tissues, and silencing ELAVL1

significantly inhibits PCa cell proliferation while promoting

apoptosis, suggesting that ELAVL1 acts as an oncogene in PCa (43).

2.3.2 ELAVL1 as an RNA-binding protein that
regulates mRNA and circRNA stability in PCa

Recent research has highlighted the critical biological role of

circular RNAs (circRNAs) in PCa progression. For example,

circFOXO3 (62), circ005276 (63) and circAMOTL1L (64) have

been implicated in regulating gene expression through

transcriptional control. One such circRNA, circDDIT4, forms

through backsplicing of exon 2 in the linear DDIT4 mRNA, and

its high expression significantly inhibits PCa cell proliferation while

inducing apoptosis. In contrast, the mutated form of circDDIT4

(circDDIT4-mut) loses these effects (44). ELAVL1 was identified as

a key RNA-binding protein that interacts with circDDIT4. ELAVL1

typically binds to AU-rich elements (AREs) in the 3’ untranslated

region (UTR) of target genes, thereby stabilizing RNA and
FIGURE 1

Prostate cancer treatment approaches. The above pictures are drawn by Figdraw.
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prolonging the half-life of mRNA (65). Anoctamin 7 (ANO7), a

gene that is highly expressed in prostate epithelial cells, is

considered an important prognostic marker for aggressive PCa

(66). Research has shown that circDDIT4 and ELAVL1 regulate

the expression of ANO7, with ANO7 overexpression promoting

PCa cell proliferation and migration. ANO7 silencing partially

reverses the oncogenic effects of circDDIT4 knockdown,

emphasizing the role of ANO7 in the circDDIT4-ELAVL1 axis.

By competitively binding to ELAVL1 via its 3’UTR, circDDIT4 acts

as a protein sponge, reducing the expression of ANO7 (44), thus

promoting PCa cell apoptosis and inhibiting cell proliferation and

metastasis. In conclusion, ELAVL1 functions as an oncogene in

PCa, promoting cell proliferation and inhibiting apoptosis, whereas

circDDIT4 suppresses its oncogenic effects by sequestering

ELAVL1. This interaction significantly impacts the expression

and stability of downstream target genes, thereby regulating

PCa progression.

2.3.3 Role of ELAVL1 in regulating the m6A
modification in PCa

As an m6A-modifying factor, ELAVL1 can bind to mRNAs that

are modified with m6A, increasing their stability (67). Studies have

shown that ELAVL1 interacts with various m6A-binding proteins,

such as YTHDC1 and IGF2BP1 (42, 68), to collectively promote

RNA stability. A disruption of the m6A modification is associated

with tumorigenesis and cancer progression (69). The expression of

several m6A regulatory molecules, including METTL3, FTO,

ALKBH5, and YTHDF3, has been shown to significantly alter

tumor progression by affecting cell proliferation, migration,

and invasion.

ELAVL1 interacts with multiple m6A-binding proteins at both

the RNA and protein levels (46), suggesting that ELAVL1 might

function as an upstream regulator of the RNA m6A modification. It

is capable of influencing the expression of various m6A regulatory

factors, thereby impacting m6A modifications. Consequently,

ELAVL1 is considered a critical therapeutic target in PCa. Our

previous transcriptomic analyses comparing high-ELAVL1-

expressing PCa with low-ELAVL1-expressing PCa revealed the

significant enrichment of RNA metabolism-related genes and

altered expression of m6A modification factors in tumors with

high ELAVL1 levels. These findings suggest that ELAVL1 may

regulate RNA stability and drive cancer progression through m6A

modifications (46). Moreover, METTL3 expression is closely

associated with ELAVL1, indicating that ELAVL1 might further

promote PCa progression by regulating METTL3 (46).

PD-L1, a well-established immune checkpoint molecule,

contains m6A sites and has been implicated in various tumors,

where its expression is regulated by m6A. Studies have shown that

PCa with high ELAVL1 expression exhibits immunosuppressive

properties (45). Knocking down ELAVL1 reduces PD-L1

expression and m6A levels in PCa. ELAVL1 interacts directly

with the PD-L1 mRNA and increases its stability via m6A

modifications, thereby suppressing CD4+ T-cell infiltration and

leading to immune evasion (45).
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In summary, ELAVL1 is a key oncogene in PCa that promotes

tumor proliferation and metastasis while inhibiting apoptosis

through multiple mechanisms, including stabilizing mRNAs and

circRNAs and regulating m6Amodifications. Further investigations

into the molecular regulatory functions of ELAVL1 are promising

for the development of novel therapeutic strategies for

PCa (Figure 2).
3 Nanoparticle delivery systems

Nanoparticle drug delivery systems are solid colloidal particles

with diameters ranging from 10 to 1,000 nm that are capable of

encapsulating or modifying drugs within their core or on their

surface (70). In recent years, nanocarrier-mediated drug delivery

systems (NDDSs) have shown significant potential in prostate

cancer therapy. NDDSs utilize nanomaterials to transport drugs

directly to tumor sites, promoting drug accumulation in diseased

areas and enhancing therapeutic efficacy (71).
3.1 Targeting mechanisms and
nanomaterials in NDDSs

Drug delivery via NDDSs can be classified into passive targeting

and active targeting (72). Passive targeting relies on the enhanced

permeability and retention (EPR) effect of tumor tissues, as well as

characteristic changes in the tumor microenvironment, such as

hypoxia and an acidic pH. These features facilitate the accumulation

of nanocarriers at the tumor site, thereby improving the antitumor

effects of drugs and reducing systemic side effects (73). However,

active targeting exploits the metabolic or structural differences

between tumor cells and normal cells. This activity is achieved by

functionalizing nanocarriers with ligands that specifically recognize

and bind to tumor cells. Common ligands include small molecules,

peptides, biotin, and aptamers (72). In prostate cancer, prominent

active targets include prostate-specific membrane antigen (PSMA),

folate receptors, CD13, and CD14, among others (74).

The materials commonly used in nanoparticle delivery systems

are summarized in the following table (Table 1).

Nanodelivery systems offer several key advantages.

a. Through surface modification and functionalization,

nanoparticles enhance cellular interactions and uptake efficiency

(86). b. These systems prolong the drug circulation time in vivo,

allowing for controlled release via polymer degradation. This

property reduces the damage caused by chemotherapeutic agents

to normal tissues (87). c. The nanoscale size of particles facilitates

enhanced drug accumulation at tumor sites via the enhanced

permeability and retention (EPR) effect, thereby improving

therapeutic efficacy (88). d. By incorporating chemical groups or

targeting ligands onto their surface, nanoparticles can achieve

specific responsiveness or active targeting capabilities (89). Most

importantly, nanodelivery systems significantly improve

therapeutic outcomes while minimizing the side effects of
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TABLE 1 Advantages and disadvantages of different types of nanomaterials.

Material type Advantage Disadvantage Typical materials Mode of action

1. Polymer nanomaterials

Good biocompatibility,
mature preparation
technology,
biodegradable (75)

Need to ensure drug
stability and
controlled release

Polylactic acid ethanol
(PLGA), chitosan (76)

BIND-014: Polyethylene glycol–polylactic acid
forms a hydrophilic shell that targets PSMA
glutaric acid derivatives. Promotes the binding of
prostate cancer cells to BIND-014 (77).

2. Metal nanomaterials
Photothermal effect,
photodynamic effect,
radiosensitization (78)

The toxicity of metal
element aggregation
requires evaluation in
long-term clinical
trials (78).

Gold nanoparticles, iron
oxide nanoparticles

PSMA-targeted docetaxel-loaded
superparamagnetic iron oxide nanoparticles for the
treatment of prostate cancer (79).

3. Lipid nanomaterials

Bioabsorbable, strong
barrier penetration, and
prolonged drug
circulation time (80)

The drug loading and
release efficiency need to
be optimized (80).

Phospholipids, cholesterol
Improve hydrophilicity through PEGylation and
prolong the time of liposomal drugs in the blood
circulation (81).

4. Carbon nanomaterials
Good biocompatibility,
cell absorption, high
surface activity (82)

May cause an immune
response and toxicity

Carbon nanotubes,
graphene, graphene oxide

The SWCNT-DOX targeted delivery system uses
polysaccharides (sodium alginate and CS) to
control the release of DOX, and FA is used to
improve the targeting performance of carbon
nanotubes (83).

5. Ceramic nanomaterials
Good biocompatibility,
cell absorption, high
surface activity (84)

The production cost is
high and further research
on biocompatibility
is needed.

Mesoporous silica,
calcium
phosphate, hydroxyapatite

Green synthesis of CuCo2O4/CuO ceramic
nanocomposites using Dactylopius coccus for
antitumor effects through sonochemically assisted
thermal decomposition (85).
F
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FIGURE 2

Molecular regulatory mechanism of ELAVL1. The above pictures are drawn by Figdraw.
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chemotherapeutic drugs, making them an ideal tool for anticancer

treatments (90).
3.2 Feasibility of nanocarriers for ELAVL1
siRNA delivery

Small interfering RNA (siRNA) is a double-stranded RNA

molecule composed of 21–23 nucleotides that specifically

suppresses the expression of target genes (91). Synthetic siRNAs

designed to target specific genes are widely applied in various

biomedical fields, including the development of gene-targeted

therapies (92). By leveraging the RNA interference (RNAi)

mechanism, siRNAs can inhibit the expression of cancer-

associated genes and mRNAs with high specificity, preventing the

production of disease-driving proteins (93). In cancer research,

siRNA technology has been used in both in vitro cell models and in

vivo preclinical studies to identify critical molecules involved in

cancer progression (94). ELAVL1 is highly expressed in prostate

cancer and contributes to tumor progression, chemoresistance (40),

and radioresistance (41). siRNA-mediated suppression of ELAVL1

effectively inhibits prostate cancer cell growth and viability,

positioning siRNA as a powerful therapeutic tool because of its

high specificity and tunability. For example, prostate cancer

progression to castration-resistant stages is linked to changes in

the expression of specific genes, such as AKR1C3 and AR-V7. These

genes promote the development of castration-resistant prostate

cancer (CRPC) by catalyzing androgen synthesis or sustaining AR

signaling in an androgen-deprived environment. Chen et al. (95)

utilized mesoporous silica nanoparticles to deliver an AKR1C3

siRNA, effectively reducing AKR1C3 expression and intracellular

androgen levels in CRPC cell lines (C4-2, 22RV1, and VCaP) and

animal models. This siRNA blocked AR signaling activation and

suppressed CRPC progression.

Similarly, loading an ELAVL1 siRNA into nanodelivery systems

enables precise targeting and efficient gene silencing. Muralidharan

et al. (96) developed HuR siRNA-loaded nanoparticles and

observed their efficacy in H1299 and CCD16 cell lines, where

treated cells exhibited significantly reduced proliferation and HuR

expression. These findings underscore the therapeutic potential of

HuR siRNAs in cancer treatment.

Compared to traditional delivery systems such as lipid

nanoparticles (LNPs), viral vectors, and antibody-drug conjugates

(ADCs), ELAVL1-specific nanocarriers offer a more functionally

tailored approach based on post-transcriptional regulation (97).

While LNPs have shown great success in siRNA delivery, they rely

heavily on passive targeting and are prone to accumulation in off-

target organs like the liver (98). In contrast, ELAVL1-targeting

systems can achieve tumor-specific delivery by exploiting the

overexpression and cytoplasmic translocation of ELAVL1 in

prostate cancer cells. ELAVL1 siRNA systems can intervene at the

RNA level, enabling broader and more upstream modulation of

oncogenic signaling. However, ELAVL1 nanodelivery systems

currently lag behind in clinical development maturity and
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manufacturing scalability, indicating a need for further

optimization and comparative preclinical validation.
4 Advantages and challenges of
nanodelivery systems

Nanocarrier-based ELAVL1 siRNA delivery systems significantly

increase siRNA stability and targeting efficiency, thereby improving

gene silencing outcomes. The primary advantages of nanocarriers

include the following: a. protection and stability—nanocarriers shield

siRNAs from degradation by nucleases, thereby extending their half-

life in vivo (99); b. targeting capability—surface modifications enable

targeted delivery to specific cells or tissues, improving the cellular

uptake efficiency (100); c. reduced off-target effects—by enhancing

siRNA delivery to target cells, nanocarriers minimize off-target effects

and associated side effects (101); and d. controlled release—

Nanocarriers allow for the sustained release of siRNAs, maintaining

prolonged gene silencing effects. Various nanocarrier designs,

including liposomes, polymer nanoparticles, and gold

nanoparticles, increase siRNA stability, specificity, and delivery

efficiency, highlighting their immense potential in ELAVL1-

targeted therapy. Nanotechnology offers unique advantages in

enhancing drug efficacy and enabling an early diagnosis (80).

However, several challenges remain: a. Toxicity and safety—

Nanomaterials may trigger adverse effects, including inflammation,

oxidative stress, and cytotoxicity, due to their rapid systemic

distribution and potential accumulation in tissues such as the lungs

(102). Metal nanoparticles, for example, are known to induce

oxidative stress in vivo (103). Immune responses to nanocarriers

recognized as foreign substances can lead to immune-related

complications (104). b. Efficient targeting—Despite ligand

modifications for improved targeting, ensuring precise recognition

and binding to specific cells remains an optimization challenge (105).

Furthermore, the need to traverse multiple biological barriers during

systemic delivery significantly affects siRNA delivery efficiency. c.

siRNA stability and release—siRNAs are prone to nuclease

degradation, reducing their stability and efficacy (92). In particular,

immune recognition remains a nontrivial concern, as repeated

exposure to nanomaterials may lead to innate immune activation,

cytokine release, or even complement activation. Strategies such as

PEGylation, biodegradable polymers, or use of biomimetic materials

(e.g., exosomes) may help mitigate these effects. Additionally, chronic

accumulation of non-degradable materials in organs such as liver or

spleen poses potential risks that must be addressed through

pharmacokinetic and toxicological studies. Nanocarriers must

provide robust protection while enabling effective siRNA release

under specific environmental conditions, such as pH, temperature,

or enzymatic activity. d. Long-term safety—The long-term

biocompatibility and potential off-target effects of nanocarriers on

nontarget cells remain poorly understood, potentially impacting

patient health (92). In conclusion, while nanomedicine offers

transformative potential, their significant challenges require further

exploration and optimization. Through advancements in
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nanomaterial design and fabrication, nanodelivery systems are poised

to achieve substantial breakthroughs in drug delivery and

gene therapy.
5 Conclusions

In summary, ELAVL1-targeted therapy using nanodelivery

systems represents a promising new approach for the treatment

of prostate cancer. Silencing ELAVL1 expression effectively inhibits

the proliferation, invasion, and metastasis of prostate cancer cells.

The use of nanodelivery systems increases the targeting and stability

of the drug, allowing for precise drug delivery and improved

antitumor effects. However, challenges remain in the clinical

application of nanodelivery systems, including issues related to in

vivo toxicity, safety, and manufacturing processes. Future research

should focus on further exploring the safety and efficacy of these

systems, as well as pursuing breakthroughs in personalized therapy,

combination treatments, and overcoming drug resistance. In

parallel, more rigorous in vivo studies and head-to-head

comparisons with approved delivery platforms will be critical in

establishing the translational relevance of ELAVL1-specific

nanocarriers. Addressing long-term safety, immunogenicity, and

manufacturing hurdles will be key steps toward clinical application.
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