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Introduction: Deep learning has emerged as a transformative tool in biomedical

research, particularly in understanding disease mechanisms and enhancing

diagnostic precision. Mitochondrial dysfunction has been increasingly

recognized as a critical factor in hematological malignancies, necessitating

advanced computational models to extract meaningful insights from complex

biological and clinical data. Traditional diagnostic approaches rely heavily on

histopathological examination and molecular profiling, yet they often suffer from

subjectivity, limited scalability, and challenges in integrating multimodal

data sources.

Methods: To address these limitations, we propose a novel deep learning

framework that integrates medical imaging, genomic information, and clinical

parameters for comprehensive scene understanding in mitochondrial

dysregulation-related blood cancers. Our methodology combines self

supervised learning, vision transformers, and graph neural networks to extract

and fuse modality-specific features. The model architecture includes dedicated

encoders for visual, genomic, and clinical data, which are integrated using an

attention-based multimodal fusion mechanism. Adversarial domain adaptation

and uncertainty quantification modules are incorporated to enhance

generalizability and decision reliability. Our model employs a multimodal fusion

strategy with attention-based learning mechanisms to enhance predictive

accuracy and interpretability. Adversarial domain adaptation ensures robustness

across heterogeneous datasets, while uncertainty quantification techniques

provide reliable decision support for personalized treatment strategies.

Results and discussion: Experimental results demonstrate significant

improvements in classification performance, with our approach outperforming

conventional machine learning and rule-based diagnostic systems. By leveraging

deep learning for enhanced scene understanding, this work contributes to a

more precise and scalable framework for the early detection andmanagement of

blood cancers.
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1 Introduction

Mitochondrial dysregulation plays a crucial role in the

pathogenesis of blood cancers, affecting cellular metabolism,

apoptosis, and immune responses Zhou et al. (1). Understanding

mitochondrial alterations is essential for early detection, precise

diagnosis, and treatment planning. Traditional diagnostic methods

rely heavily on histopathological analysis and biomarker

identification, which, although effective, often lack scalability and

consistency due to inter-observer variability Jia et al. (2). With the

increasing availability of medical imaging and single-cell data, there

is a growing need for automated and interpretable computational

techniques to analyze mitochondrial dysfunction in blood cancers.

Not only does deep learning provide the capability to extract

complex patterns from large datasets, but it also enhances

diagnostic accuracy and enables real-time decision-making Peng

et al. (3). Furthermore, deep learning methods, particularly in scene

understanding, facilitate the automated segmentation and

classification of abnormal mitochondrial structures, improving

the detection of dysregulated cellular mechanisms in

hematological malignancies Costanzo et al. (4). These

advancements not only optimize clinical workflows but also

support precision medicine by integrating multi-modal data

sources, including imaging, omics, and electronic health records

Sakaridis et al. (5). Given these benefits, research into deep learning

for scene understanding in mitochondrial dysregulation and blood

cancer diagnosis is becoming increasingly significant, bridging the

gap between computational biology and clinical decision-making

Unger et al. (6).

To address the limitations of manual histopathological analysis

and conventional computational techniques, early methods in

mitochondrial and blood cancer diagnosis were primarily based

on symbolic AI and knowledge-based representations Chen et al.

(7). These approaches relied on explicitly defined rules and expert-

curated ontologies to classify cellular structures and identify

abnormalities Zhou et al. (8). Traditional expert systems used

handcrafted features such as mitochondrial shape descriptors,

intensity profiles, and statistical texture features to differentiate

normal and dysregulated mitochondrial structures Abed (9).

While these methods enabled structured reasoning and

interpretability, they were often constrained by their dependency

on predefined features and their inability to generalize across

diverse datasets Liao et al. (10). Furthermore, symbolic AI

approaches struggled with the high variability in mitochondrial

morphology and the presence of complex interactions in blood

cancer pathology Yang et al. (11). As a result, the rigidity of rule-

based systems limited their application to real-world clinical

scenarios, where adaptive and scalable solutions were required for

robust scene understanding Shi et al. (12).

To overcome the limitations of feature engineering and rule-

based reasoning, data-driven machine learning approaches emerged

as a powerful alternative Yang et al. (13). These methods leveraged

statistical learning and supervised classification techniques to

automatically learn relevant features from medical images and

biological data Ye and Xu (14). Support vector machines (SVM),
Frontiers in Oncology 02
random forests, and ensemble learning methods were widely

applied to segment mitochondrial structures and classify blood

cancer subtypes based on imaging biomarkers Chen et al. (15).

These approaches improved the generalizability of diagnostic

models by learning from large labeled datasets, reducing

dependency on handcrafted features Fan et al. (16). However,

traditional machine learning models still faced challenges in

handling high-dimensional and heterogeneous biomedical data

Balazevic et al. (17). The need for extensive feature selection,

manual pre-processing, and domain-specific tuning limited their

scalability Tombari et al. (18). Moreover, their performance was

constrained by the availability of labeled datasets, which is a

common challenge in medical applications due to ethical and

logistical constraints Wijayathunga et al. (19). Despite these

advancements, machine learning techniques lacked the ability to

fully capture the hierarchical and spatial representations of

mitochondrial dysregulation, motivating the transition toward

deep learning-based solutions Wu (20).

To address the limitations of conventional machine learning,

deep learning and pre-trained models have emerged as state-of-the-

art approaches for scene understanding in mitochondrial

dysregulation and blood cancer diagnosis. Convolutional Neural

Networks (CNNs), Recurrent Neural Networks (RNNs), and

Transformer-based models have demonstrated superior

performance in detecting structural and functional abnormalities

in mitochondria. CNN-based architectures, such as U-Net and

ResNet, have been widely adopted for segmentation and

classification tasks, enabling accurate detection of mitochondrial

dysfunction in high-resolution microscopy images Azuma et al.

(21). Vision Transformers (ViTs) and self-supervised learning

techniques have further improved the ability to extract contextual

information from complex cellular environments. The integration

of deep learning with multi-modal data sources, including

transcriptomics and metabolomics, has enhanced the diagnostic

capabilities of AI-driven systems, providing a more comprehensive

understanding of blood cancer pathophysiology Zhou et al. (22).

Furthermore, generative models, such as Variational Autoencoders

(VAEs) and Generative Adversarial Networks (GANs), have been

employed to synthesize realistic mitochondrial structures for

augmentation and anomaly detection. These advancements not

only improve diagnostic accuracy but also enable the discovery of

novel biomarkers and therapeutic targets, paving the way for AI-

assisted precision oncology.

Recent studies have provided growing quantitative evidence

supporting the critical role of mitochondrial dysfunction in

hematological malignancies. For instance, Guo et al. (23)

demonstrated that mitochondrial transfer between stromal cells

and leukemic cells can significantly affect leukemogenesis and

treatment resistance in acute leukemia. Moreover, Peng et al. (24)

reported that targeting mitochondrial oxidative phosphorylation

(OXPHOS) effectively eradicates leukemic stem cells in acute

myeloid leukemia (AML), highlighting OXPHOS as a viable

therapeutic vulnerability. Although similar mitochondrial

dependencies have also been observed in solid tumors such as

triple-negative breast cancer Evans et al. (25), their relevance in
frontiersin.org

https://doi.org/10.3389/fonc.2025.1609851
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhu et al. 10.3389/fonc.2025.1609851
hematologic cancers underscores the diagnostic and prognostic

value of mitochondrial biomarkers. These findings strengthen the

biological rationale for focusing on mitochondrial dysregulation

and justify its integration into AI-based diagnostic frameworks, as

proposed in our model.

Based on the limitations of prior methods in feature

engineering, scalability, and interpretability, we propose a novel

deep learning framework for scene understanding in mitochondrial

dysregulation and blood cancer diagnosis. Our approach integrates

self-supervised learning and multi-modal data fusion to overcome

the constraints of traditional deep learning models. By leveraging

contrastive learning and transformer-based architectures, our

method can efficiently learn discriminative features from

unannotated medical images, reducing dependency on labeled

datasets. By incorporating graph neural networks (GNNs) and

knowledge-guided AI, our framework enhances interpretability by

modeling complex relationships between mitochondrial structures,

metabolic pathways, and hematological malignancies. Our method

is designed for cross-domain adaptability, allowing its application

across different imaging modalities, from electron microscopy to

fluorescence imaging. These improvements collectively enable a

more robust and scalable AI-driven diagnostic system that bridges

the gap between computational pathology and precision medicine.

The proposed approach offers several significant benefits:
Fron
• Our method introduces a self-supervised contrastive

learning module that efficiently extracts meaningful

representations from mitochondrial imaging data without

requiring extensive labeled datasets, significantly reducing

annotation costs and enhancing generalizability.

• Unlike conventional CNN-based models, our approach

integrates vision transformers with graph neural

networks, enabling multi-modal fusion of imaging,

transcriptomic, and clinical data, ensuring a more

comprehens ive and interpretable d iagnos is of

blood cancers.

• Extensive experiments on publicly available and proprietary

datasets demonstrate that our model achieves state-of-the-

art performance in mitochondrial segmentation and blood

cancer classification, outperforming traditional deep

learning methods in accuracy, robustness, and real-

world applicability.
The remainder of this paper is organized as follows. Section 2

reviews related work and highlights recent advances in AI

applications for oncology and mitochondrial dysfunction. Section

3 describes the proposed methods, including data representation,

model architecture, fusion strategy, and training objectives. Section

4 presents the experimental setup, datasets, evaluation metrics, and

comparative results. Section 5 provides a detailed discussion,

including limitations, interpretability, and clinical implications.

Section 6 concludes the paper and outlines directions for

future research.
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2 Related work

2.1 Evolution of computational approaches
in mitochondrial dysfunction analysis

Traditional computational approaches for studying

mitochondrial dysfunction in hematological malignancies have

primarily relied on feature engineering and unimodal statistical

models Name (26). Early studies often used handcrafted genomic

signatures or imaging texture features to correlate mitochondrial

abnormalities with disease subtypes or prognosis Name (27). While

these approaches provided initial insights, they lacked the capacity to

model complex feature interactions or integrate heterogeneous data

types Zhao et al. (28). With the advent of machine learning, classifiers

such as support vector machines and random forests were applied to

mitochondrial gene expression profiles and basic histopathological

data Xu et al. (29). However, these methods still struggled with high-

dimensional omics data and failed to exploit spatial information

embedded in imaging modalities Hou et al. (30). Recent advances in

deep learning have enabled more powerful representations of both

molecular and imaging data. Convolutional neural networks (CNNs)

have shown promise in extracting morphologic features from blood

smears and histology slides, while transformer-based models can

capture global contextual dependencies Roberts and Paczan (31).

Furthermore, graph neural networks (GNNs) allow for structured

modeling of gene-gene interactions, a crucial aspect in mitochondrial

pathway analysis. Multimodal fusion strategies, combining genomic,

imaging, and clinical data, have emerged as a promising direction to

capture the full complexity of mitochondrial dysregulation in blood

cancers Ni et al. (32). These approaches are increasingly supported by

attention mechanisms, uncertainty modeling, and domain adaptation

techniques to improve interpretability and robustness—motivating

the design choices of our proposed framework.

Recent literature has explored the integration of multimodal

deep learning techniques in medical diagnostics, particularly for

tasks involving image, speech, and textual data fusion. For example,

Islam et al. (33) presented a comprehensive review demonstrating

the effectiveness of combining multiple modalities to enhance

diagnostic performance in COVID-19 detection. These findings

reinforce the value of modality fusion strategies in biomedical

applications, which are conceptually aligned with our proposed

multimodal framework.

Emerging developments in both mitochondrial biology and AI

technologies lend further support to the objectives of our study.

Aoyagi et al. (34) demonstrated that mitochondrial fragmentation

plays a causative role in ineffective hematopoiesis in

myelodysplastic syndromes, revealing a mechanistic link between

mitochondrial dynamics and hematologic malignancies. In parallel,

Li et al. (35) provided a comprehensive overview of mitochondrial

dysfunction, its associated diseases, influencing factors, and

diagnostic strategies, reinforcing its clinical significance. On the

computational front, Schirrmacher (36) highlighted the central role

of mitochondrial regulation in cellular energy metabolism, which
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underpins its importance as a diagnostic biomarker. From a

methodological perspective, the rise of generative AI techniques

in medical imaging has opened new avenues for data augmentation,

synthetic data generation, and cross-modality learning He et al.

(37). Yang et al. (38) further reviewed the application of AI-based

methods in cancer cytopathology, emphasizing the shift toward

explainable and integrative diagnostic systems. These developments

collectively support the integration of mitochondrial biological

insights with advanced multimodal deep learning frameworks, as

pursued in this work.
2.2 Deep learning in blood cancer
diagnosis

Blood cancers, or hematologic malignancies, such as leukemia,

lymphoma, and myeloma, pose significant challenges in clinical

diagnosis and management Alizadeh et al. (39). Early and accurate

detection is crucial for effective treatment and improved patient

outcomes. Deep learning, a subset of artificial intelligence, has

emerged as a powerful tool in medical image analysis, offering

potential improvements in the diagnosis of blood cancers Name

(40). One prominent application of deep learning in this field is the

automated analysis of blood smear images. Traditional examination

of these smears under a microscope by trained professionals is time-

consuming and subject to inter-observer variability. Convolutional

Neural Networks (CNNs), a class of deep learning models, have

been employed to automate this process. For instance, a study

developed a CNN-based model that achieved high accuracy in

classifying different types of normal blood cells, demonstrating

the potential of deep learning in hematologic assessments

Dehghan et al. (41). Beyond normal cell classification, deep

learning models have been designed to detect malignant cells.

Acute Lymphoblastic Leukemia (ALL), a common childhood

cancer, requires prompt diagnosis for optimal treatment Ding

et al. (42). Deep learning approaches have been applied to bone

marrow aspirate images to identify leukemic cells. A comprehensive

literature review highlighted the effectiveness of CNNs in

diagnosing ALL, underscoring the potential of deep learning in

enhancing diagnostic accuracy Zhi et al. (43). Ensemble learning,

which combines multiple models to improve performance, has also

been explored in blood cancer diagnosis. A novel approach

integrated CNN-based architectures using a late fusion technique,

leveraging the strengths of models like VGG16 and AlexNet Singh

et al. (44). This ensemble model demonstrated high accuracy in

detecting blood cancers, suggesting that combining different deep

learning models can enhance diagnostic performance Zhao et al.

(45). Furthermore, deep learning has been applied to profile

leukemia using blood smear images. A systematic review analyzed

various deep learning methodologies for detecting leukemia,

revealing that state-of-the-art models, including CNNs, transfer

learning, and ensemble methods, achieved excellent classification
Frontiers in Oncology 04
accuracies. This underscores the advancements in deep learning

techniques for leukemia diagnosis.

To traditional CNN-based pipelines, recent studies have

proposed diverse deep learning models for various medical

diagnostic tasks. Noviandy et al. (46) introduced a stacked

ensemble classifier for predicting hepatitis C NS5B inhibitors,

highlighting the potential of ensemble techniques in biomedical

prediction. Bamber and Vishvakarma (47) applied deep learning to

classify Alzheimer’s disease using brain imaging data, illustrating

deep learning’s impact across disease types. Meanwhile, Chen et al.

(48) and Rana and Bhushan (49) reviewed clinical applications and

diagnostic pipelines using deep learning for medical image analysis,

summarizing both handcrafted and fully automated approaches.

Furthermore, Javed et al. (50) addressed robustness issues in deep

learning models for medical diagnostics, particularly focusing on

adversarial threats and uncertainty—a concern we address via

domain adaptation and uncertainty modeling in our framework.
2.3 Deep learning for scene understanding

Scene understanding is a fundamental problem in computer

vision, aiming to enable machines to interpret and comprehend

visual scenes as humans do Alizadeh and Illés (51). It involves

recognizing objects, understanding their relationships, and inferring

the context of a scene Alizadeh et al. (52). Object recognition is a

critical component of scene understanding. Deep learning models

have achieved remarkable success in identifying and localizing objects

within images. For example, CNNs have been trained on large-scale

datasets to recognize thousands of object categories, enabling

applications such as automated image tagging and autonomous

driving. Beyond object recognition, deep learning has been applied

to scene classification, where the goal is to categorize an entire scene

into predefined categories, such as ‘beach’, ‘forest’, or ‘city’ Ha and

Song (53). A comprehensive survey highlighted the progress in this

area, noting that deep learning models have surpassed traditional

methods in performance, largely due to their ability to learn

hierarchical features directly from data Siddiqui et al. (54). Another

aspect of scene understanding is semantic segmentation, which

involves classifying each pixel in an image into a category,

providing a detailed understanding of the scene’s composition.

Deep learning approaches, particularly Fully Convolutional

Networks (FCNs), have been developed to perform this task

efficiently, enabling applications like autonomous navigation and

image editing In medical imaging, scene understanding techniques

have been employed to analyze complex biological structures Ye and

Xu (55). For instance, deep learning has been used to segment and

classify cellular components in histopathological images, aiding in

disease diagnosis and research. A study demonstrated the application

of deep learning for scene understanding in medical images,

highlighting its potential to improve diagnostic accuracy

and efficiency.
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3 Method

3.1 Overview

Artificial intelligence (AI) has significantly changed how cancer

is studied, diagnosed, and treated. While traditional oncology

depends on clinical judgment, imaging, and pathology, AI

improves precision, efficiency, and scalability across these tasks.

In this section, we introduce the main components of our AIbased

framework and explain how it supports cancer diagnosis and

personalized treatment. In this section, we provide an overview of

the methodological advancements and innovations enabled by AI in

oncology, focusing on the core components that will be detailed in

the subsequent subsections. Recent developments in AI, particularly

in machine learning (ML) and deep learning (DL), have

significantly improved the ability to analyze vast amounts of

medical data, including imaging scans, genomic information,

electronic health records, and pathology slides. AI-driven models

have demonstrated remarkable success in early cancer detection,

risk assessment, and personalized treatment strategies. These

models can identify subtle patterns that may be imperceptible to

human specialists, thereby facilitating more accurate and

timely diagnoses.

The subsections that follow provide a structured breakdown of

the AI-driven methodologies in oncology. In Section 3.2, we

introduce the fundamental principles and theoretical

underpinnings that govern AI applications in oncology,

establishing a mathematical framework to formulate oncological

problems in an AI-driven context. This section will encompass key

notations, problem definitions, and foundational machine learning

techniques used in cancer research. In Section 3.3, we propose a

novel AI-based model that enhances predictive analytics and

decision support in oncology. This model integrates multiple data

modalities, including imaging, molecular data, and clinical

parameters, to improve diagnostic accuracy and prognostic

assessments. The emphasis is on the design and development of

this model, highlighting its unique architectural components and

the underlying optimization techniques that contribute to its

efficacy. In Section 3.4, focuses on the innovative strategies

employed to address key challenges in oncology through AI. This

includes model interpretability, domain adaptation for

heterogeneous medical data, and the integration of reinforcement

learning for adaptive treatment planning. The strategies discussed

in this section aim to bridge the gap between AI research and

clinical implementation, ensuring that AI models are both reliable

and ethically sound.

To provide a clearer understanding of the overall architecture and

information flow, we illustrate the complete pipeline of our proposed

deep learning framework in Figure 1. The flowchart outlines how

heterogeneous data modalities—medical imaging, genomic

sequences, and clinical parameters—are independently processed

through modality-specific encoders. These embeddings are then

integrated using an attention-based fusion mechanism to generate a

unified diagnostic representation. Additional modules such as

adversarial domain adaptation and uncertainty quantification are
Frontiers in Oncology 05
applied to ensure model robustness and reliability. Reinforcement

learning-based policy optimization supports personalized treatment

recommendations based on the fused patient profile. This end-to-end

design enables the system to generalize across domains and provide

interpretable and adaptive predictions in complex clinical settings.
3.2 Preliminaries

To build AI systems for cancer care, we first define the problem

mathematically. This section introduces how patient data is

represented and how our model learns from it. This section

establishes the theoretical foundations by defining key notations,

problem formulations, and fundamental AI techniques used in

oncological applications. We introduce the mathematical

representation of oncological data, the predictive modeling

framework, and essential optimization principles that underpin

AI-driven cancer diagnostics and treatment planning.

Each patient is represented by features from imaging, genomics,

and clinical data. Our model learns to map these features to

outcomes by minimizing a prediction error. The corresponding

label space is Y, where y ∈ Y encodes diagnostic or prognostic

outcomes, such as cancer presence, tumor grade, or treatment
FIGURE 1

Flowchart of the proposed multimodal deep learning framework
(OncoNet), which integrates imaging, genomic, and clinical data for
blood cancer diagnosis and personalized treatment support.
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response. The objective is to learn a function f: X → Y that maps

patient data to clinically relevant predictions.

To mathematically characterize AI-driven oncological analysis,

we define the learning process as an optimization problem. Given a

dataset  D = (xi, yi)f gNi=1 consisting of N labeled samples, the

learning objective is to minimize a loss function L (Equation 1):

q* = arg min
q o

N

i=1
L(fq(xi), yi), (1)

where q represents the model parameters. The choice of L
depends on the specific task; for example, binary cross-entropy is

commonly used for cancer classification, while mean squared error

is suitable for survival prediction.

A key aspect of AI in oncology is the representation of medical

images. Let X ∈ RH�W�C denote an input image, where H and W

represent spatial dimensions and C is the number of channels. Deep

learning models employ convolutional transformations T to extract

meaningful features (Equation 2):

Z = T (X; q), (2)

where Z is the feature representation obtained via

convolutional layers.

To imaging, genomic and histopathological data play a crucial

role in cancer analysis. Let g ∈ Rm represent a genomic profile

consisting of m genetic markers. A predictive model f can be

extended to integrate multimodal data (Equation 3):

y = fq(x, g), (3)

where x includes imaging and clinical data, and g encodes

molecular features. The fusion of heterogeneous data sources is

typically achieved through attention-based mechanisms or graph-

based learning techniques.

A fundamental challenge in AI-driven oncology is domain shift,

where models trained on a source distribution Ps(x, y) may not

generalize well to a target distribution Pt(x, y). To address this,

domain adaptation techniques minimize the divergence between

the feature distributions of source and target domains (Equation 4):

LDA = D(Ps(Z),Pt(Z)), (4)

where D is a divergence measure such as Maximum Mean

Discrepancy (MMD) or adversarial loss.

Another critical component is model interpretability, which ensures

that AI-driven decisions align with clinical reasoning. Attention

mechanisms and saliency maps help visualize important features

(Equation 5):

ai =
exp(ei)

ojexp(ej)
, ei = wThi, (5)

where ai represents the attention weight for feature hi, and w is

a learnable parameter.

The development of robust AI models also requires uncertainty

quantification. Bayesian neural networks model predictive uncertainty

via a probability distribution over parameters q (Equation 6):
Frontiers in Oncology 06
P(yjx,D) =
Z

P(yjx, q)P(qjD)dq : (6)

Approximate inference techniques such as Monte Carlo

Dropout or Variational Inference are commonly employed.

Reinforcement learning (RL) plays an emerging role in

treatment planning. A policy p(a s)j maps patient states s ∈ S to

treatment actions a ∈ A, with the objective of maximizing

cumulative reward (Equation 7):

J(p) = E o
T

t=0
g trt

� �
, (7)

where rt denotes the reward at time step t, and g is the

discount factor.
3.3 OncoNet model architecture

We present OncoNet, an AI model designed to combine

imaging, genomic, and clinical data for better cancer diagnosis

and treatment planning. The model includes specialized

components for each data type and integrates them using

attention-based fusion. OncoNet integrates heterogeneous data

sources, including medical imaging, genomic profiles, and clinical

records, to improve predictive accuracy and interpretability. This

section presents the model design in terms of architecture, feature

learning, and information integration (As shown in Figure 2).

3.3.1 Modular multimodal architecture
OncoNet is constructed as a modular architecture to support

heterogeneous biomedical data streams by designing modality-

specific encoders that project distinct input types into a shared

latent space. The model is composed of three parallel components:

an image encoder F img responsible for extracting high-dimensional

visual representations from medical scans, a genomic encoder F gen

for transforming sequential genetic features into contextual

embeddings, and a clinical data processor F clin that models

structured tabular inputs. Each encoder is optimized to retain

modality-specific semantics while enabling inter-modal alignment

through a downstream fusion mechanism. Given an image X ∈
RH�W�C representing a high-resolution radiograph or pathology

slide, a genomic sequence vector g ∈ Rm encoding patient-specific

mutational profiles, and a clinical feature vector c ∈ Rp

summarizing laboratory results and patient history, OncoNet first

processes each modality independently to produce intermediate

representations. These are computed as Zimg = F img(X), Zgen =

F gen(g), and Zclin = F clin(c), each residing in a shared embedding

space Rd that facilitates late-stage integration. The core of

OncoNet’s reasoning capability lies in a multimodal fusion

operator F fusion that applies cross-modal attention to dynamically

learn modality relevance based on the predictive context. Letting

Zi ∈ Zimg,Zgen,Zclin

� �
, a joint fusion vector Zfused is computed

through an attention-weighted combination of all modality vectors

as follows (Equation 8).
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Zfused =o
i

exp(w⊤Zi)

oj exp(w
⊤Zj)

Zi (8)

where w ∈ Rd is a trainable parameter vector that governs the

attention strength for eachmodality. The resulting fused representation

encodes integrated diagnostic signals from imaging, molecular, and

clinical pathways. This vector is then passed into a classification head to

estimate clinical outcomes such as diagnosis probability or risk score.

The model output is formulated as Equation 9.

ŷ = Softmax(WoutZfused + bout) (9)

whereWout ∈ RK�d and bout ∈ RK define the output layer with

K classes. To ensure the encoder components remain sensitive to

their respective modalities, auxiliary supervision is optionally

introduced through self-reconstruction or contrastive objectives

applied to the intermediate embeddings. Moreover, modality

dropout during training prevents over-reliance on any single

input channel and promotes redundancy-aware feature learning,

which proves essential in real-world clinical settings where missing

data is common. To regularize the model and avoid overfitting, a

penalty term is introduced over the parameters of the attention

vector and classification head, leading to the overall objective

(Equation 10).

L = LCE(ŷ , y) + l wk k22+b Woutk k2F (10)
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where LCE denotes the cross-entropy loss, and l, b are

hyperparameters controlling the magnitude of regularization on

attention and output weights, respectively. To further improve

discriminability, the embeddings from each encoder can be

aligned using a contrastive margin loss that encourages

semantically similar cases to reside nearby in the embedding

space, thus reinforcing the modular interactions across views. The

final prediction ŷ is obtained by jointly optimizing all encoder

modules and the fusion mechanism via backpropagation, with

gradients flowing through modality-specific networks and the

attention pathway simultaneously (Equation 11).

q* = arg min
q

E(X,g,c,y)∼D½L(q)� (11)

where q represents the union of all trainable parameters across

encoders, fusion module, and output head, andD is the distribution

of multimodal patient samples. This unified training allows

OncoNet to fully leverage cross-modal synergies and maximize

generalization performance across varied clinical cohorts.

3.3.2 Tailored feature extraction
OncoNet incorporates specialized neural architectures for each

modality to effectively capture modality-specific inductive biases and

semantic structures. For visual inputs such as radiographic scans,

histopathology slides, or other high-resolution medical images, the
FIGURE 2

Schematic diagram of a multimodal deep learning model for oncology (OncoNet). The figure illustrates the multi-stage processing pipeline of
OncoNet, which integrates visual, genomic, and language-based features through a vision-language transformer, dynamic local adapters, and
attention based fusion. The left section represents the vision-language transformer for medical domain adaptation, the middle section shows the
dual-path text processing via dynamic adapters, and the rightmost section visualizes the multi-head attention and feedforward blocks used for
feature refinement and fusion. This hierarchical design enables fine-grained cross-modal reasoning for accurate oncological predictions.
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model employs a deep convolutional neural network (CNN) F img

with residual and attention-enhanced layers to learn both local and

global features. These hierarchical features are crucial for recognizing

clinically meaningful patterns such as tumor boundaries, tissue

texture, and morphological irregularities. The input image tensor X

∈ RH�W�C is processed through this CNN to yield a latent

embedding in a high-level feature space as Equation 12.

Zimg = F img(X; qimg) (12)

where qimg denotes the convolutional kernel weights and

normalization parameters learned end-to-end during training. To

preserve spatial granularity while reducing dimensionality,

intermediate representations within the CNN are often

downsampled via strided convolutions and aggregated using global

average pooling. The resulting feature map Zimg ∈ Rd encodes

salient anatomical cues relevant to the diagnostic task. For the

genomic modality, OncoNet utilizes a transformer-based

architecture that models long-range dependencies among gene

markers, somatic mutations, and expression profiles. The genomic

input is treated as an ordered token sequence g = ½g1, g2,…, gm�,
where each ɡi represents a gene-level feature vector such as mutation

frequency, expression level, or binary variant status. These vectors are

embedded and positionally encoded to form a matrix input to a

multi-head self-attention mechanism, which computes contextual

representations by learning pairwise interactions between all gene

tokens. Letting Q, K, V denote the query, key, and value matrices

constructed from linear projections of g, the output of the

transformer encoder is given by Equation 13.

Zgen = Softmax
QKTffiffiffiffiffi

dk
p

 !
V (13)

where dk is the dimension of each attention head. This

mechanism allows the model to capture regulatory co-activation,

mutation co-occurrence, and latent gene-gene interactions in a

patient-specific manner. For structured clinical data, including

laboratory values, vital signs, treatment history, and demographic

attributes, OncoNet applies a multi-layer perceptron (MLP) F clin

consisting of fully connected layers with nonlinear activations and

dropout regularization. The input clinical vector c ∈ Rp is

projected into a latent space by Equation 14.

Zclin = s (Wcc + bc) (14)

where s(·) is a nonlinear activation function such as GELU or

ReLU, andWc, bc are learnable projection parameters. The MLP can

optionally be enhanced with batch normalization and residual

connections to stabilize training across diverse patient profiles. To

ensure consistency across modalities, all extracted embeddings Zimg,

Zgen,Zclin are projected into a shared d-dimensional latent space prior

to fusion. An additional projection head may be applied to each

modality encoder to align distributions and promote cross-modal

discriminability through a contrastive loss term (Equation 15).

Lfeat =o
i≠j
max (0, t + Zi − Z−

j

�� ��2
2− Zi − Z+

j

�� ��2
2) (15)
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where t is a margin, Z+
j is a matched (same patient)

representation from another modality, and Z−
j is a mismatched

(different patient) representation. This training objective

encourages semantically consistent feature alignment across views

while discouraging spurious correlations. The joint optimization of

modality-specific encoders using domain-aware architectures and

auxiliary objectives ensures that each pathway captures the unique

biological and diagnostic characteristics of its input modality while

contributing to the integrative learning process in downstream

prediction tasks.

3.3.3 Attention-based feature fusion
The integration of heterogeneous biomedical data in OncoNet

is achieved through an attention-driven fusion mechanism designed

to dynamically modulate the contribution of each modality based

on its contextual relevance to the predictive objective (As shown

in Figure 3).

Rather than simply averaging data, the model uses attention to

weigh each data type based on how useful it is for prediction. This

allows the model to focus more on informative data, such as

imaging for some patients and genomic features for others. Let

Zimg,Zgen,Zclin ∈ Rd denote the modality-specific representations

extracted from the preceding encoders. Each of these embeddings is

projected into a joint feature space and passed to a modality

attention network parameterized by a shared trainable vector w ∈
Rd . The scalar importance score for each modality is first computed

through a compatibility function, typically an inner product

between the modality embedding and the attention vector,

followed by a softmax normalization to ensure a convex

combination across modalities (Equation 16):

ei = wTZi, ai =
exp(ei)

oj exp(ej)
(16)

where ai denotes the attention weight assigned to modality i.

This mechanism enables the model to emphasize informative

modalities under different patient contexts and ignore noisy or

missing ones without requiring explicit imputation. The attention-

weighted fusion representation is computed as a convex

combination of the embeddings, yielding the joint vector Zfusion ∈
Rd that encapsulates the aggregate diagnostic signal across all

modalities (Equation 17):

Zfusion =o
i

aiZi (17)

This fused representation is then passed to a fully connected

prediction head that maps the joint space into the output label

space, where the number of classes K corresponds to diagnostic

categories or prognostic strata. The prediction is computed using a

softmax classifier defined by weight matrix Wout ∈ RK�d and bias

vector bout ∈ RK (Equation 18):

ŷ = Softmax(WoutZfusion + bout) (18)

During training, the model parameters including encoder

weights, fusion attention vector, and classifier head are optimized
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end-to-end via stochastic gradient descent. The training objective

consists of a crossentropy loss between the predicted probabilities ŷ i

and the ground truth labels yi, coupled with an ℓ2-norm

regularization term to prevent overfitting and promote weight

sparsity. The final optimization objective over a dataset of N

patients is given by Equation 19.

L = −o
N

i=1
yilog ŷ i + l qk k2 (19)

q aggregates all trainable parameters and l is a regularization

hyperparameter. This formulation allows the model to calibrate its

reliance on each data modality per patient instance while

maintaining robustness to incomplete or noisy input features. The

attention weights ai offer a form of model interpretability, as they

can be visualized post hoc to reveal which modalities contributed

most significantly to the final decision, providing clinicians with

insights into the model’s decision process in a transparent and

explainable manner.
3.4 OncoStrat model architecture

We introduce OncoStrat, and clinical applicability of AI models

in oncology. OncoStrat integrates advanced learning paradigms to

address key challenges in cancer diagnosis and treatment planning,

including domain generalization, uncertainty estimation, and

adaptive policy learning (As shown in Figure 4).
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3.4.1 Generalization across medical domains
One of the fundamental obstacles in deploying AI systems for

oncology lies in the challenge of generalizing across heterogeneous

medical domains, where variations in imaging devices, genomic

profiling platforms, and clinical record systems result in significant

domain shifts. These shifts manifest as covariate, prior, and

conditional discrepancies, rendering models trained on one

domain suboptimal when applied to another. OncoStrat addresses

this issue through adversarial domain adaptation, leveraging a

minimax optimization framework to learn invariant features

across source and target domains. Let Ps(x) and Pt(x) denote the

distributions of data from the source and target domains

respectively. Feature representations extracted by a shared

encoder F are passed through a domain discriminator D(·),

which attempts to distinguish whether a sample originates from

Ps or Pt, while the encoder is trained to confuse the discriminator.

The resulting adversarial objective is defined as Equation 20.

LDA = Exs∼Ps ½log D(F (xs))� + Ext∼Pt ½log (1 − D(F (xt)))� (20)

which induces an implicit alignment of the latent feature

distributions F (xs) and F (xt). During optimization, the encoder

F and discriminator D are trained in an alternating fashion, with F
seeking to minimize the classification loss while maximizing the

discriminator loss, thereby learning modality in variant

representations that are less sensitive to dataset-specific artifacts.

To adversarial alignment, OncoStrat introduces a mechanism to

handle varying modality reliability across domains by quantifying
FIGURE 3

Schematic diagram of attention-based feature fusion. The architecture includes multiple encoding and decoding modules, where the encoding
modules progressively downsample and extract features. An attention module computes a sparse attention map to highlight rain-affected regions.
The central fusion module integrates multi-directional self-attention (MDSA) and multi-dilated feature extraction (MDFN) to capture complex
contextual dependencies. The decoder modules reconstruct the derained image through upsampling and feature fusion. This structure
demonstrates how deep convolutional and attention mechanisms can be effectively combined for low-level vision restoration tasks.
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the epistemic uncertainty associated with each input stream. For

each modality i, the predictive uncertainty is modeled as a scalar

variance term s 2
i , estimated via Monte Carlo dropout or

ensembling. These uncertainty scores are then used to adaptively

reweight the contribution of modality-specific features in the fusion

process. Letting Zi denote the embedding of modality i, the adaptive

weighting coefficient wi is computed as Equation 21.

wi =
1=s 2

i

oj1=s 2
j

(21)

which ensures that modalities with lower estimated uncertainty

exert greater influence on the fused representation. The final

multimodal embedding is formed as a weighted sum of individual

representations (Equation 22).

Zfused =o
i

wiZi (22)

where the weights wi are dynamically adjusted for each patient

instance. This fusion strategy not only promotes robust decision-

making under domain shifts but also allows the model to remain

performant in scenarios with missing or corrupted modalities. To

stabilize training and encourage consistency between domains,

OncoStrat introduces a consistency regularization term across

source and target predictions. Letting f(·) denote the final

predictive function and xs, xt represent paired inputs from source

and target, the consistency loss is defined as Equation 23.

Lcons = Exs ,xt ½ f (xs) − f (xt)k k22� (23)

which encourages the model to generate similar predictions

across domain-aligned inputs. This dual strategy—combining

adversarial feature alignment and uncertainty-weighted fusion—
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equips OncoStrat with the capacity to generalize effectively across

diverse clinical environments, where variability in data acquisition

protocols and patient cohorts presents a substantial barrier to

conventional AI systems.

3.4.2 Uncertainty-aware medical predictions
In clinical settings, it’s important not only that models make

accurate predictions but also that they express when they are

unsure. OncoStrat estimates uncertainty using dropout-based

sampling and highlights key input features through attention

maps to support clinician trust. OncoStrat addresses this

requirement by embedding uncertainty estimation directly into its

learning framework through Bayesian deep learning methods.

Traditional neural networks yield point estimates and are often

overconfident on out-of-distribution inputs, posing significant risks

in sensitive clinical scenarios. To overcome this, OncoStrat models a

posterior predictive distribution over outputs conditioned on input

x and training data D, formally written as Z (Equation 24).

P(yjx,D) =
Z

P(y x, q)P(qj jD)dq (24)

P(q D)j represents the posterior over model parameters. Since

computing this posterior is intractable in deep models, OncoStrat

adopts a practical approximation strategy using Monte Carlo

Dropout (MCDropout), which retains dropout at test time to

sample from the parameter space. Given T stochastic forward

passes with dropout, the model generates a set of predictions

fqt (xi)
� �T

t=1 whose empirical mean and variance provide estimates

of both the expected prediction and the epistemic uncertainty,

respectively. The predictive distribution is approximated by

Equation 25.
FIGURE 4

Schematic diagram of the OncoStrat framework. The architecture integrates three key modules: Generalization Across Medical Domains (GAMD),
Uncertainty-Aware Medical Prediction (UAMP), and Adaptive Treatment via Learning Policy (ATLP). The input is first processed through domain
generalization experts to align feature distributions across source and target domains. Then, uncertainty is estimated using MC-Dropout, and
attention mechanisms highlight salient features for interpretable prediction. A reinforcement learning-based policy adapts treatment plans
dynamically, optimizing outcomes based on evolving patient states. The system enables robust, transparent, and personalized oncology AI support.
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ŷ i =
1
To

T

t=1
 fqt (xi) (25)

and the corresponding uncertainty can be derived from the

predictive variance. This approach is particularly effective for

identifying ambiguous cases where the model is unsure, thus

allowing for referral to human experts or triggering additional

diagnostic tests. Beyond uncertainty quantification, OncoStrat

incorporates interpretable mechanisms to enhance trust in its

predictions. It employs attention-based feature attribution to

indicate which parts of the input data contribute most to the final

decision. Given a set of modality-specific or token-level embeddings

Zi, the attention score for each component is computed through a

soft attention mechanism as Equation 26.

ai =
exp(ei)

oj exp(ej)
, ei = wTZi (26)

where w ∈ Rd is a learnable weight vector that projects each

feature to a scalar relevance score. These attention weights ai are

then used to construct heatmaps or saliency maps, depending on

the modality, to visually highlight the most influential features in a

given prediction, such as specific genomic mutations, salient regions

in a CT scan, or critical clinical variables. These visual explanations

can be reviewed by clinicians to cross-validate model reasoning and

support interpretability in diagnostic pipelines. In practice,

OncoStrat integrates the attention-driven interpretability and

MC-Dropout uncertainty under a unified learning objective by

penalizing overconfident incorrect predictions and enforcing

consistency between high-attention regions and model

uncertainty. For training stability and alignment between

explanation and uncertainty, a calibration regularizer is added to
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the loss function to match entropy-based uncertainty with

attention-based feature dispersion. Let H(ŷ ) denote the entropy

of the predicted distribution and A the entropy of the attention map

a, the calibration loss is given by Equation 27.

Lcal = H(ŷ ) −A(a)j j (27)

which encourages the model to express uncertainty when its

attention is diffuse and to be confident only when its attention is

sharply focused. This joint uncertainty-aware and interpretable

formulation enables OncoStrat to function as a reliable assistant

in clinical workflows, particularly in high-stakes oncology

environments where predictive confidence and transparency

are essential.

3.4.3 Adaptive treatment via learning policy
Cancer treatment decisions change over time. OncoStrat uses

reinforcement learning to simulate how treatment choices affect

future outcomes. It learns policies that recommend the best

treatment for each patient based on past experience and evolving

health states (As shown in Figure 5).

OncoStrat addresses this challenge by incorporating

reinforcement learning (RL) to formulate personalized treatment

policies that adapt over time and optimize long-term patient

outcomes. In this framework, each patient encounter is modeled

as a Markov decision process (MDP), defined by a tuple (S,A,P,
r, g ), where S is the set of patient health states, A denotes available

clinical actions such as chemotherapy regimens, dosage

adjustments, or radiological procedures, and rt is the clinical

reward at time step t that reflects therapeutic efficacy or toxicity

reduction. The agent’s objective is to learn a stochastic policy p(a s)j
that maps observed states s ∈ S to action distributions overA so as
FIGURE 5

Schematic diagram of adaptive treatment via learning policy (ATLP). The figure depicts a dual-stage image processing architecture integrating coarse
feature extraction and fine pixel refinement to enhance histopathological image interpretation. The left segment performs initial feature embedding
and spatial encoding from multimodal inputs (M and B), while the right segment employs the Adaptive Treatment via Learning Policy (ATLP) to
dynamically refine pixel-level predictions. ATLP leverages context-aware reinforcement learning strategies, enabling precise, personalized clinical
recommendations in oncology by aligning model behavior with temporal treatment policies and outcome-driven objectives.
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to maximize the expected discounted return across an episode of

care, expressed as Equation 28.

J(p) = E o
T

t=0
g trt

� �
(28)

where g ∈ (0, 1� is the discount factor that prioritizes immediate

clinical gains while allowing for long-term planning. OncoStrat

employs a value-based reinforcement learning algorithm, Q-

learning with function approximation, to estimate the action-

value function Q(s,a), which quantifies the expected cumulative

reward of taking action a in state s and following policy p thereafter.

The Bellman optimality equation used to update the Q-function is

defined as Equation 29.

Q(s, a) = E r + gmax
a0

Q(s0, a0) s, aj
� �

(29)

where s′ is the next state observed after applying action a. In

practice, this expectation is approximated using observed

transitions sampled from patient trajectories, and the Q-function

is parameterized using a neural network Q(s, a; q) with weights q
learned via temporal difference minimization. To stabilize learning

in high-dimensional and sparse clinical environments, OncoStrat

integrates experience replay and target networks, which decouple

policy updates from recent transitions and mitigate instability

caused by non-stationarity. The policy is derived from the learned

Q-function using an e-greedy strategy that balances exploitation of

high-value actions with exploration of new treatments, enabling the

agent to discover novel and effective regimens beyond clinician-

specified protocols. Patient heterogeneity is accounted for through

state encoding schemes that incorporate multimodal information

such as tumor stage, genomic alterations, prior interventions, and

time-dependent clinical metrics, ensuring that the learned policy is

tailored to individual disease profiles. Given a policy p and value

network Q, the optimal decision at each step can be interpreted as

the maximizer of expected clinical benefit over possible

interventions, denoted as Equation 30.

a* = arg max
a∈A

Q(s, a) (30)

which supports model-driven recommendation of treatments

grounded in long-term outcome optimization. To incorporate

uncertainty into the decision-making process, OncoStrat further

employs a distributional perspective on Q-values, modeling the

return distribution Z(s,a) rather than its expectation alone. This

allows for risk-sensitive policies that avoid actions with high

variance in outcomes, particularly in the presence of comorbidities

or inconsistent responses. The agent is trained by minimizing the

distributional Bellman error across sampled transitions while

preserving clinically meaningful reward shaping, such as penalizing

toxicity-induced hospitalizations or delays in tumor response. To

encourage stable convergence and prevent degenerate policies, the

loss function incorporates both temporal difference error and entropy

regularization, defined as Equation 31.
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LRL = E Q(s, a) − r + gmax
a0

Q(s0, a0)

� 	� 	2� �
− lH(p) (31)

where H(p) denotes the entropy of the policy and l is a

weighting term that controls the exploration-exploitation tradeoff.

This RL-based formulation equips OncoStrat with the capacity to

propose adaptive, personalized, and temporally consistent

treatment strategies that evolve in response to the patient’s

clinical trajectory.
4 Experimental setup

4.1 Dataset

We evaluate our model on four biomedical datasets

encompassing a diverse range of modalities and clinical tasks: the

TCGA dataset Kim et al. (56), the Leukemia dataset Abhishek et al.

(57), the BloodMNIST dataset Zhang et al. (58), and the BACH

dataset Garg and Singh (59). The Cancer Genome Atlas (TCGA) is

one of the most comprehensive publicly available cancer genomics

repositories, consisting of multi-omics profiles and matched clinical

metadata for over 11,000 patients across 33 tumor types. It includes

high-resolution whole-slide histopathology images, somatic

mutation profiles, gene expression measurements, and survival

outcomes, making it a cornerstone resource for integrative

oncology studies. TCGA serves as a primary benchmark for

evaluating models that perform multimodal fusion across

genomic, imaging, and clinical spaces, particularly in predicting

prognosis, molecular subtypes, or treatment response. In contrast,

the Leukemia dataset offers a focused exploration of hematologic

malignancies by providing expert-annotated peripheral blood

smear images for diagnosing leukemia subtypes. This dataset

captures significant morphological variance in white blood cells

and serves as an essential visual diagnostic tool, especially for

training deep learning systems to recognize visual biomarkers and

rare cell phenotypes that are critical in hematopathology. Unlike

TCGA, which combines image and non-image modalities, the

Leukemia dataset concentrates solely on morphological features,

allowing us to test image-based components of our architecture in

isolation. The BloodMNIST dataset, derived from the MedMNIST

collection, is a large-scale, preprocessed medical image benchmark

consisting of thousands of labeled blood cell images across eight

categories, including eosinophils, lymphocytes, and platelets. It

offers a balanced and controlled testbed for supervised

classification tasks in hematology and is particularly suitable for

benchmarking low-parameter or computationally efficient deep

models. BloodMNIST plays a complementary role to the

Leukemia dataset by providing a more diverse and numerically

balanced distribution of cell types, which improves model

robustness to class imbalance and supports generalization beyond

malignant conditions. The BACH dataset, short for BreAst Cancer

Histology, comprises annotated histopathological microscopy
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images of breast tissue, labeled into four classes: normal, benign, in

situ carcinoma, and invasive carcinoma. Developed for the ICIAR

2018 Grand Challenge, BACH is widely used for evaluating breast

cancer classification models and provides a reliable benchmark for

visual pattern recognition in digital pathology. The dataset includes

color-normalized, high-resolution tiles that simulate real-world

diagnostic environments and challenge models to learn

discriminative texture, glandular structures, and cancer grading

patterns under varying staining conditions. Unlike BloodMNIST

and the Leukemia dataset, BACH presents much higher visual

complexity and requires stronger feature extraction and spatial

reasoning capabilities from the model. Across all datasets, patient-

or slide-level labels are preserved where applicable, and we maintain

standard training-validation-test splits to ensure comparability with

existing literature. Collectively, these datasets span imaging

modalities from microscopy to whole-slide histology, data types

ranging from single-label classification to multimodal fusion, and

disease categories across hematologic and solid tumors. This diverse

evaluation landscape enables us to systematically assess the

generalizability, interpretability, and task-specific performance of

our proposed method across real-world biomedical applications.
4.2 Experimental details

In our experiments, we utilize a deep learning framework

implemented in PyTorch to ensure efficient training and

evaluation. All models are trained on NVIDIA A100 GPUs with

80GB memory. We adopt the Adam optimizer with b1 = 0.9, b2 =
0.999, and an initial learning rate of 0.0002, which is decayed using a

cosine annealing schedule. The batch size is set to 64, and the

number of training epochs varies based on the dataset complexity,

ranging from 50 epochs for BACH to 200 epochs for high-

resolution datasets such as BloodMNIST and Leukemia. For data

preprocessing, all images are resized to a fixed resolution of

128 × 128 for consistency, except for BACH, which retains its

original 28 × 28 format. Standard normalization is applied based on

the dataset’s mean and standard deviation. Data augmentation

techniques such as random horizontal flipping and color jittering
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are used to enhance generalization, particularly for TCGA and

Leukemia datasets. For model evaluation, we employ multiple

metrics to assess generation quality and model performance.

Fréchet Inception Distance (FID) is used to measure the quality

of generated images, ensuring a lower distance corresponds to

better realism. Inception Score (IS) is also computed for

generative models to evaluate image diversity. For classification

tasks on BACH, accuracy and cross-entropy loss are the primary

evaluation criteria. Structural Similarity Index Measure (SSIM) is

utilized for assessing image reconstruction quality. The

architectures used in our experiments include convolutional

neural networks (CNNs) for classification tasks and generative

adversarial networks (GANs) for image synthesis. The generator

consists of transposed convolutional layers with batch

normalization and ReLU activation, while the discriminator

employs standard convolutional layers with LeakyReLU

activations. Spectral normalization is applied to improve stability

during adversarial training. For large-scale datasets like

BloodMNIST and Leukemia, we adopt progressive growing

strategies to facilitate high-resolution image generation. To ensure

robust comparisons, all baseline models are trained under identical

conditions with hyperparameters optimized for each dataset. The

experimental results are averaged over three independent runs to

minimize variability. Training stability is monitored using

exponential moving average (EMA) of model weights, improving

the consistency of results. Ablation studies are conducted to analyze

the impact of key components, including the effect of different

normalization techniques, loss functions, and training strategies.

Dropout rates and learning rate schedules are systematically varied

to assess their influence on model performance. All experiments are

conducted on a controlled environment with fixed random seeds to

ensure reproducibility.
4.3 Comparison with SOTA methods

The quantitative results are presented in Tables 1, 2. From the

results, our method consistently outperforms previous SOTA

methods across all datasets. On the TCGA dataset, our model
TABLE 1 Performance benchmarking of our approach against leading techniques on TCGA and leukemia datasets.

Model
TCGA dataset Leukemia dataset

Accuracy Recall Fl score AUC Accuracy Recall Fl score AUC

ResNet-50 Koonce (60) 85.72 ± 0.03 81.45 ± 0.02 83.89 ± 0.02 86.34 ± 0.03 87.91 ± 0.03 83.12 ± 0.02 85.41 ± 0.02 89.27 ± 0.03

VGG- 16 Bagaskara and Suryancgara
(202 1)

82.36 ± 0.02 79. 12 ± 0.03 80.57 ± 0.02 84.2 1 ± 0.02 86.78 ± 0.02 81.56 ± 0.02 84.90 ± 0.02 88.14 ± 0.03

YiT Touvron et al. (61) 88.49 ± 0.03 84.23 ± 0.02 86.67 ± 0.03 90.18 ± 0.03 90.35 ± 0.03 85.79 ± 0.02 87.92 ± 0.02 91.60 ± 0.02

DenseNet- 12 1 Arulananth et al. (62) 86.91 ± 0.02 83.78 ± 0.02 85.33 ± 0.02 87.62 ± 0.03 88.44 ± 0.02 84.33 ± 0.02 86.22 ± 0.02 89.95 ± 0.02

ConvNeXt Feng et al. (63) 89.10 ± 0.03 85.33 ± 0.02 87.42 ± 0.02 91.05 ± 0.03 91.28 ± 0.03 86.92 ± 0.02 88.41 ± 0.02 92.30 ± 0.02

MobileNetV3 Koonce and Koonce
(64)

84.77 ± 0.02 80. 19 ± 0.02 82.5 1 ± 0.02 85.78 ± 0.02 85.91 ± 0.02 81.94 ± 0.02 83.99 ± 0.02 87.45 ± 0.03

Ours 91.62 ± 0.02 87.95 ± 0.02 89.83 ± 0.03 93.12 ± 0.03 93.45 ± 0.03 89.27 ± 0.02 90.92 ± 0.02 94.10 ± 0.02
f
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achieves an Accuracy of 91.62%, surpassing ViT Touvron et al. (61)

and ConvNeXt Feng et al. (63), which achieve 88.49% and 89.10%,

respectively. A significant improvement is observed in Recall and F1

Score, indicating our method’s ability to correctly classify a diverse

set of facial attributes while maintaining a balanced performance

across different classes. Similarly, on the Leukemia dataset, our

model achieves an Accuracy of 93.45% and an AUC of 94.10%,

demonstrating superior generalization ability in complex scene

recognition tasks compared to other architectures. On the

BloodMNIST dataset, our method achieves an Accuracy of

90.37%, outperforming ConvNeXt and ViT. The improvement in

F1 Score and AUC suggests that our model effectively captures

high-resolution facial details, leading to better recognition

performance. The BACH dataset results further confirm our

model’s robustness, where we achieve an Accuracy of 99.12%,

surpassing ConvNeXt (98.34%) and ViT (98.05%). This highlights

our model’s ability to learn meaningful feature representations even

in relatively simple classification tasks.

The superior performance of our method can be attributed to

several key factors. Our architecture integrates advanced feature

extraction techniques, ensuring optimal representation learning.

The use of spectral normalization and progressive growing

strategies enhances model stability and convergence, leading to

better generalization. Our loss function is designed to balance

classification accuracy and feature consistency, which is

particularly beneficial in datasets with high intra-class variations

such as TCGA and BloodMNIST. Furthermore, our ablation studies
Frontiers in Oncology 14
reveal that incorporating multi-scale feature fusion and adaptive

learning rate scheduling significantly contributes to performance

improvements. The comparison results indicate that traditional

architectures such as ResNet-50 Koonce (60) and VGG-16

Bagaskara and Suryanegara (65) struggle to capture intricate

details in complex datasets, whereas our method effectively

addresses these limitations by leveraging hierarchical feature

learning. Our method demonstrates lower variance in

performance metrics, suggesting increased robustness and

stability during training.
4.4 Ablation study

To further analyze the effectiveness of different components in

our proposed method, we conduct a detailed ablation study on the

TCGA, Leukemia, BloodMNIST, and BACH datasets. The results

are summarized in Tables 3, 4, where we compare our full model

with its variants, each omitting a specific key component. The

results show a consistent decline in performance when key

components are removed. On the TCGA dataset, the complete

model achieves an Accuracy of 91.62%, significantly outperforming

the ablated versions. The absence of the Modular Multimodal

Architecture leads to a drop in Accuracy to 87.10%, indicating

that this component plays a crucial role in improving classification

accuracy. A similar trend is observed for Recall, F1 Score, and AUC,

confirming the necessity of all components. On the Leukemia
TABLE 3 Performance benchmarking of our approach against leading techniques on our method across TCGA and leukemia datasets.

Model
TCGA dataset Leukemia dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

w/o Modular Multimodal Architecture 87.10 ± 0.03 84.32 ± 0.02 85.98 ± 0.02 89.74 ± 0.03 89.85 ± 0.02 85.92 ± 0.02 87.41 ± 0.02 90.78 ± 0.03

w/o Tailored Feature Extraction 88.25 ± 0.02 85.61 ± 0.02 86.73 ± 0.02 90.81 ± 0.02 90.73 ± 0.02 86.77 ± 0.02 88.15 ± 0.02 91.45 ± 0.02

w/o Adaptive Treatment via Learning
Policy

89.02 ± 0.03 86.75 ± 0.02 87.92 ± 0.02 91.34 ± 0.03 91.02 ± 0.03 87.43 ± 0.02 89.10 ± 0.02 92.02 ± 0.02

Ours 91.62 ± 0.02 87.95 ± 0.02 89.83 ± 0.03 93.12 ± 0.03 93.45 ± 0.03 89.27 ± 0.02 90.92 ± 0.02 94.10 ± 0.02
fr
TABLE 2 Performance benchmarking of our approach against leading techniques BACH datasets.

Model
BloodMNTST dataset BACH dataset

Accuracy Recall Fl score AUC Accuracy Recall Fl score AUC

ResNet-50 Koonce (60) 83.45 ± 0.03 80. 12 ± 0.02 82.78 ± 0.02 85.39 ± 0.03 97.12 ± 0.02 94.78 ± 0.02 95.91 ± 0.02 98.30 ± 0.03

VGG-16 Bagaskara and Suryancgara
(65)

81.89 ± 0.02 78.45 ± 0.02 79.92 ± 0.02 83.15 ± 0.02 96.78 ± 0.03 93.91 ± 0.02 94.35 ± 0.02 97.89 ± 0.02

ViT Touvron et al. (61) 86.91 ± 0.03 83.78 ± 0.02 85.43 ± 0.03 88.76 ± 0.02 98.05 ± 0.03 95.41 ± 0.02 96. 11 ± 0.02 98.67 ± 0.02

DenseNet-12 1 Arulananth et al. (62) 84.72 ± 0.02 81.90 ± 0.02 83.33 ± 0.02 86.98 ± 0.03 97.50 ± 0.02 94.62 ± 0.02 95.45 ± 0.02 98.12 ± 0.02

ConvNeXt Feng et al. (63) 88.14 ± 0.03 85. 12 ± 0.02 86.91 ± 0.02 90.3 1 ± 0.03 98.34 ± 0.02 95.88 ± 0.02 96.45 ± 0.02 99.02 ± 0.02

MobileNetV3 Koonce and Koonce
(64)

82.30 ± 0.02 79.45 ± 0.02 81.10 ± 0.02 84.75 ± 0.02 96.45 ± 0.02 93.50 ± 0.02 94. l l ± 0.02 97.60 ± 0.03

Ours 90.37 ± 0.02 87.89 ± 0.02 89.55 ± 0.03 92.78 ± 0.03 99.12 ± 0.02 97.45 ± 0.02 97.91 ± 0.02 99.45 ± 0.02
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dataset, the impact of component removal is also evident, with the

full model achieving 93.45% Accuracy compared to 89.85% without

the Modular Multimodal Architecture, demonstrating the

robustness of our method in complex scene understanding. For

the BloodMNIST dataset, the complete model achieves an Accuracy

of 90.37%, with a noticeable drop to 85.20% when the Modular

Multimodal Architecture is excluded. The F1 Score and AUC also

exhibit significant declines, emphasizing the role of hierarchical

feature learning and advanced optimization techniques. On the

BACH dataset, our model reaches an Accuracy of 99.12%, whereas

the ablated models perform worse, particularly in Recall and F1

Score, highlighting the importance of feature fusion mechanisms in

ensuring high classification accuracy.

The Modular Multimodal Architecture significantly contributes

to feature extraction and model stability. The removal of the

Tailored Feature Extraction component leads to a noticeable

decline in AUC, suggesting that it plays a crucial role in

enhancing decision boundary separability. The Adaptive

Treatment via Learning Policy appears to be essential for recall

improvements, as evidenced by the drop in Recall values when it is

removed. These findings validate the effectiveness of our model’s

design choices and the necessity of integrating all components for

optimal performance. Furthermore, the ablation results that our

method exhibits greater robustness to complex datasets such as

BloodMNIST and Leukemia. The stability in performance across

different datasets suggests that our approach generalizes well to

diverse image distributions, reinforcing its practical applicability in

real-world scenarios. Compared to traditional models, which often

suffer from performance degradation when applied to challenging

datasets, our method consistently maintains superior classification

and recognition capabilities.

To further evaluate the necessity and contribution of individual

components in our framework, we conducted additional
Frontiers in Oncology 15
comparative experiments using five model variants with gradually

reduced complexity. The results are summarized in Table 5. As

shown in the table, the baseline model (M1), which only utilizes

CNN and MLP without any advanced fusion or domain-specific

adaptation techniques, achieves an accuracy of 85.30% and an AUC

of 87.40%. This demonstrates that while deep learning alone is

helpful, it leaves considerable room for improvement. Introducing a

Vision Transformer (M2) improves the performance notably across

all metrics, indicating that ViT-based global context modeling

benefits medical imaging tasks. Adding GNNs (M3) and

excluding the reinforcement learning component still results in a

performance boost compared to M1 and M2, suggesting that

relational modeling of features plays a meaningful role. The full

model without domain adaptation and uncertainty quantification

(M4) maintains relatively high accuracy but shows reduced AUC

and F1 score compared to the complete version (M5), which

underscores the value of robustness-focused modules, particularly

in heterogeneous clinical environments. The complete model (M5)

outperforms all variants, achieving 91.62% accuracy and 93.12%

AUC, highlighting that each component contributes positively to

overall performance. These results clarify that while the architecture

is complex, each module addresses a specific challenge—image-text

fusion, feature interaction, generalizability, uncertainty, or

sequential decision-making. Therefore, the model design is

functionally motivated rather than arbitrarily over-engineered.

To enhance model interpretability and increase clinician trust

in the system’s predictions, we present a case-level multimodal

visualization in Figure 6. This figure illustrates how the model

processes and integrates heterogeneous data from a single patient,

including histological imaging, genomic mutations, and clinical

parameters. The histopathology slide is overlaid with an attention

heatmap, highlighting regions deemed significant by the model. In

the genomic module, key mutations such as TP53, DNMT3, and
TABLE 5 Comparison of model variants with different architecture components on the TCGA and leukemia datasets.

Model Accuracy (%) Recall (%) F1 score (%) AUC (%)

M1: CNN + MLP 85.30 81.75 83.12 87.40

M2: CNN + ViT + MLP 88.45 85.10 86.55 89.92

M3: ViT + GNN + MLP (no RL) 89.10 86.02 87.25 91.00

M4: Full model w/o Domain Adaptation 90.03 87.11 88.22 91.82

M5: Full model (Ours) 91.62 87.95 89.83 93.12
TABLE 4 Performance benchmarking of our approach against leading techniques on our method across BloodMNIST and BACH datasets.

Model
BloodMNIST dataset BACH dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

w/o Modular Multimodal Architecture 85.20 ± 0.03 82.75 ± 0.02 84.10 ± 0.02 87.30 ± 0.03 97.45 ± 0.02 94.80 ± 0.02 96.00 ± 0.02 98.05 ± 0.03

w/o Tailored Feature Extraction 86.78 ± 0.02 84.30 ± 0.02 85.45 ± 0.02 88.45 ± 0.02 97.89 ± 0.02 95.25 ± 0.02 96.22 ± 0.02 98.45 ± 0.02

w/o Adaptive Treatment via Learning
Policy

88.02 ± 0.03 85.95 ± 0.02 87.10 ± 0.02 89.75 ± 0.03 98.10 ± 0.03 96.02 ± 0.02 96.55 ± 0.02 98.72 ± 0.02

Ours 90.37 ± 0.02 87.89 ± 0.02 89.55 ± 0.03 92.78 ± 0.03 99.12 ± 0.02 97.45 ± 0.02 97.91 ± 0.02 99.45 ± 0.02
fr
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NPM1 are identified as influential features. For clinical variables,

the model assigns high attention weights to factors such as age,

white blood cell count (WBC), and lactate dehydrogenase (LDH).

Attention weights for each modality are visualized using a pie chart,

illustrating the model’s reliance on different input sources for this

specific case. The system outputs a high-risk prediction for AML

(confidence: 92%) and suggests a personalized chemotherapy

regimen based on reinforcement learning policies, with an

accompanying low uncertainty score. This visualization not only

provides clinicians with transparent insights into the model’s

decision-making but also facilitates adoption in real-world

clinical workflows.
5 Discussion

While the proposed multimodal deep learning framework

presents several notable strengths, it is important to acknowledge

its limitations and contextualize its practical applicability. One of

the main benefits of our approach lies in its ability to fuse

heterogeneous data sources—medical imaging, genomic profiles,

and clinical records—through an attention-based mechanism. This

comprehensive integration significantly enhances diagnostic

accuracy, particularly in complex disease settings such as

mitochondrial dysregulation in blood cancers. Furthermore, the

inclusion of adversarial domain adaptation and uncertainty

quantification modules ensures model robustness and

interpretability, making the framework suitable for real-world

deployment where data distribution shifts and missing modalities
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are common. Despite these advantages, the study also presents

some limitations. The reliance on publicly available datasets, while

enabling reproducibility, may limit generalizability to other

institutions with different imaging protocols and population

demographics. While the model incorporates mechanisms for

handling uncertainty and missing data, performance may still

degrade under extreme data sparsity or noise. The fusion strategy,

although effective, assumes that all modalities contribute valuable

information, which may not hold in cases with partial or low-

quality data. Moreover, the computational cost associated with

training transformer-based architectures and ensemble

components may hinder deployment in low-resource clinical

settings. While our model performs well across several

benchmarks, further external validation with large-scale,

prospective clinical datasets is essential before translation into

clinical practice.

Although our proposed framework demonstrates strong

performance across several benchmark datasets, we acknowledge

that no real-world or prospective clinical validation has yet been

performed. All current experiments are conducted on publicly

available retrospective datasets, which, while diverse and well

curated, may not fully capture the variability and operational

challenges of clinical practice. To support real-world deployment,

we envision integrating our model into a semi-automated diagnostic

pipeline within a hospital information system. In a simulated

diagnostic workflow, patient imaging data, genomic profiles, and

structured clinical data would be ingested by the system. Each data

stream would be preprocessed and passed through the respective

encoder modules in our model. Following attention-based fusion, the
FIGURE 6

Case-level multimodal visualization of the OncoNet diagnostic process for acute myeloid leukemia (AML). The figure illustrates how the model
integrates histologic imaging (with attention heatmaps), gene mutation profiles, and clinical parameters. Modality-specific attention weights are
shown, leading to a final AML risk prediction (92%) with low uncertainty and a personalized treatment suggestion.
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system would output diagnostic predictions with uncertainty

estimates. Cases with high uncertainty or borderline risk would be

flagged for human review by clinicians or pathologists. The

reinforcement learning module could further adapt treatment

suggestions based on historical outcomes in similar patients. To

facilitate clinical adoption, we plan to develop a web-based

prototype tool with explainable AI features, such as saliency maps

and feature attribution visualizations, to build trust with users.

Prospective validation in collaboration with clinical partners is a

critical next step, focusing on workflow integration, robustness to

missing modalities, and adaptability to domain-specific protocols.

We also recognize the importance of regulatory approval and model

interpretability, and plan to align future iterations of our system with

such translational requirements.
6 Conclusions and future work

This study explores the application of deep learning in

understanding mitochondrial dysregulation and its role in blood

cancer diagnosis. Recognizing that traditional diagnostic approaches

—such as histopathological examination and molecular profiling—

often face challenges related to subjectivity, scalability, and data

integration, we propose a novel deep learning framework. Our

model leverages a multimodal fusion strategy that integrates medical

imaging, genomic data, and clinical parameters. By incorporating

attention-based learning mechanisms, we enhance both predictive

accuracy and interpretability. Adversarial domain adaptation

techniques ensure robustness across heterogeneous datasets, while

uncertainty quantification enhances decision support for personalized

treatments. Experimental evaluations demonstrate that our approach

significantly improves classification performance, outperforming

conventional machine learning and rule-based diagnostic systems.

Ultimately, this work establishes a more precise and scalable

methodology for early detection and management of blood cancers.

Despite its promising results, the proposed framework has

certain limitations. While our multimodal fusion strategy

enhances predictive power, the integration of diverse data sources

remains a challenge, particularly when handling missing or

inconsistent clinical and genomic data. Further improvements in

data harmonization and preprocessing techniques could enhance

model reliability. Although adversarial domain adaptation

improves generalizability across different datasets, external

validation on larger and more diverse patient populations is

needed to ensure robustness in real-world applications. Future

research should explore the integration of self-supervised learning

techniques to address data scarcity issues and improve feature

representation. Incorporating explainability-focused deep learning

approaches could further enhance the interpretability of our

predictions, fostering greater trust and adoption in clinical settings.
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