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Objective: The present research aimed to evaluate the diagnostic performance

of a magnetic resonance imaging (MRI)-based radiomics model for predicting

lymph node staging in patients with stage T3 rectal cancer (RC).

Methods: This retrospective study included 225 patients with RCwho underwent

surgical resection without neoadjuvant therapy treatment. Radiomics features

were extracted from high-resolution T2-weighted imaging (T2WI) of primary

tumor. Feature selection was performed using the least absolute shrinkage and

selection operator (LASSO) algorithm. Five machine learning classifiers were

employed to construct radiomics signatures differentiating between N0/N1

(low nodal burden) and N2 (high nodal burden) stages prediction in the training

cohort. The predictive performance of each classifier was evaluated using

receiver operating characteristic curve analysis, with area under the curve

(AUC) comparisons conducted via DeLong’s test. Decision curve analysis (DCA)

and calibration curves were utilized to assess the clinical utility and calibration

performance of the developed models, respectively.

Results: A total of 1,746 radiomics features were extracted from the imaging data,

of which 16 features were selected to construct a radiomics signature for lymph

node staging in RC. The logistic regression classifier demonstrated the best

predictive performance, achieving an AUC of 0.900 [95% confidence interval (CI),

0.848–0.952] in the training cohort. The model’s robustness was further

validated in the test cohort, with an AUC of 0.876 (95% CI, 0.765–0.986). DCA

confirmed the clinical utility of the model.

Conclusions: The radiomics model based on high-resolution T2WI provided an

effective and noninvasive approach for preoperatively differentiating between

N0/1 and N2 stages in stage T3 RC.
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1 Introduction

Rectal cancer (RC) is one of the most prevalent malignant

tumors of the digestive tract. It ranks as the third leading cause of

cancer-related mortality worldwide (1). A substantial proportion of

patients present with locally advanced RC (LARC) at initial

diagnosis (2). According to the National Comprehensive Cancer

Network guidelines (3), the standard treatment paradigm for LARC

includes neoadjuvant chemoradiotherapy followed by total

mesorectal excision (TME) after a 5–12-week interval, with

optional postoperative adjuvant chemotherapy. However, a recent

multicenter randomized trial demonstrated that a neoadjuvant

chemotherapy-only regimen in patients with LARC at a relatively

low risk of recurrence (T2N1/2, T3N0/N1) is not inferior to

preoperative chemoradiotherapy in terms of disease-free survival

and local recurrence rates (4). This finding underscores the clinical

imperative of accurately identifying T3N0/N1 RC preoperatively, as

it enables tailored, risk-adapted treatment strategies and potentially

mitigates unnecessary treatment-related toxicity.

Magnetic resonance imaging (MRI) serves as the preferred

method for RC staging, achieving exceptional T-stage

classification accuracy of 88–99% through high-resolution soft

tissue characterization (5). Nevertheless, its diagnostic

performance in classifying lymph node metastasis (LNM) remains

suboptimal (accuracy: <80%) and is constrained by its reliance on

size-morphology criteria with inherent limitations (6). Pathological

analyses revealed that 28% of metastatic nodes measure ≤3 mm in

short-axis diameter (7), fundamentally challenging conventional

size thresholds. While functional MRI techniques, particularly

diffusion-weighted imaging (DWI), show potential for improved

nodal characterization through cellularity assessment via apparent

diffusion coefficient (ADC) mapping (8), their diagnostic

performance remains moderate (accuracy: 66%, sensitivity: 53%,

and specificity: 82%), Significant ADC value overlap between

reactive and malignant nodes necessitates complementary

diagnostic strategies (9).

Radiomics enables the extraction of high-dimensional

quantitative features from medical images. It has emerged as a

powerful tool for overcoming conventional imaging limitations (10)

and may serve as a valuable adjunct in assessing LNM in RC (11).

However, most existing studies have primarily focused on presence

vs. absence of LNM (12), with limited exploration of predictive

models in terms of specific lymph node staging (e.g., N0/N1 vs. N2).

The present study aimed to develop and validate a radiomics model

based on high-resolution T2-weighted MRI to differentiate between

N0/N1 and N2 stages in stage T3 RC patients using multiple

machine learning algorithms. It also sought to establish the

clinical utility of radiomics-based nodal staging as a noninvasive

diagnostic tool by systematically evaluating the predictive

performance of various models. A more precise lymph node

staging framework may enable risk-adapted treatment strategies,

such as chemotherapy-based regimens for low-risk patients (e.g.,

T3N0/N1), reduce unnecessary radiotherapy exposure, minimize

the risk of overtreatment, and ultimately improve patient outcomes

and quality of life.
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2 Materials and methods

2.1 Patients

The present study initially enrolled 287 patients who underwent

radical RC resection between September 2019 and March 2024. A

retrospective analysis of their preoperative clinical and imaging data

was carried out. The inclusion criteria were as follows: (1)

postoperative pathology confirmed stage T3 RC and (2)

completion of pelvic MRI within 2 weeks preceding surgery with

confirmed negative circumferential resection margin. Exclusion

criteria comprised: (1) incomplete MRI sequences or suboptimal

image quality, (2) concurrent presence of other malignancies, (3)

neoadjuvant chemoradiotherapy or other preoperative treatment

regimens, and (4) incomplete clinicopathologic data. A total of 225

eligible patients were included in the final analysis after completing

the screening process. The study population was randomly stratified

into training (n = 157) and testing (n = 68) cohorts at a 7:3 ratio,

with the detailed screening process illustrated in Figure 1.

The retrospective analysis was approved by the ethics

committee of the Second Affiliated Hospital of Chongqing

Medical University(Approval No.: 2024-79). The requirement for

informed consent was waived.
2.2 Clinicopathological characteristics

Patient clinical characteristics were extracted from electronic

medical records and comprised demographic data, such as age and

sex. Tumor marker levels, including those of carcinoembryonic

antigen (CEA) and carbohydrate antigen 19-9 (CA19-9), were also

recorded. The normal reference ranges were defined as 0–5 ng/mL

for CEA and 0–37 U/mL for CA19-9 (13).

All patients in the study underwent TME. Histopathological

evaluation of stage T3 tissue specimens was performed by a

pathologist with 15 years of experience. Tumor staging was

conducted according to the Tumor-Node-Metastasis classification

system outlined in the eighth edition of the American Joint

Committee on Cancer Staging Manual (14). Specifically, LNM

was categorized as follows: N0 indicated no regional LNM, N1

denoted metastasis in 1–3 regional lymph nodes, and N2

represented metastasis in four or more regional lymph nodes.

Patients were stratified into the following two groups based on

pathological criteria: N0–1 (low nodal burden) and N2 (high nodal

burden) stages, reflecting distinct histological grades.
2.3 MRI data acquisition

All patients underwent rectal MRI examinations using a 3.0-T

scanner (Magnetom Prisma, Siemens Healthineers, Erlangen,

Germany) equipped with an 18-channel surface phased array coil.

The patients fasted for 4 h prior to the examination and performed

bowel preparation with a glycerol enema (20 mL). The standard

rectal MRI protocols, including sagittal T2-weighted imaging
frontiersin.org
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(T2WI), oblique axial T2WI, coronal T2WI, and DWI with two b-

factor (0 and 1,000 s/mm2) sequences, were conducted. The oblique

axial T2WI sequence was determined in the sagittal position, which

was perpendicular to the long axis of the rectal tumor according to

the following parameters: field of view of 250 mm×250 mm,

repetition time of 1,700 ms, echo time of 92 ms, slice thickness of

1.2 mm, flip angle of 90°, and acquisition matrix of 320×320.
2.4 Image evaluation

To explore the radiologic markers, two radiologists with 15 and 20

years of experience in abdominal imaging diagnosis evaluated the

circumferential resection margin (CRM), extramural vascular

invasion (EMVI), and distance from the anal verge. Specifically,

CRM was considered to be the distance between the tumor, lymph

nodes, or other lesions and the mesorectal fascia ≤1 mm (15). EMVI

status was assessed using the 0–4-point grading system proposed by

Jhaveri et al. (16). Patients with scores of 0–2 were classified as EMVI-

negative, while others were EMVI-positive. Tumor location was

measured on the approximate luminal center of the rectum on the

sagittal T2WI sequence and categorized as low (0–5 cm), middle (5.1–

10 cm), or high (10.1–15 cm) according to the distance from the anal

verge to the lowest edge of the tumor (17).
2.5 Tumor segmentation

The MRI datasets were anonymized and transferred from the

Picture Archiving and Communication System to a dedicated
Frontiers in Oncology 03
offline workstation for segmentation and subsequent analysis.

Regions of interest (ROIs) were manually delineated using ITK-

SNAP software (version 4.1; http://www.itksnap.org). A radiologist

with 15 years of experience in abdominal imaging diagnosis

outlined an ROI along the periphery of the primary rectal tumor

on sequential images in oblique axial high-resolution T2WI,

excluding obvious necrosis, gas, and lumen content areas. The

corresponding volumetric regions of interest (VOIs) were

subsequently automatically generated. The segmented VOIs were

then reviewed and modified by another radiologist with 20 years of

experience in abdominal imaging diagnosis in order to ensure

accuracy. The radiologists were unaware of both the clinical

outcomes and histopathological results. Any discrepancies in their

interpretations were resolved through collaborative discussion.
2.6 Radiomics feature extraction

PyRadiomics software (https://github.com/Radiomics/

pyradiomics) was utilized to extract a total of 1,746 radiomics

features fromMRI results. The radiomics features were divided into

seven groups as follows: shape, first-order, gray-level co-occurrence

matrix (GLCM), gray-level dependence matrix (GLDM), gray-level

run length matrix (GLRLM), gray-level size zone matrix (GLSZM),

and neighborhood gray-tone difference matrix (NGTDM). These

quantitative radiomics features were extracted from the original,

Laplacian of Gaussian (LoG), and wavelet images, which were

obtained from eight decompositions after wavelet filtering. High

(H)- or low (L)-pass filter application in three dimensions resulted
FIGURE 1

Flow chart of inclusion and exclusion criteria.
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in eight combinations as follows: LHL, HHL, HLL, HHH, HLH,

LHH, LLH, and LLL. LoG images were generated by a LoG filter

with a sequence of sigma values. Low and high sigma values

emphasized fine and coarse textures in LoG images, respectively.

Sigma values of 2, 3, 4, and 5 were utilized in the study.
2.7 Feature selection and model
construction

A three-step procedure was performed for dimensionality

reduction of radiomics features. First, radiomics features with a

variance of >1.0 were selected. Second, analysis of variance was

carried out in order to select the statistical influence feature. The

radiomics features were available after applying the least absolute

shrinkage and selection operation (LASSO) regression method,

which was used to select the N-stage classification-related features

with non-zero coefficients from the training cohort. The radiomics

score (rad-score) was computed for each patient after feature

selection utilizing the LASSO regression with a combination of

selected features weighted by their respective coefficients. Five

machine learning models [logistic regression (LR), support vector

machine, (SVM), Bernoulli Naïve Bayes, ridge, and stochastic

gradient descent (SGD)] were developed to fully exploit the

potential of the remaining radiomics features. The grid search

and five-fold cross-validation algorithm were used in the training

dataset to select the optimal model hyperparameters. The model

with the best cross-validation performance was used for further

analysis. Both feature selection and radiomics signature

development were performed in the training cohort. The

performance of the obtained radiomics signature was evaluated
Frontiers in Oncology 04
using an inter-validation cohort, which was not employed for model

development. Stratified cross-validation was implemented,

employing a stratified sampling approach to preserve consistent

class distribution across all data subsets.

The processes of tumor segmentation, feature extraction,

feature selection, and model validation are shown in Figure 2.
2.8 Statistical analysis

R software (version 3.5.3, http://www.R-project.org) and

Python software (version 3.7.12, http://www.Python.org); were

used to perform statistical analyses and model construction.

Categorical variables were expressed as frequencies (percentages),

and continuous variables were presented as mean ± standard

deviation (SD) for normalization distribution and medians (25%

quantile, 75% quantile) for other variables. Categorical variables

were analyzed using a c2 or Fisher’s exact test. The Kolmogorov-

Smirnov method was used to test the normality of all measurement

data. An independent sample t-test or Mann-Whitney U test was

used to measure statistical differences. Receiver operating

characteristic (ROC) curve, sensitivity, and specificity analyses

were performed to compare the performance of five machine

learning models. To evaluate model performance under class

imbalance, the F1-score was employed. The Matthews correlation

coefficient (MCC), calculated from the four categories of the

confusion matrix (true positives, false positives, true negatives,

false negatives), was used for binary outcome assessment. The

DeLong’s test was used to compare the models’ discrimination

abilities. Calibration analysis and the Hosmer-Lemeshow test were

utilized to examine the agreement between the observed N stage
FIGURE 2

The framework for the radiomics workflow.
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and prediction probabilities. Decision curve analysis (DCA) was

performed to determine the net benefits in clinical application of the

constructed models. A p-value of < 0.05 was considered

statistically significant.
3 Results

3.1 Clinical baseline characteristics

A total of 225 patients with stage T3 RC were included in the

study. The cohort comprised 90 female and 135 male patients with

an age range of 24–85 years. Among them, 181 cases were in N0/N1

stage, and 44 cases were in N2 stage. No statistically significant

difference was found between the two groups in terms of clinical

characteristics. Detailed patient characteristics and statistical results

are shown in Table 1.
3.2 Models construction and validation

3.2.1 Model construction
A total of 1,746 radiomics features were successfully extracted

from T2W images for each patient. LASSO regression analysis was

utilized to select radiomics features with coefficients of >0, resulting
Frontiers in Oncology 05
in a final retention of 16 features, as shown in Figure 3. The detailed

feature names and their corresponding rad-score values are listed in

Supplementary Figure 1,including 15 texture (two GLRLM, two

GLCM, three NGTDM, three GLDM, and six GLSZM) and one

first-order features. The features were significantly different

between the N0/1 and N2 groups (all p < 0.05), except for feature

F9 (wavelet-HHH_firstorder_Mean) (Supplementary Figure 2).

Five different radiomics signature models for predicting lymph

node staging were then constructed using the above selected

features based on LR, SVM, Bernoulli Naïve Bayes, ridge, and

SGD classifiers in the training dataset.

3.2.2 Predictive performance and validation of
the model

Table 2 summarizes the five models’ sensitivity, specificity, F1-

Score, MCC, PPV, NPV, accuracy, and AUC data, with the

corresponding ROC curves depicted in Figure 4. Among the five

machine learning classifiers, the LR model performed the best in

both the training and test sets, with respective AUC values of 0.900

[95% confidence interval (CI), 0.848–0.952] and 0.876 (95% CI,

0.765–0.986). The corresponding accuracy values across the two

cohorts were 0.847 (95% CI, 0.843–0.852) and 0.882 (95% CI,

0.873–0.892).

Differences in the AUCs among the five models were compared

using the DeLong’s test. The LR model significantly outperformed
TABLE 1 Patients’ clinical characteristics.

Parameter
N0/N1(n = 181) N2(n = 44) Statistical

values
P-Value

Training cohort Test cohort Training cohort Test cohort

Age
64.00

(58.00, 71.05)
65.00

(56.20, 71.60)
59.00

(53.00, 71.60)
68.00

(65.00, 73.60)
-0.216 0.829

Sex

Female 49(38.89 %) 29(52.73 %) 10(32.26 %) 2(15.38 %) 3.692 0.055

Male 77(61.11 %) 26(47.27 %) 21(67.74 %) 11(84.62 %)

CEA(ng/mL)

>5 39(30.95 %) 15(27.27 %) 10(32.26 %) 2(15.38 %) 0.112 0.738

≤5 87(69.05 %) 40(72.73 %) 21(67.74 %) 11(84.62 %)

CA199 (U/mL)

>37 15(11.90 %) 6(10.91 %) 6(19.35 %) 0(0.00 %) 0.139 0.710

≤37 111(88.10 %) 49(89.09 %) 25(80.65 %) 13(100.00 %)

EMVI

Positive 39(30.95 %) 5(9.09 %) 10(32.26 %) 6(46.15 %) 2.630 0.105

Negative 87(69.05 %) 50(90.91 %) 21(67.74 %) 7(53.85 %)

Tumor location

Upper 36(28.57 %) 21(38.18 %) 10(32.26 %) 1(7.69 %) 1.153 0.562

Middle 54(42.86 %) 21(38.18 %) 13(41.94 %) 9(69.23 %)

Lower 36(28.57 %) 13(23.64 %) 8(25.81 %) 3(23.08 %)
CEA, carcinoembryonic antigen; CA-199, carbohydrate antigen 19-9; EMVI, extramural venous invasion.
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the Bernoulli Naïve Bayes and SGDmodels in the training cohort (p

< 0.05). There was a significant difference in AUC values between

the LR and Bernoulli Naïve Bayes models in the test cohort (p <

0.05). Further details are provided in Supplementary Table 1.

The rad-scores in the training cohort were significantly higher

in the N2 group compared to those in the N0/1 group, which was

consistently validated in the test cohort, as shown in Figure 5. The

Radscores derived from five classifier for each patient in the training

and test cohort datasets are depicted in Supplementary Figure 3. LR

and SVM demonstrated robust discriminative performance in both

the training and test cohorts.
Frontiers in Oncology 06
3.2.3 Apparent performance and clinical use of
the radiomics signature model

The calibration curve of the radiomics models for the predicted

lymph node staging in stage T3 RC showed good agreement

between the observed outcomes and predicted probabilities in all

datasets (Supplementary Figure 4). The p-values obtained from the

Hosmer-Lemeshow test were all >0.05 and not statistically

significant. The DCA of the radiomics signature models is

presented in Figure 6. The DCA showed satisfactory positive

benefits of the nomogram on most of the threshold probabilities,

indicating a favorable potential clinical effect of the models.
FIGURE 3

(A) Five-fold cross-validation results for alpha selection. The optimal alpha is marked by the dashed line. (B) Coefficient values corresponding to the
optimal a value and selected features with non-zero coefficients. (C) MSE deviation on each fold using coordinate descent in five-fold cross-
validation.
TABLE 2 Radiomics signature model performance.

Model Type AUC(95%CI) Accuracy Sensitivity Specificity F1-Score MCC PPV NPV

Logistic

Training set 0.900(0.845, 0.952) 0.847 0.742 0.873 0.657 0.567 0.590 0.932

Test set 0.876(0.765, 0.986) 0.882 0.692 0.927 0.692 0.620 0.692 0.927

SVM

Training set 0.875(0.812, 0.939) 0.777 0.806 0.770 0.588 0.483 0.463 0.942

Test set 0.859(0.737, 0.980) 0.882 0.692 0.927 0.692 0.620 0.692 0.927

Bernoulli Naïve Bayes

Training set 0.845(0.771, 0.918) 0.701 0.871 0.659 0.535 0.424 0.386 0.954

Test set 0.780(0.640, 0.920) 0.603 0.846 0.545 0.449 0.309 0.306 0.937

Ridge

Training set 0.887(0.825, 0.949) 0.777 0.839 0.762 0.598 0.499 0.464 0.950

Test set 0.835(0.696, 0.974) 0.853 0.692 0.891 0.643 0.553 0.600 0.924

SGD

Training set 0.820(0.747, 0.893) 0.656 0.903 0.595 0.509 0.397 0.354 0.962

Test set 0.764(0.618, 0.909) 0.809 0.538 0.873 0.519 0.400 0.500 0.900
fr
F1-Score, harmonic mean of precision and recall; MCC, Matthews correlation coefficient; PPV, positive predictive value; NPV, negative predictive value.
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FIGURE 4

ROC curves based on five machine learning models in the training and testing cohorts.
FIGURE 5

(A, B) Boxplots of corresponding radiomics scores in the training and testing cohorts. 0 (blue) represents N0/1 group, 1 (orange) represents N2
group. Asterisk (*) indicates level of statistical significance between categories, with more asterisks representing a higher level of significance. ("***p
< 0.001, **p < 0.01, *p < 0.05").
Frontiers in Oncology frontiersin.org07
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3.2.4 Diagnostic performance of initial imaging
interpretations

Among the 225 patients evaluated, initial imaging

interpretations classified 157 as N0/N1 and 68 as N2. This

approach achieved a sensitivity of 54.55%, specificity of 75.69%,

and an overall accuracy of 71.56%. The corresponding AUC was

0.651, indicating modest discriminative performance.
4 Discussion

The lymph node status in RC is a critical factor in determining

the necessity of adjuvant therapy and surgical resection (18).

However, Initial MRI radiology report for lymph node (LN)

staging in rectal cancer relies on subjective size-morphology

criteria, often showing poor interobserver agreement (k = 0.416)

and limited accuracy (AUC: 0.60–0.62), remains challenging (19).

In contrast, Dong et al. (20)demonstrated that a radiomics model

achieved higher diagnostic precision (PPV: 75.9%) by quantifying

tumor heterogeneity, overcoming the limitations of traditional

MRI. Building upon the recently published novel perspectives and

conclusions (4), an exploratory investigation was conducted in the

present study. Five radiomics models were developed based on

high-resolution T2WI features using five different machine learning

algorithms in order to noninvasively differentiate between N0/N1

and N2 stages in stage T3 RC. The performance and clinical utility

of these models were systematically compared. The results showed

that the LR model exhibited the best performance in predicting

lymph node staging in stage T3 RC. The clinical applicability of this

model was further validated via calibration curves and DCA,

indicating positive clinical benefits at most threshold probabilities.

Radiomics features can reveal subtle changes in rectal tumor

lesions that are difficult to discern with the naked eye (21, 22). In the

present study, 1,746 radiomics features were extracted from oblique
Frontiers in Oncology 08
axial T2W images. LASSO regression was subsequently utilized to

select 16 key features for in-depth analysis. These included one first-

order and 15 texture features, with texture features being the most

abundant, accounting for 93.75% of the total. This result is

consistent with those described by Li and Yin et al. (23), who

demonstrated that T2WI-based texture features have high accuracy

in predicting LNM in RC (AUC of 0.805), further validating the

importance of texture features in tumor assessment.

GLSZM features were predominant in the present study.

GLSZM quantifies the size distribution of continuous image

regions, finely characterizing the distribution patterns of

homogeneous regions of different sizes within tumors. Smaller

regions may correspond to densely packed tumor cells or micro-

nodules, while larger continuous regions may reflect necrotic areas

or fibrotic changes. (24). This spatial heterogeneity is closely related

to tumor proliferation activity and invasiveness. Studies have shown

that the short-zone emphasis in GLSZM features is significantly

negatively correlated with tumor microvascular density, while large-

zone emphasis is positively correlated with stromal fibrosis (25).

This ability to quantify spatial heterogeneity in tumor

microstructures makes GLSZM features an important indicator

for assessing tumor invasiveness and metastatic potential.

Therefore, texture features can capture the microscopic

heterogeneity within tumors, reflecting the spatial arrangement

and gray-level distribution patterns of tumor cells (26–28). These

features showed significant differences in distinguishing between

N0/N1 and N2 stages (p < 0.05) in the present study, indicating that

LNM is closely related to microscopic structural changes within the

tumor. Additionally, the predictive model based on T2WI

radiomics features was constructed using wavelet features (8/16).

Wavelet transform is a multi-scale analysis method with perfect

reconstruction capability, ensuring no information loss or

redundancy during signal decomposition. It can decompose

images into high-frequency (heterogeneity) and low-frequency
FIGURE 6

DCA for five models in the training and testing cohorts. (A) DCA of five models in the training cohort. (B) DCA of five models in the testing cohort.
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(homogeneity) components, facilitating the extraction of structural

information and details from the original images (29). Previous

studies (30) have also reported the effectiveness of wavelet features

in predicting lymph node status in T2WI. Furthermore, He et al.

(31) found that wavelet features in T2WI performed well in RC

tumor grading, further demonstrating that they can represent the

biological behavior and heterogeneity of tumors.

A growing body of evidence underscores the value of clinical

parameters as complementary predictors in radiomics-based

models, with integrated frameworks often demonstrating superior

discrimination compared with radiomics alone (12). For example,

(32) reported that a combined clinical–radiomic model improved

sensitivity (82.6% vs. 78.3%) and specificity (88.9% vs. 57.9%)

relative to a purely radiomic approach, while also mitigating the

subjectivity of conventional MRI interpretation through visualized

risk maps. Such clinical metrics may encode systemic or tumor-

related biological processes that radiomics, which predominantly

captures spatial and textural heterogeneity, cannot fully represent.

In our cohort, however, none of the routinely collected clinical

variables demonstrated statistically significant intergroup

differences across outcome categories (all P > 0.05). This absence

of discriminative signal suggests that, in this specific population,

these variables may have limited incremental value for the

prediction task. From a modeling perspective, the inclusion of

non-informative covariates in high-dimensional feature spaces

risks diluting true signal, inflating model variance, and impairing

generalizability—particularly in datasets of modest size. Given these

considerations, and in pursuit of parsimony, we elected to exclude

clinical parameters from the final model. Several factors may

underlie this discrepancy with prior studies. First, differences in

patient demographics, disease stage distribution, and treatment

patterns between our cohort and other trials could attenuate the

predictive contribution of clinical variables. Second, sample size

constraints may have limited statistical power to detect subtle

effects, especially for variables with low intergroup variability.

Third, the endpoints examined—derived from imaging-based

nodal staging—may be more tightly coupled to local morphologic

features than to systemic clinical markers. These hypotheses

warrant systematic evaluation in larger, multi-institutional

datasets, ideally with harmonized variable definitions and broader

biological characterization, to clarify the true translational potential

of integrating clinical and radiomic predictors.

The widespread application of machine learning algorithms in

the field of radiomics has significantly improved diagnostic

performance (33). Selecting the appropriate classifier is crucial for

building high-performance predictive models. The present study

systematically evaluated five supervised learning models commonly

used for binary classification tasks, including LR, SVM, Bernoulli

Naive Bayes, ridge regression, and SGD. The results showed that the

LR model performed the best, with AUCs of 0.900 and 0.876 in the

training and testing sets, respectively. Additionally, the model

demonstrated excellent accuracy (training set: 0.847, testing set:

0.882) and specificity (training set: 0.873, testing set: 0.927). The
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superior performance of the LR model could be attributed to its

ability to effectively handle linearly separable data, low complexity

after feature selection, and resistance to overfitting. Moreover, the

LR model has strong interpretability, allowing for the quantification

of each feature’s contribution to the prediction results (34), which

provides important references for clinical decision-making.

Similarly, Wei et al. (35) developed and validated a clinical

radiomics model by combining T2W and amide proton transfer-

weighted MRI radiomics features, achieving efficient LNM

prediction in rectal adenocarcinoma using an LR classifier (AUCs

of 0.983, 0.864, and 0.851 in the training, validation, and testing sets,

respectively). Cui et al. (36) used an LR model to predict a complete

pathological response in LARC and achieved an AUC of 0.90.

However, the LR model is not suitable for all scenarios, as classifier

performance highly depends on the distribution characteristics of

the training and testing sets. Qu et al. (37) found that the SVM

classifier performed best when constructing a predictive model

using T2W images, with AUCs of 0.892 and 0.71 in the training

and validation sets, respectively. This is because SVM can handle

nonlinear relationships through kernel functions and exhibits

strong classification capabilities (38).

This study has several limitations. First, this study focused on

evaluating MRI-based radiomics for lymph node staging in patients

undergoing upfront surgical resection for stage T3 rectal

adenocarcinoma. However, select patients with low-risk, distally

located tumors (e.g., T3N0/N1) achieving a clinical complete response

after neoadjuvant therapy may be eligible for a watch-and-wait (W&W)

organ-preserving strategy. Excluding such cases may limit the model’s

applicability in settings where nonoperative management is considered.

Second, the model was developed solely on T2-weighted MRI data,

potentially limiting sensitivity for detecting small or morphologically

subtle lesions. Future work should explore the integration of functional

imaging sequences—such as diffusion-weighted imaging or contrast-

enhanced MRI-within a multiparametric framework to enhance lesion

conspicuity and improve diagnostic accuracy. Third, manual ROI

delineation inevitably introduces interobserver and intraobserver

variability, which may bias feature extraction and subsequent model

performance. The adoption of automated or semi-automated

segmentation algorithms could reduce subjectivity, standardize feature

generation, and improve reproducibility across centers. Finally, the

modest sample size and absence of external validation restrict the

model’s generalizability. Rigorous validation using large, multicenter

datasets with diverse patient populations is essential to confirm

robustness, refine calibration, and establish the clinical utility of the

proposed model.
5 Conclusion

The present study confirmed the effectiveness of a machine

learning-based high-resolution T2WI radiomics model in

predicting lymph node staging in stage T3 RC. Radiomics is a

noninvasive assessment method that can provide a valuable
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alternative for lymph node staging, supporting personalized

treatment decisions. It showed broad application prospects in

optimizing treatment pathways, avoiding overtreatment, and

improving the prognosis of patients with LARC. Future research

may further advance the clinical application of this technology via

multimodal imaging and large-scale validation.
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