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Objective: The present research aimed to evaluate the diagnostic performance
of a magnetic resonance imaging (MRI)-based radiomics model for predicting
lymph node staging in patients with stage T3 rectal cancer (RC).

Methods: This retrospective study included 225 patients with RC who underwent
surgical resection without neoadjuvant therapy treatment. Radiomics features
were extracted from high-resolution T2-weighted imaging (T2WI) of primary
tumor. Feature selection was performed using the least absolute shrinkage and
selection operator (LASSO) algorithm. Five machine learning classifiers were
employed to construct radiomics signatures differentiating between NO/N1
(low nodal burden) and N2 (high nodal burden) stages prediction in the training
cohort. The predictive performance of each classifier was evaluated using
receiver operating characteristic curve analysis, with area under the curve
(AUC) comparisons conducted via DelLong’s test. Decision curve analysis (DCA)
and calibration curves were utilized to assess the clinical utility and calibration
performance of the developed models, respectively.

Results: A total of 1,746 radiomics features were extracted from the imaging data,
of which 16 features were selected to construct a radiomics signature for lymph
node staging in RC. The logistic regression classifier demonstrated the best
predictive performance, achieving an AUC of 0.900 [95% confidence interval (Cl),
0.848-0.952] in the training cohort. The model's robustness was further
validated in the test cohort, with an AUC of 0.876 (95% ClI, 0.765-0.986). DCA
confirmed the clinical utility of the model.

Conclusions: The radiomics model based on high-resolution T2WI provided an
effective and noninvasive approach for preoperatively differentiating between
NO/1 and N2 stages in stage T3 RC.
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1 Introduction

Rectal cancer (RC) is one of the most prevalent malignant
tumors of the digestive tract. It ranks as the third leading cause of
cancer-related mortality worldwide (1). A substantial proportion of
patients present with locally advanced RC (LARC) at initial
diagnosis (2). According to the National Comprehensive Cancer
Network guidelines (3), the standard treatment paradigm for LARC
includes neoadjuvant chemoradiotherapy followed by total
mesorectal excision (TME) after a 5-12-week interval, with
optional postoperative adjuvant chemotherapy. However, a recent
multicenter randomized trial demonstrated that a neoadjuvant
chemotherapy-only regimen in patients with LARC at a relatively
low risk of recurrence (T2N1/2, T3NO/N1) is not inferior to
preoperative chemoradiotherapy in terms of disease-free survival
and local recurrence rates (4). This finding underscores the clinical
imperative of accurately identifying T3NO/N1 RC preoperatively, as
it enables tailored, risk-adapted treatment strategies and potentially
mitigates unnecessary treatment-related toxicity.

Magnetic resonance imaging (MRI) serves as the preferred
method for RC staging, achieving exceptional T-stage
classification accuracy of 88-99% through high-resolution soft
tissue characterization (5). Nevertheless, its diagnostic
performance in classifying lymph node metastasis (LNM) remains
suboptimal (accuracy: <80%) and is constrained by its reliance on
size-morphology criteria with inherent limitations (6). Pathological
analyses revealed that 28% of metastatic nodes measure <3 mm in
short-axis diameter (7), fundamentally challenging conventional
size thresholds. While functional MRI techniques, particularly
diftusion-weighted imaging (DWI), show potential for improved
nodal characterization through cellularity assessment via apparent
diffusion coefficient (ADC) mapping (8), their diagnostic
performance remains moderate (accuracy: 66%, sensitivity: 53%,
and specificity: 82%), Significant ADC value overlap between
reactive and malignant nodes necessitates complementary
diagnostic strategies (9).

Radiomics enables the extraction of high-dimensional
quantitative features from medical images. It has emerged as a
powerful tool for overcoming conventional imaging limitations (10)
and may serve as a valuable adjunct in assessing LNM in RC (11).
However, most existing studies have primarily focused on presence
vs. absence of LNM (12), with limited exploration of predictive
models in terms of specific lymph node staging (e.g., NO/N1 vs. N2).
The present study aimed to develop and validate a radiomics model
based on high-resolution T2-weighted MRI to differentiate between
NO/N1 and N2 stages in stage T3 RC patients using multiple
machine learning algorithms. It also sought to establish the
clinical utility of radiomics-based nodal staging as a noninvasive
diagnostic tool by systematically evaluating the predictive
performance of various models. A more precise lymph node
staging framework may enable risk-adapted treatment strategies,
such as chemotherapy-based regimens for low-risk patients (e.g.,
T3NO/N1), reduce unnecessary radiotherapy exposure, minimize
the risk of overtreatment, and ultimately improve patient outcomes
and quality of life.
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2 Materials and methods

2.1 Patients

The present study initially enrolled 287 patients who underwent
radical RC resection between September 2019 and March 2024. A
retrospective analysis of their preoperative clinical and imaging data
was carried out. The inclusion criteria were as follows: (1)
postoperative pathology confirmed stage T3 RC and (2)
completion of pelvic MRI within 2 weeks preceding surgery with
confirmed negative circumferential resection margin. Exclusion
criteria comprised: (1) incomplete MRI sequences or suboptimal
image quality, (2) concurrent presence of other malignancies, (3)
neoadjuvant chemoradiotherapy or other preoperative treatment
regimens, and (4) incomplete clinicopathologic data. A total of 225
eligible patients were included in the final analysis after completing
the screening process. The study population was randomly stratified
into training (n = 157) and testing (n = 68) cohorts at a 7:3 ratio,
with the detailed screening process illustrated in Figure 1.

The retrospective analysis was approved by the ethics
committee of the Second Affiliated Hospital of Chongqing
Medical University(Approval No.: 2024-79). The requirement for
informed consent was waived.

2.2 Clinicopathological characteristics

Patient clinical characteristics were extracted from electronic
medical records and comprised demographic data, such as age and
sex. Tumor marker levels, including those of carcinoembryonic
antigen (CEA) and carbohydrate antigen 19-9 (CA19-9), were also
recorded. The normal reference ranges were defined as 0-5 ng/mL
for CEA and 0-37 U/mL for CA19-9 (13).

All patients in the study underwent TME. Histopathological
evaluation of stage T3 tissue specimens was performed by a
pathologist with 15 years of experience. Tumor staging was
conducted according to the Tumor-Node-Metastasis classification
system outlined in the eighth edition of the American Joint
Committee on Cancer Staging Manual (14). Specifically, LNM
was categorized as follows: NO indicated no regional LNM, N1
denoted metastasis in 1-3 regional lymph nodes, and N2
represented metastasis in four or more regional lymph nodes.
Patients were stratified into the following two groups based on
pathological criteria: NO-1 (low nodal burden) and N2 (high nodal
burden) stages, reflecting distinct histological grades.

2.3 MRI data acquisition

All patients underwent rectal MRI examinations using a 3.0-T
scanner (Magnetom Prisma, Siemens Healthineers, Erlangen,
Germany) equipped with an 18-channel surface phased array coil.
The patients fasted for 4 h prior to the examination and performed
bowel preparation with a glycerol enema (20 mL). The standard
rectal MRI protocols, including sagittal T2-weighted imaging
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FIGURE 1
Flow chart of inclusion and exclusion criteria.

(T2WTI), oblique axial T2WI, coronal T2WI, and DWI with two b-
factor (0 and 1,000 s/mmz) sequences, were conducted. The oblique
axial T2WI sequence was determined in the sagittal position, which
was perpendicular to the long axis of the rectal tumor according to
the following parameters: field of view of 250 mmx250 mm,
repetition time of 1,700 ms, echo time of 92 ms, slice thickness of
1.2 mm, flip angle of 90°, and acquisition matrix of 320x320.

2.4 Image evaluation

To explore the radiologic markers, two radiologists with 15 and 20
years of experience in abdominal imaging diagnosis evaluated the
circumferential resection margin (CRM), extramural vascular
invasion (EMVI), and distance from the anal verge. Specifically,
CRM was considered to be the distance between the tumor, lymph
nodes, or other lesions and the mesorectal fascia <1 mm (15). EMVI
status was assessed using the 0-4-point grading system proposed by
Jhaveri et al. (16). Patients with scores of 0-2 were classified as EMVI-
negative, while others were EMVI-positive. Tumor location was
measured on the approximate luminal center of the rectum on the
sagittal T2ZWT sequence and categorized as low (0-5 cm), middle (5.1-
10 cm), or high (10.1-15 cm) according to the distance from the anal
verge to the lowest edge of the tumor (17).

2.5 Tumor segmentation

The MRI datasets were anonymized and transferred from the
Picture Archiving and Communication System to a dedicated
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offline workstation for segmentation and subsequent analysis.
Regions of interest (ROIs) were manually delineated using ITK-
SNAP software (version 4.1; http://www.itksnap.org). A radiologist
with 15 years of experience in abdominal imaging diagnosis
outlined an ROI along the periphery of the primary rectal tumor
on sequential images in oblique axial high-resolution T2WI,
excluding obvious necrosis, gas, and lumen content areas. The
corresponding volumetric regions of interest (VOIs) were
subsequently automatically generated. The segmented VOIs were
then reviewed and modified by another radiologist with 20 years of
experience in abdominal imaging diagnosis in order to ensure
accuracy. The radiologists were unaware of both the clinical
outcomes and histopathological results. Any discrepancies in their
interpretations were resolved through collaborative discussion.

2.6 Radiomics feature extraction

PyRadiomics software (https://github.com/Radiomics/
pyradiomics) was utilized to extract a total of 1,746 radiomics
features from MRI results. The radiomics features were divided into
seven groups as follows: shape, first-order, gray-level co-occurrence
matrix (GLCM), gray-level dependence matrix (GLDM), gray-level
run length matrix (GLRLM), gray-level size zone matrix (GLSZM),
and neighborhood gray-tone difference matrix (NGTDM). These
quantitative radiomics features were extracted from the original,
Laplacian of Gaussian (LoG), and wavelet images, which were
obtained from eight decompositions after wavelet filtering. High
(H)- or low (L)-pass filter application in three dimensions resulted

frontiersin.org


http://www.itksnap.org
https://github.com/Radiomics/pyradiomics
https://github.com/Radiomics/pyradiomics
https://doi.org/10.3389/fonc.2025.1610892
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Qubie et al.

in eight combinations as follows: LHL, HHL, HLL, HHH, HLH,
LHH, LLH, and LLL. LoG images were generated by a LoG filter
with a sequence of sigma values. Low and high sigma values
emphasized fine and coarse textures in LoG images, respectively.
Sigma values of 2, 3, 4, and 5 were utilized in the study.

2.7 Feature selection and model
construction

A three-step procedure was performed for dimensionality
reduction of radiomics features. First, radiomics features with a
variance of >1.0 were selected. Second, analysis of variance was
carried out in order to select the statistical influence feature. The
radiomics features were available after applying the least absolute
shrinkage and selection operation (LASSO) regression method,
which was used to select the N-stage classification-related features
with non-zero coefficients from the training cohort. The radiomics
score (rad-score) was computed for each patient after feature
selection utilizing the LASSO regression with a combination of
selected features weighted by their respective coefficients. Five
machine learning models [logistic regression (LR), support vector
machine, (SVM), Bernoulli Naive Bayes, ridge, and stochastic
gradient descent (SGD)] were developed to fully exploit the
potential of the remaining radiomics features. The grid search
and five-fold cross-validation algorithm were used in the training
dataset to select the optimal model hyperparameters. The model
with the best cross-validation performance was used for further
analysis. Both feature selection and radiomics signature
development were performed in the training cohort. The
performance of the obtained radiomics signature was evaluated

10.3389/fonc.2025.1610892

using an inter-validation cohort, which was not employed for model
development. Stratified cross-validation was implemented,
employing a stratified sampling approach to preserve consistent
class distribution across all data subsets.

The processes of tumor segmentation, feature extraction,
feature selection, and model validation are shown in Figure 2.

2.8 Statistical analysis

R software (version 3.5.3, http://www.R-project.org) and
Python software (version 3.7.12, http://www.Python.org); were
used to perform statistical analyses and model construction.
Categorical variables were expressed as frequencies (percentages),
and continuous variables were presented as mean + standard
deviation (SD) for normalization distribution and medians (25%
quantile, 75% quantile) for other variables. Categorical variables
were analyzed using a 2 or Fisher’s exact test. The Kolmogorov-
Smirnov method was used to test the normality of all measurement
data. An independent sample ¢-test or Mann-Whitney U test was
used to measure statistical differences. Receiver operating
characteristic (ROC) curve, sensitivity, and specificity analyses
were performed to compare the performance of five machine
learning models. To evaluate model performance under class
imbalance, the F1-score was employed. The Matthews correlation
coefficient (MCC), calculated from the four categories of the
confusion matrix (true positives, false positives, true negatives,
false negatives), was used for binary outcome assessment. The
DeLong’s test was used to compare the models’ discrimination
abilities. Calibration analysis and the Hosmer-Lemeshow test were
utilized to examine the agreement between the observed N stage

. Feature Extraction and : -
Image segmentation : Model Construction and Validation
Selection

PyRadiomics
software (1746)
Shape Features
First Order
Features
GLCM
GLDM
GLRLM
GLSZM
NGTDM

2 GLRLM Machine learning
* Logistic Regression
2 GLCM .« SUM
> BernoulliNBBayes
3 NGTDM . Ridge
- 3 GLDM B Testing conort
6 GLSZM gﬁE‘:"i
1 First Order 7
Features

FIGURE 2
The framework for the radiomics workflow.
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and prediction probabilities. Decision curve analysis (DCA) was
performed to determine the net benefits in clinical application of the
constructed models. A p-value of < 0.05 was considered
statistically significant.

3 Results
3.1 Clinical baseline characteristics

A total of 225 patients with stage T3 RC were included in the
study. The cohort comprised 90 female and 135 male patients with
an age range of 24-85 years. Among them, 181 cases were in NO/N1
stage, and 44 cases were in N2 stage. No statistically significant
difference was found between the two groups in terms of clinical
characteristics. Detailed patient characteristics and statistical results
are shown in Table 1.

3.2 Models construction and validation

3.2.1 Model construction

A total of 1,746 radiomics features were successfully extracted
from T2W images for each patient. LASSO regression analysis was
utilized to select radiomics features with coefficients of >0, resulting

TABLE 1 Patients’ clinical characteristics.

10.3389/fonc.2025.1610892

in a final retention of 16 features, as shown in Figure 3. The detailed
feature names and their corresponding rad-score values are listed in
Supplementary Figure l,including 15 texture (two GLRLM, two
GLCM, three NGTDM, three GLDM, and six GLSZM) and one
first-order features. The features were significantly different
between the NO/1 and N2 groups (all p < 0.05), except for feature
F9 (wavelet-HHH_firstorder_Mean) (Supplementary Figure 2).

Five different radiomics signature models for predicting lymph
node staging were then constructed using the above selected
features based on LR, SVM, Bernoulli Naive Bayes, ridge, and
SGD classifiers in the training dataset.

3.2.2 Predictive performance and validation of
the model

Table 2 summarizes the five models’ sensitivity, specificity, F1-
Score, MCC, PPV, NPV, accuracy, and AUC data, with the
corresponding ROC curves depicted in Figure 4. Among the five
machine learning classifiers, the LR model performed the best in
both the training and test sets, with respective AUC values of 0.900
[95% confidence interval (CI), 0.848-0.952] and 0.876 (95% CI,
0.765-0.986). The corresponding accuracy values across the two
cohorts were 0.847 (95% CI, 0.843-0.852) and 0.882 (95% CI,
0.873-0.892).

Differences in the AUCs among the five models were compared
using the DeLong’s test. The LR model significantly outperformed

ER NO/Nl(n = 181) N2(n = 44) Statistical P-Value
Training cohort Test cohort Training cohort Test cohort values

Age (58.(?(;1,‘(;(1 05) (56.26(i-0701.60) (53.(?(?,.(;(1.60) (65.()608,.07(;.60) -0.216 0829

Sex
Female 49(38.89 %) 29(52.73 %) 10(32.26 %) 2(15.38 %) 3.692 0.055
Male 77(61.11 %) 26(47.27 %) 21(67.74 %) 11(84.62 %)

CEA(ng/mL)
>5 39(30.95 %) 15(27.27 %) 10(32.26 %) 2(15.38 %) 0.112 0.738
<5 87(69.05 %) 40(72.73 %) 21(67.74 %) 11(84.62 %)

CA199 (U/mL)
>37 15(11.90 %) 6(10.91 %) 6(19.35 %) 0(0.00 %) 0.139 0.710
<37 111(88.10 %) 49(89.09 %) 25(80.65 %) 13(100.00 %)

EMVI
Positive 39(30.95 %) 5(9.09 %) 10(32.26 %) 6(46.15 %) 2.630 0.105
Negative 87(69.05 %) 50(90.91 %) 21(67.74 %) 7(53.85 %)

Tumor location
Upper 36(28.57 %) 21(38.18 %) 10(32.26 %) 1(7.69 %) 1.153 0.562
Middle 54(42.86 %) 21(38.18 %) 13(41.94 %) 9(69.23 %)
Lower 36(28.57 %) 13(23.64 %) 8(25.81 %) 3(23.08 %)

CEA, carcinoembryonic antigen; CA-199, carbohydrate antigen 19-9; EMVI, extramural venous invasion.
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the Bernoulli Naive Bayes and SGD models in the training cohort (p
< 0.05). There was a significant difference in AUC values between
the LR and Bernoulli Naive Bayes models in the test cohort (p <
0.05). Further details are provided in Supplementary Table 1.

The rad-scores in the training cohort were significantly higher
in the N2 group compared to those in the N0/1 group, which was
consistently validated in the test cohort, as shown in Figure 5. The
Radscores derived from five classifier for each patient in the training
and test cohort datasets are depicted in Supplementary Figure 3. LR
and SVM demonstrated robust discriminative performance in both
the training and test cohorts.

TABLE 2 Radiomics signature model performance.

3.2.3 Apparent performance and clinical use of
the radiomics signature model

The calibration curve of the radiomics models for the predicted
lymph node staging in stage T3 RC showed good agreement
between the observed outcomes and predicted probabilities in all
datasets (Supplementary Figure 4). The p-values obtained from the
Hosmer-Lemeshow test were all >0.05 and not statistically
significant. The DCA of the radiomics signature models is
presented in Figure 6. The DCA showed satisfactory positive
benefits of the nomogram on most of the threshold probabilities,
indicating a favorable potential clinical effect of the models.

Model Type = AUC(95%CI) Accuracy Sensitivity Specificity F1-Score MCC
Logistic
Training set 0.900(0.845, 0.952) 0.847 0.742 0.873 0.657 0.567 0.590 0.932
Test set 0.876(0.765, 0.986) 0.882 0.692 0.927 0.692 0.620 0.692 0.927
SVM
Training set 0.875(0.812, 0.939) 0.777 0.806 0.770 0.588 0.483 0.463 0.942
Test set 0.859(0.737, 0.980) 0.882 0.692 0.927 0.692 0.620 0.692 0.927
Bernoulli Naive Bayes
Training set 0.845(0.771, 0.918) 0.701 0.871 0.659 0535 0.424 0.386 0.954
Test set 0.780(0.640, 0.920) 0.603 0.846 0.545 0.449 0309 0.306 0.937
Ridge
Training set 0.887(0.825, 0.949) 0.777 0.839 0.762 0.598 0.499 0.464 0.950
Test set 0.835(0.696, 0.974) 0.853 0.692 0.891 0.643 0.553 0.600 0.924
SGD
Training set 0.820(0.747, 0.893) 0.656 0.903 0595 0.509 0.397 0354 0.962
Test set 0.764(0.618, 0.909) 0.809 0538 0.873 0519 0.400 0500 0.900

F1-Score, harmonic mean of precision and recall; MCC, Matthews correlation coefficient; PPV, positive predictive value; NPV, negative predictive value.
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3.2.4 Diagnostic performance of initial imaging
interpretations

Among the 225 patients evaluated, initial imaging
interpretations classified 157 as NO/N1 and 68 as N2. This
approach achieved a sensitivity of 54.55%, specificity of 75.69%,
and an overall accuracy of 71.56%. The corresponding AUC was
0.651, indicating modest discriminative performance.

4 Discussion

The lymph node status in RC is a critical factor in determining
the necessity of adjuvant therapy and surgical resection (18).
However, Initial MRI radiology report for lymph node (LN)
staging in rectal cancer relies on subjective size-morphology
criteria, often showing poor interobserver agreement (k = 0.416)
and limited accuracy (AUC: 0.60-0.62), remains challenging (19).
In contrast, Dong et al. (20)demonstrated that a radiomics model
achieved higher diagnostic precision (PPV: 75.9%) by quantifying
tumor heterogeneity, overcoming the limitations of traditional
MRI. Building upon the recently published novel perspectives and
conclusions (4), an exploratory investigation was conducted in the
present study. Five radiomics models were developed based on
high-resolution T2WI features using five different machine learning
algorithms in order to noninvasively differentiate between NO/N1
and N2 stages in stage T3 RC. The performance and clinical utility
of these models were systematically compared. The results showed
that the LR model exhibited the best performance in predicting
lymph node staging in stage T3 RC. The clinical applicability of this
model was further validated via calibration curves and DCA,
indicating positive clinical benefits at most threshold probabilities.

Radiomics features can reveal subtle changes in rectal tumor
lesions that are difficult to discern with the naked eye (21, 22). In the
present study, 1,746 radiomics features were extracted from oblique
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axial T2W images. LASSO regression was subsequently utilized to
select 16 key features for in-depth analysis. These included one first-
order and 15 texture features, with texture features being the most
abundant, accounting for 93.75% of the total. This result is
consistent with those described by Li and Yin et al. (23), who
demonstrated that T2WI-based texture features have high accuracy
in predicting LNM in RC (AUC of 0.805), further validating the
importance of texture features in tumor assessment.

GLSZM features were predominant in the present study.
GLSZM quantifies the size distribution of continuous image
regions, finely characterizing the distribution patterns of
homogeneous regions of different sizes within tumors. Smaller
regions may correspond to densely packed tumor cells or micro-
nodules, while larger continuous regions may reflect necrotic areas
or fibrotic changes. (24). This spatial heterogeneity is closely related
to tumor proliferation activity and invasiveness. Studies have shown
that the short-zone emphasis in GLSZM features is significantly
negatively correlated with tumor microvascular density, while large-
zone emphasis is positively correlated with stromal fibrosis (25).
This ability to quantify spatial heterogeneity in tumor
microstructures makes GLSZM features an important indicator
for assessing tumor invasiveness and metastatic potential.
Therefore, texture features can capture the microscopic
heterogeneity within tumors, reflecting the spatial arrangement
and gray-level distribution patterns of tumor cells (26-28). These
features showed significant differences in distinguishing between
NO/N1 and N2 stages (p < 0.05) in the present study, indicating that
LNM is closely related to microscopic structural changes within the
tumor. Additionally, the predictive model based on T2WI
radiomics features was constructed using wavelet features (8/16).
Wavelet transform is a multi-scale analysis method with perfect
reconstruction capability, ensuring no information loss or
redundancy during signal decomposition. It can decompose
images into high-frequency (heterogeneity) and low-frequency
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(homogeneity) components, facilitating the extraction of structural
information and details from the original images (29). Previous
studies (30) have also reported the effectiveness of wavelet features
in predicting lymph node status in T2WI. Furthermore, He et al.
(31) found that wavelet features in T2WI performed well in RC
tumor grading, further demonstrating that they can represent the
biological behavior and heterogeneity of tumors.

A growing body of evidence underscores the value of clinical
parameters as complementary predictors in radiomics-based
models, with integrated frameworks often demonstrating superior
discrimination compared with radiomics alone (12). For example,
(32) reported that a combined clinical-radiomic model improved
sensitivity (82.6% vs. 78.3%) and specificity (88.9% vs. 57.9%)
relative to a purely radiomic approach, while also mitigating the
subjectivity of conventional MRI interpretation through visualized
risk maps. Such clinical metrics may encode systemic or tumor-
related biological processes that radiomics, which predominantly
captures spatial and textural heterogeneity, cannot fully represent.
In our cohort, however, none of the routinely collected clinical
variables demonstrated statistically significant intergroup
differences across outcome categories (all P > 0.05). This absence
of discriminative signal suggests that, in this specific population,
these variables may have limited incremental value for the
prediction task. From a modeling perspective, the inclusion of
non-informative covariates in high-dimensional feature spaces
risks diluting true signal, inflating model variance, and impairing
generalizability—particularly in datasets of modest size. Given these
considerations, and in pursuit of parsimony, we elected to exclude
clinical parameters from the final model. Several factors may
underlie this discrepancy with prior studies. First, differences in
patient demographics, disease stage distribution, and treatment
patterns between our cohort and other trials could attenuate the
predictive contribution of clinical variables. Second, sample size
constraints may have limited statistical power to detect subtle
effects, especially for variables with low intergroup variability.
Third, the endpoints examined—derived from imaging-based
nodal staging—may be more tightly coupled to local morphologic
features than to systemic clinical markers. These hypotheses
warrant systematic evaluation in larger, multi-institutional
datasets, ideally with harmonized variable definitions and broader
biological characterization, to clarify the true translational potential
of integrating clinical and radiomic predictors.

The widespread application of machine learning algorithms in
the field of radiomics has significantly improved diagnostic
performance (33). Selecting the appropriate classifier is crucial for
building high-performance predictive models. The present study
systematically evaluated five supervised learning models commonly
used for binary classification tasks, including LR, SVM, Bernoulli
Naive Bayes, ridge regression, and SGD. The results showed that the
LR model performed the best, with AUCs of 0.900 and 0.876 in the
training and testing sets, respectively. Additionally, the model
demonstrated excellent accuracy (training set: 0.847, testing set:
0.882) and specificity (training set: 0.873, testing set: 0.927). The
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superior performance of the LR model could be attributed to its
ability to effectively handle linearly separable data, low complexity
after feature selection, and resistance to overfitting. Moreover, the
LR model has strong interpretability, allowing for the quantification
of each feature’s contribution to the prediction results (34), which
provides important references for clinical decision-making.
Similarly, Wei et al. (35) developed and validated a clinical
radiomics model by combining T2W and amide proton transfer-
weighted MRI radiomics features, achieving efficient LNM
prediction in rectal adenocarcinoma using an LR classifier (AUCs
0f0.983, 0.864, and 0.851 in the training, validation, and testing sets,
respectively). Cui et al. (36) used an LR model to predict a complete
pathological response in LARC and achieved an AUC of 0.90.
However, the LR model is not suitable for all scenarios, as classifier
performance highly depends on the distribution characteristics of
the training and testing sets. Qu et al. (37) found that the SVM
classifier performed best when constructing a predictive model
using T2W images, with AUCs of 0.892 and 0.71 in the training
and validation sets, respectively. This is because SVM can handle
nonlinear relationships through kernel functions and exhibits
strong classification capabilities (38).

This study has several limitations. First, this study focused on
evaluating MRI-based radiomics for lymph node staging in patients
undergoing upfront surgical resection for stage T3 rectal
adenocarcinoma. However, select patients with low-risk, distally
located tumors (e.g., T3NO/N1) achieving a clinical complete response
after neoadjuvant therapy may be eligible for a watch-and-wait (W&W)
organ-preserving strategy. Excluding such cases may limit the model’s
applicability in settings where nonoperative management is considered.
Second, the model was developed solely on T2-weighted MRI data,
potentially limiting sensitivity for detecting small or morphologically
subtle lesions. Future work should explore the integration of functional
imaging sequences—such as diffusion-weighted imaging or contrast-
enhanced MRI-within a multiparametric framework to enhance lesion
conspicuity and improve diagnostic accuracy. Third, manual ROI
delineation inevitably introduces interobserver and intraobserver
variability, which may bias feature extraction and subsequent model
performance. The adoption of automated or semi-automated
segmentation algorithms could reduce subjectivity, standardize feature
generation, and improve reproducibility across centers. Finally, the
modest sample size and absence of external validation restrict the
model’s generalizability. Rigorous validation using large, multicenter
datasets with diverse patient populations is essential to confirm
robustness, refine calibration, and establish the clinical utility of the
proposed model.

5 Conclusion

The present study confirmed the effectiveness of a machine
learning-based high-resolution T2WI radiomics model in
predicting lymph node staging in stage T3 RC. Radiomics is a
noninvasive assessment method that can provide a valuable
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alternative for lymph node staging, supporting personalized
treatment decisions. It showed broad application prospects in
optimizing treatment pathways, avoiding overtreatment, and
improving the prognosis of patients with LARC. Future research
may further advance the clinical application of this technology via
multimodal imaging and large-scale validation.
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