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University, Hangzhou, China
Background: The Serial function in the Monaco treatment planning system is

essential for cardiac dose optimization in left breast cancer radiotherapy; however

its optimal K-value for deep-inspiration breath-hold intensity-modulated

radiotherapy (DIBH-IMRT) has not been established. This study aims to

determine the evidence-based K-value configuration for clinical implementation.

Methods: 41 left breast cancer patients undergoing DIBH-IMRT were

retrospectively analyzed. Plans were stratified by Monaco-Serial K-values:

Group A (K=1), B (2≤K ≤ 4), and C (K>4). Dosimetric parameters (heart, LAD,

Lung-L) and dose-volume reduction rates (Groups B/C vs A) were compared.

Correlations between K-values and DIBH-induced anatomical changes (Lung-L

volume increment rate, Lung-L/Heart volume ratio, and Heart-Breast Distance

increment) were assessed

Results: All plans satisfied target coverage. Group B achieved optimal cardiac

protection: mean heart dose (273.9 ± 91.0 cGy), max heart dose (2676.2 ± 1380.7

cGy), and LAD doses (mean: 411.3 cGy; max: 1483.3 ± 736.3 cGy) significantly

decreased versus Group A. Lung-L V500cGy in Group B increased marginally but

within clinical tolerance. Correlation analysis confirmed that Group B achieved

balanced control of mean/maximum heart doses, aligning with the expected

effects of anatomical variations induced by the DIBH technique.

Conclusions: Adjusting Monaco-Serial K-value to 2≤K ≤ 4 provides optimal dose

constraints for the heart and substructures while ensuring target coverage,

making it the optimal parameter setting for left breast cancer DIBH-IMRT.
KEYWORDS

breast cancer, radiotherapy planning, biological optimization, monte carlo, equivalent
biological dose
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1 Introduction

Breast cancer is the most common malignancy among women

worldwide, with radiotherapy serving as a critical adjunctive treatment

(1, 2). However, due to the anatomical proximity of the breast to the

heart, radiation exposure during treatment is strongly associated with

an increased risk of radiation-induced heart disease, particularly in left-

sided breast cancer (3). Modern radiotherapy planning systems,

utilizing inverse intensity-modulated radiotherapy (IMRT) and dose

optimization algorithms, effectively limit radiation exposure to

organs at risk (OARs) while ensuring adequate target dose coverage,

and have become a standard in clinical practice (4–6). To further

reduce cardiac dose, the deep inspiration breath-hold (DIBH)

technique has emerged as an essential approach in recent breast

cancer radiotherapy (7, 8). DIBH increases lung volume, expanding

the distance between the target and the heart, which enhances dose

attenuation in the target area and minimizes radiation exposure to the

heart (9, 10). The combination of DIBH with IMRT dose optimization

algorithms has been shown to significantly reduce radiation to the heart

and its substructures, thereby lowering the risk of radiation-induced

heart disease (11).

The Monaco treatment planning system (TPS), which uses the

Monte Carlo dose calculation algorithm, is one of the most widely

employed systems in clinical practice, providing highly accurate

dose optimization results that closely reflect actual radiation-

induced damage (12). The system’s Serial function is a key

biological optimization tool, especially for dose constraints

applied to the heart and its substructures. In Monaco-Serial, a K

value of 1 is commonly used for setting average dose constraints to

the heart and its substructures in left breast cancer free-breathing

IMRT (FB-IMRT) (13, 14). However, with DIBH-IMRT, significant

anatomical changes, such as the increased distance between the

heart and the target, can render previous settings suboptimal, and to

date, there is a lack of studies addressing this issue.
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This study aims to identify the optimal K value setting for

Monaco-Serial in DIBH-IMRT for left-sided breast cancer by

retrospectively analyzing 41 patients who underwent DIBH-

IMRT. Radiotherapy plans were designed using different Monaco-

Serial K values, and dosimetric comparisons were made.

Furthermore, the correlation between changes in dose-volume

parameters of OARs and anatomical variations post-DIBH was

explored. The goal is to provide data-driven insights for optimizing

Monaco-Serial settings in left-sided breast cancer DIBH-IMRT,

thus supporting the clinical application of the Monaco system in

designing DIBH-IMRT treatment plans.
2 Materials and methods

This study was approved by the Ethics Committee of the

researchers’ hospital (Approval No. 2024-145K) and prospectively

registered at ClinicalTrials (identifier NO.NCT06796257), adhering

to ICMJE guidelines. It included 41 patients with left-sided breast

cancer who underwent breast-conserving surgery followed by whole-

breast radiotherapy between August 2022 and December 2024, with a

mean age of 43.3 years (range: 29–72 years). All participants

demonstrated good compliance and successfully completed the

entire DIBH treatment protocol. The study workflow is outlined in

Figure 1, which encompasses CT simulation and positioning under

both free-breathing (FB) and DIBH conditions, radiotherapy plan

design and evaluation, as well as the analysis of anatomical changes

and dose reduction rates following DIBH.
2.1 CT simulation and target delineation

All patients were positioned and immobilized using a vacuum bag

combined with a single-board system (R612, Klarity, China).
FIGURE 1

Flow chart of the radiotherapy treatment planning.
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CT simulation images were acquired with a CT scanner (Somatom,

Siemens, Germany), covering the scan range from the inferior margin

of the mandible to the inferior margin of the liver. Immediately after

completing the CT scan in the FB position, each patient underwent a

chest-breathing DIBH CT scan. Prior to the DIBH scan, patients

received breathing training and were required to achieve breath-

holding for more than 20 seconds in three consecutive attempts.

Those who met this criterion were deemed eligible for DIBH CT

scanning. Breathing gating during DIBH was performed using a laser-

based surface scanner (Sentinel, C-RAD AB, Sweden), with the gating

point monitored at the mid-sternum. The CT scan was conducted at a

voltage of 110 kV, with a slice thickness of 3 mm. For the DIBH scan,

an iodinated contrast agent was administered to enhance image quality.

Both DIBH-CT and FB-CT images were subsequently transferred to

the radiotherapy planning system (Monaco 6.0, Elekta, Sweden).

On the DIBH-CT images, radiation oncologists reviewed and

contoured the OARs and target volumes. The Gross Tumor Volume

(GTV), Clinical Target Volume (CTV) and OARs were defined

according to Radiation Therapy Oncology Group (RTOG) standards

(15), while the Planning Target Volume (PTV) and Planning Gross

Tumor Volume (PGTV) were generated by expanding the CTV and

GTV by 10 mm and contracting the subcutaneous volume by 5 mm.

The heart, left lung, right lung, and body contour were auto-contoured

using an automatic segmentation tool (AccContour, China), with

manual adjustments made by the radiation oncologist. The left

anterior descending artery (LAD) was manually contoured by the

radiation oncologist. All OARs and target delineations were reviewed

and approved by senior radiation oncology experts.
2.2 Radiotherapy plan design

All patients received a prescribed dose of 5000 cGy in 25 fractions

for the PTV. Postoperative breast-conserving surgery patients received

an additional boost to the PGTV, totaling 5750 cGy in 25 fractions.

Target volume coverage adhered to ICRU recommendations, ensuring

that the maximum dose did not exceed 107%, and the 95% isodose

line covered the PTV/PGTV. The DIBH radiotherapy plans for all

patients were designed by the same radiation therapy physicist using

6MV-FFF photon energy with 6 tangential IMRT fields based on the

DMLC technique. All dose calculations were performed using the

Monte Carlo algorithm on Monaco 6.0, with a 3 mm calculation grid

and a statistical uncertainty of 1%.

During radiotherapy planning, the dose limits for OARs followed

the guidelines for breast cancer radiotherapy (Chinese Medical

Association, 2020 edition) (16). The dose-volume objectives,

optimization functions, and parameter settings are summarized in

Table 1. Three different radiotherapy plans were designed for each

patient based on varying Monaco-Serial K values for cardiac dose

constraints: Group A (K=1), Group B (2≤K ≤ 4), and Group C (K>4).

For heart dose constraints, the Equivalent Uniform Dose (EUD) was

adjusted according to dose optimization principles, with modifications

made in response to changes in K values. For the lung (Lung-L), LAD,

and spinal cord dose constraints, EUD, MOD (Mean Organ Damage),

and Maximum Dose values were fine-tuned to minimize OARs dose-
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volume while maintaining adherence to dose optimization principles,

as outlined in Table 1. All three radiotherapy plans were reviewed and

approved by the same senior radiation oncologist before undergoing

dosimetric analysis. Additionally, the plans were independently verified

using the 3D dose verification system (Evolution, IBA, Germany),

ensuring consistency and accuracy. The verification criterion required a

gamma passing rate (2mm/3%) of over 95%.
2.3 Measurement and calculation of
anatomical structure changes

The following three anatomical change parameters after DIBH

were measured and calculated for all patients using CT images from

both FB and DIBH:

(1) Lung-L volume increment rate = (DIBH Lung-L volume - FB

Lung-L volume)/FB Lung-L volume; (2) Heart/Lung-L volume ratio =

DIBH Heart volume/DIBH Lung-L volume; (3) Heart-breast distance

increment = DIBH Heart-breast distance - FB Heart-breast distance.

The measurement method for the Heart-breast distance in both FB and

DIBH is illustrated in Figure 2, which is provided in the supplementary

materials. The CT slice used for this measurement is the transverse

cross-section at the midline of the breast in the head-foot direction.
2.4 Dosimetric and correlation analysis

The dosimetric differences in three OARs—Heart, LAD, and

Lung-L—were statistically analyzed and compared across the

radiotherapy plans of Groups A, B and C. Group A served as the
TABLE 1 Dose-volume constraints for OARs and the optimization
functions and parameters used in this study.

Target
Volume

Dose-
Volume Target

Constraint Functions
and Parameter Settings

Lung-L Dmean ≤ 1500 cGy (1200
cGy), V3000 cGy ≤ 20%
(15%),
V2000 cGy ≤ 30% (25%),
V500 cGy ≤ 50% (50%)

Parallel:
①EUD=2800 cGy/MOD=16%;
K=3
②EUD=1800 cGy/MOD=25%;
K=3
③EUD=480 cGy/MOD=48%; K=3
Serial:
EUD=1000~1400 cGy; K=1

Lung-R Dmean ≤ 500 cGy
(300 cGy)

Serial:
EUD=500 cGy; K=1

Heart Dmean ≤ 800 cGy
(400 cGy)

Serial:
EUD=300~1000 cGy;
Group A: K=1; Group B: 2≤K ≤ 4;
Group C: K>4

LAD Dmean ≤ 2500 cGy
(1000 cGy)

Serial:
EUD=400~1000 cGy; K=1

Spinal
cord

Dmax ≤ 4000 cGy
(3000 cGy)

Maximum Dose: 3000 cGy
In the “Dose-Volume Target” column, values outside the parentheses are the guideline-
recommended values, and values inside the parentheses represent the experience values from
our center for left breast DIBH radiotherapy plans. EUD, Equivalent Uniform Dose; MOD,
Mean Organ Damage; K, Value of Power Law Exponent.
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reference, and the dose-volume reduction rates for the three OARs

in Groups B and C were calculated after adjusting the K value.

Additionally, the dose-volume reduction rates for OARs in Groups

B and C were correlated with DIBH-related anatomical changes:

Lung-L volume increment rate, Heart/Lung-L volume ratio, and

Heart-breast distance increment.
2.5 Statistical analysis

Data were first tested for non-normal distribution using the

Shapiro-Wilk test. The Mann-Whitney U test was applied to

analyze differences between two groups, while the Kruskal-Wallis

H test was used for comparisons among multiple groups. When

significant differences were detected among groups, pairwise

comparisons were performed with Bonferroni correction to adjust

for multiple testing. Pearson correlation analysis was performed to

investigate the relationship between dose-volume reduction rates of

OARs and anatomical indicators. All statistical analyses were

conducted using SPSS 27.0, with a p-value of < 0.05 considered

statistically significant unless otherwise specified after correction.
3 Results

3.1 Dosimetric statistics for All DIBH-IMRT
treatment plans

3.1.1 Dose-volume results of OARs in the three
radiotherapy plans

Table 2 and Figure 3 summarize the dose-volume data for the

heart, LAD, and ipsilateral lung under the three treatment plans:

Group A, Group B, and Group C. Compared to Group A, both

Group B and Group C demonstrated reductions in the average and

maximum doses to the Heart and LAD, with Group B showing

better dose control than Group C. In Group B, the average dose to

the Heart and LAD decreased to 273.9 ± 91.0 cGy and 411.3 ± 127.8

cGy (p < 0.05), respectively, while the maximum dose decreased to

2676.2 ± 1380.7 cGy and 1483.3 ± 736.3 cGy (p < 0.05), respectively.
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For the ipsilateral lung (Lung-L), the V500 cGy in Group A was

44.2 ± 6.2% (p < 0.05), with an average dose of 1033.1 ± 162.8 cGy,

which was the lowest among the three groups. In Group B, although

the V500 cGy and average dose for Lung-L showed a slight increase,

the values remained within an acceptable range.

In summary, adjusting the Serial-K value for the Heart to the

Group B range (2 ≤ K ≤ 4) significantly optimized the dose

constraints for the heart and its substructures, while only causing

a minimal increase in the dose-volume to the ipsilateral lung.

3.1.2 Dose-volume reduction rates of major
OARs after adjusting the cardiac serial-K value

The dose-volume reduction rate was calculated using the

following formula: Dose-volume Reduction Rate = ((Adjusted

Dose - Original Dose)/Original Dose) * 100%. Table 3

summarizes the dose-volume reduction rates for the three OARs

—Heart, LAD, and Lung-L—in Group B and Group C compared to

Group A. Figure 4 displays the density distribution curves of the

dose-volume reduction rates for OARs in Group B and Group C

relative to Group A. As shown in Table 3, compared to Group A,

Group B demonstrated an average reduction rate of 29.4% ± 14.2%

for the Heart and 18.7% ± 15.5% for the LAD, with maximum dose

reduction rates of 29.3% ± 38.0% and 24.0% ± 13.4%, respectively.

For Lung-L, the average reduction rate for V500 cGy in Group B

compared to Group A was -8.6 ± 15.3% and -15.6 ± 17.5%,

respectively. Figure 4 further illustrates that Group B significantly

outperformed Group C in terms of dose reduction rates for both the

Heart and LAD.

In conclusion, these results underscore that adjusting the Serial-

K value for the Heart to the Group B range (2 ≤ K ≤ 4) not only

optimized dose constraints for the heart and its substructures, but

also led to only a slight increase in Lung-L V500 cGy.
3.2 Anatomical parameter measurements
and calculation results after DIBH

The study results demonstrated significant anatomical changes

following DIBH compared to the FB state in 41 patients. The Lung-
FIGURE 2

Example of the measurement method for heart-breast distance under FB and DIBH conditions.
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L volume increment rate was 81.7 ± 36.2%, the Heart/Lung-L

volume ratio was 0.03 ± 0.09, and the Heart-breast distance

increment was 1.0 ± 0.5 cm. These measurements indicate

significant anatomical changes after DIBH compared to the

FB state.
Frontiers in Oncology 05
3.3 Correlation analysis results between
anatomical and dosimetric parameters

Figure 5 shows the correlation between the dose-volume

reduction rates of the Heart, LAD, and Lung-L in Group B (2≤K ≤
FIGURE 3

Boxplots of treatment planning data for OARs, for the 41 left breast cancer patients included in this study, with DIBH, different serial-K value ranges
and 6 fields tlMRT.
TABLE 2 Summary of treatment planning data for OARs, for the 41 left breast cancer patients included in this study, with DIBH, different Serial-K
value ranges and 6 fields tlMRT.

Dose-Volume for OARs Group A (K=1) Group B (2≤K ≤ 4) Group C (K>4) p

Heart mean Dose(cGy) 423.4 ± 213 273.9 ± 91.0 312.7 ± 110.2 <0.05

Heart max Dose(cGy) 3980.0 ± 1038.0 2676.2 ± 1380.7 2856.1 ± 1440.9 <0.05

LAD mean Dose(cGy) 530.3 ± 197.6 411.3 ± 127.8 440.6 ± 134.0 <0.05

LAD max Dose(cGy) 2012.9 ± 1008.0 1483.3 ± 736.3 1537.3 ± 755.6 <0.05

Lung-L mean Dose(cGy) 1033.1 ± 162.8 1042.0 ± 165.4 1126.9 ± 183.0 =0.09

Lung-L V500cGy(%) 44.2 ± 6.2 46.7 ± 7.2 49.7 ± 8.2 <0.05

Lung-L V2000cGy(%) 17.5 ± 4.1 17.5 ± 4.3 18.7 ± 4.4 =0.32

Lung-L V3000cGy(%) 12.1 ± 3.6 11.4 ± 3.6 12.7 ± 4.0 =0.56
The dose-volume parameters for OARs are presented as mean values ± one standard deviation. Most favourable value was marked in bold.
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4) and Group C (K>4) compared to Group A (K=1), after adjusting

the Monaco-Serial K value for constraining the heart, and the three

anatomical parameters: Heart/Lung-L volume ratio, Heart/breast

Distance Increment, and Lung-L volume Increment rate.
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As shown in Figure 5, in Group B (2≤K ≤ 4), the Heart/breast

Distance is strongly positively correlated with both the average and

maximum heart dose reduction rates. The Heart/Lung-L volume

ratio is strongly negatively correlated with these dose reduction
TABLE 3 Summary of reduction rates in dose-volume of OARs after treatment plan optimization by varying Serial-K values (two groups: B、C),
relative to treatment plan optimization with Group A, for the 41 patients with left breast cancer included in this study, with DIBH and 6 tlIMRT fields.

Dose-Volume for OARs Group B (2≤K ≤ 4, %) Group C (K>4, %) p

Heart mean Dose(cGy) 29.4 ± 14.2 20.1 ± 16.0 <0.05

Heart max Dose(cGy) 29.3 ± 38.0 24.5 ± 40.1 <0.05

LAD mean Dose(cGy) 18.7 ± 15.5 12.7 ± 17.0 <0.05

LAD max Dose(cGy) 24.0 ± 13.4 21.1 ± 14.1 <0.05

Lung-L mean Dose(cGy) -1.1 ± 8.3 -8.7 ± 7.1 <0.05

Lung-L V500cGy(%) -8.6 ± 15.3 -15.6 ± 17.5 <0.05

Lung-L V2000cGy(%) 0.1 ± 11.0 -7.4 ± 11.5 <0.05

Lung-L V3000cGy(%) 5.9 ± 9.8 -4.8 ± 9.5 <0.05
Reduction rates in dose-volume of OARs are shown as mean values with one standard deviation for OARs. Most favourable value was marked in bold.
Group B vs. Group A  (Heat and LAD) Group B vs. Group A (Lung-L)

Group C vs. Group A (Heat and LAD) Group C vs. Group A (Lung-L)

FIGURE 4

This figure displays the density distribution curves of dose-volume reduction rates for OARs after optimization of radiotherapy plans using different
serial-K values (divided into two Groups: B、C), relative to Group A.
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rates. After DIBH, the changes in these two anatomical parameters

enabled Group B (2≤K ≤ 4) to effectively constrain both the average

and maximum heart doses, with a more significant effect observed

on the average dose, which aligns with the expected effects of

anatomical variations induced by the DIBH technique. In

contrast, Group C (K>4) did not achieve optimal constraints for

either the average or maximum doses.

Therefore, the correlation analysis indicates that adjusting the

Monaco-Serial K value for heart constraint to the Group B (2≤K ≤ 4)

range results in the best correlation between anatomical parameters

and heart and substructure doses. This further confirms that Group B

(2≤K ≤ 4) is the optimal range for the Monaco-Serial K value in

DIBH radiotherapy plans for left-sided breast cancer.
4 Discussion

In breast cancer radiotherapy, the risk of cardiac injury is

primarily linked to the mean dose to the heart, which increases

linearly with radiation dose. Studies have demonstrated that for

every 100 cGy increase in the mean radiation dose to the heart, the

likelihood of adverse coronary events rises by 7.4%, with the risk

potentially persisting for decades (3). Since radiotherapy

implementation is based on treatment plan design, radiation-

induced heart damage is closely associated with the optimized

dose distribution in radiotherapy plans (17–19).
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With current photon radiotherapy technology, combining

DIBH with IMRT dose optimization algorithms can effectively

limit radiation exposure to the heart and its substructures,

potentially significantly reducing the risk of radiation-induced

heart disease. In IMRT dose optimization, traditional physical

optimization functions fail to fully account for the true biological

response of different tissues or organs to radiation during

treatment (20). However, Niemierko introduced the EUD

function, which incorporates bological parameters to quantify

tissue responses to radiation and optimize the dose distribution

in radiotherapy plans by considering the biological characteristics

of organs and the dose-response relationship. This results in a

more accurate reflection of the biological effects of radiation on

tissues and organs, thus improving treatment precision and safety

(21, 22). Numerous studies have confirmed that the EUD function

can effectively control the dose to OARs in breast cancer

radiotherapy, reducing radiation-induced damage to structures

like the heart (23, 24). For example, Lee et al. (23) compared the

quality and performance of dose-volume (DV) plans and

DV-EUD plans in breast cancer radiotherapy. Their results

showed that DV-EUD plans provided better protection for

OARs, reducing lung and heart doses compared to standard DV

plans. Similarly, Mihailidis et al. (24) found that EUD-based plans

offered superior protection for OARs while maintaining target

coverage. Consequently, the use of EUD-based biological
Heart/Breast
Distance Increment

Heart/Breast
Distance Increment

Heart/Lung-L
vulume ratio

Heart/Lung-L
volume ratio

K 4

2≤K≤4

Heart/Lung-L
Volume ratio

FIGURE 5

The correlation heatmap shows the pearson’s correlation between the reduction rates in dose-volume of OARs (compared to Group A), and the
modifications in anatomical structures (after DIBH) from radiotherapy planning for different Serial-K values (Group B and C). ** Significant correlation
at the 0.01 level. * Significant correlation at the 0.05 level.
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optimization functions has become widely accepted and applied in

clinical research (25–29).

In this study, we employed the Monaco TPS, which supports

advanced biological optimization models such as the Lyman-

Kutcher-Burman (LKB) model. Among these, the Monaco-Serial

function is a biological optimization model for serial organs based

on the concept of EUD. A key parameter in this model is K—

typically ranging from 1 to 20—which modulates the organ’s

sensitivity to different dose distributions. A lower K value

indicates greater sensitivity to the mean dose. Previous studies

have successfully applied a K value of 1 in free-breathing IMRT

plans for left-sided breast cancer to achieve effective optimization of

heart dose-volume constraints. However, the optimal K value for

DIBH-IMRT planning remains uncertain and warrants further

investigation (30–32). In this study, when applying Monaco-Serial

to optimize the heart dose in left-sided breast cancer DIBH-IMRT,

adjusting the Serial-K from K=1 to the range of 2≤K ≤ 4 (Group B)

achieved the best dose constraints for the heart and its

substructures, with only a slight increase in Lung-L V500 cGy

(still <50%). This finding differs from previous studies and

experiences with FB-IMRT. Research by Tanguturi et al. (33)

noted that changes in lung volume between FB and DIBH

significantly affect heart dose optimization. Cao et al. (34) found

that the increased distance between the heart and the chest wall in

DIBH significantly impacted heart dose optimization. Thus, the

improved heart dose constraints observed in our study, with Serial-

K adjusted to 2≤K ≤ 4, may be attributed to anatomical changes

induced by DIBH compared to FB.

To further explore the impact of anatomical changes after DIBH

on the optimal K value, we analyzed the correlation between

anatomical structure changes and the dose-volume reduction

rates of OARs with increased K values. The study found that after

DIBH, as the Heart/Lung-L volume ratio and Heart/breast Distance

Increment increased, a modest increase in K (within the 2≤K ≤ 4

range) effectively constrained both the mean and maximum heart

doses, with the most significant effect on mean dose constraints.

These results align with previous studies and clinical expectations

(22, 23). However, for Group C (K>4), further increases in K led to

stronger constraints on the maximum dose, which impacted the

dose distribution of the target area. This caused a shift in the balance

between the heart dose constraint function and the target

optimization function, ultimately limiting the optimization effect

on the heart and its substructures. This further supports the

conclusion that the optimal K value range for left-sided breast

cancer DIBH-IMRT is 2≤K ≤ 4.
5 Conclusion

This study is the first to report the application of the Monaco-

Serial biological optimization function in left-sided breast cancer

DIBH-IMRT radiotherapy plans. The results demonstrate that

adjusting the Serial-K value to the range of 2≤K ≤ 4 enables more

effective constraints on both the mean and maximum heart doses
Frontiers in Oncology 08
while maintaining target dose coverage, significantly reducing

the risk of radiation-induced heart damage. This finding

provides valuable data to support clinical radiotherapy plan

design. However, this study only focused on integer values of K.

Future research will further investigate the impact of fractional

K values (e.g., K=1.1, 1.2, 2.1, 2.2) on plan quality to optimize

the application of the Monaco-Serial biological function.

Additionally, the results may be influenced by factors such as

the dose calculation algorithm, grid resolution, and dose

smoothing techniques in the Monaco system, and future studies

should further explore the impact of these technical parameters.
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