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The introduction of immune checkpoint inhibitors (ICIs) has facilitated the

elucidation of the mechanisms underlying the remote effects observed in

tumor therapy and has demonstrated significant promise for treating several

advanced tumors. However, the natural resistance of “cold tumors” remains a

challenge that ICIs alone cannot overcome. Radiotherapy (RT) has been shown

to enhance anti-tumor immunity by generating in situ antigens or antigenic

fragments derived from tumor cells and local immune cell DNA, thereby

attracting more immune-presenting cells to the tumor site. This process

promotes the conversion of immune cells into anti-tumor effector cells and

enhances the efficacy of ICIs, most likely reflecting the mechanism of the

abscopal effect (ABE). Alternatively, ABE achieves optimal efficacy when anti-

tumor effects synergistically enhance systemic immunity. This review delineates

the molecular mechanisms underlying the distant compartment effect and

summarizes clinical studies on enhancing immune checkpoint inhibitors

through various RT techniques.
KEYWORDS

malignant tumors, immune checkpoint inhibitors, radiotherapy, tumor therapy,
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1 Introduction

Immune checkpoint inhibitors (ICIs) have transformed the treatment landscape for

malignant tumors, becoming integral to many first-, second-, and subsequent-line therapies

for advanced cancers ICIs. However, some tumors were inherently immunologically “cold”

and thus unresponsive to ICIs. Moreover, tumor heterogeneity could lead to adaptive

resistance in initially ICI-sensitive tumors. Systemic administration of ICIs combined with
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other treatment, particularly local therapy, has emerged as a optimal

strategy to overcome both primary and acquired resistance to ICIs

in clinical practice.

RT, the most widely used local treatment for advanced

malignant tumors patients (1, 2), could trigger abscopal effects

and improve the efficacy of ICIs by changing the local and

systemic immune microenvironment. In 1953, Mole firstly

reported the phenomenon of distant unirradiated tumors

regressing following RT of a single tumor lesion, which he

termed the abscopal effect (ABE) (3). In the subsequent

decades, ABE was rarly reported and seemed as occasional and

unintentiona. However, in 2012, Postow reported a case of ABE

induced by ipilimumab and RT for melanoma which revealed the

potential of combining RT with ICIs to increase the likelihood of

triggering ABE (4).Since then, RT plus ICIs strategys have

attracted attention of clinical and preclinical research, owing to

its ability to control systemic tumors through localized treatment

and reducing the risk of metastasis (5), in brief, its potential to

induce ABE.

Over the past two decades, accumulating preclinical and clinical

evidence has demonstrated that various RT techniques could

reshape the immune microenvironment, thereby enhancing the

therapeutic efficacy of ICIs.The combination of stereotactic body

radiotherapy (SBRT) with immune checkpoint inhibitors (ICIs)

acts as an immunotherapeutic catalyst by generating in situ tumor

antigens, which subsequently activate and recruit antigen-

presenting cells (APCs), thereby eliciting robust local and

systemic anti-tumor immune responses (6, 7).Low-dose

radiotherapy (LDRT) has been demonstrated to remodel the

immunosuppressive tumor microenvironment, effectively

converting immune “deserts” into immunologically active niches

through the phenotypic reprogramming of APCs into anti-tumor

effectors (7, 8).Spatially fractionated radiotherapy (SFRT) enhances

immune responses by leveraging the distinct immunomodulatory

effects of high-dose and low-dose radiation regions within the

tumor (9).Emerging ultra-high-dose-rate radiotherapy (FLASH-

RT) not only achieves superior tumor control but also

significantly reduces normal tissue toxicity, offering a promising

approach for immunomodulation (10).Furthermore, novel

combinatorial strategies—such as LDRT plus SBRT or SFRT

combined with FLASH-RT—have demonstrated synergistic

efficacy, suggesting unexplored mechanistic insights and

therapeutic potential for radio-immunotherapy (11–14).

This review discusses preclinical and clinical studies on RT

combined with ICIs to enhance treatment efficacy and trigger ABE.
2 Molecular mechanism underlying
ABE

The mechanism underlying ABE remains under investigation;

however, current research suggests that ABE primarily involves a T

cell-mediated systemic immune process that reduces the risk of

distant metastasis and helps to treat distant metastasized tumors in

conjunction with local therapy (15).
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2.1 RT generates in situ antigens, activates
antigen-presenting cells, and alters the
body’s immune environment to induce ABE

RT induces irreversible DNA damage within the target area,

with broken DNA fragments exposed in the cytoplasm. These

ectopic DNA fragments activate immune-presenting cells (APCs),

prompting the maturation and proliferation of dendritic cells (DCs)

(16). The immune system recognizes pathogens and damaged cells

through APC by recognizing damage-associated molecular patterns

(DAMPs) and pathogen-associated molecular patterns (PAMPs),

ultimately inducing immune responses (17). The most common

DAMP is high-mobility group box 1 (HMGB1), followed by heat

shock proteins, reticulin, and S100 acidic calcium-binding protein

(18, 19). These DAMPs are captured by APC and presented via the

major histocompatibility complex (MHC), which activates CD8+ T

cells or CD4+ T lymphocytes. For example, HSP70 binds to toll-like

receptor 4 and CD91, which in turn activates CD8+ somatic and NK

cells (20), and, unlike T cells, activated NK cells do not require

antigenic sensitization but instead directly recognize and kill tumor

cells. Furthermore, the oxidized DNA from the mitochondria or

nuclei exposed to the cytoplasm following RT can bind to Toll-like

receptor 9, which induces an inflammatory response (21).

Moreover, activation of CD8+ T cells induces the release of various

cytokine, such as tissue necrotic factor (TNF)-a and interferon (IFN)-g,
creating a positive feedback loop that further activates CD8+ T cells

(22) and allows M2-type polarized macrophages to convert into M1-

type and exert anti-tumor immune effects (23). Beyond enhancing

antitumor immune cell activity, radiotherapy concomitantly suppresses

immunosuppressive cell populations, synergistically augmenting

systemic antitumor efficacy. RT has also been shown to upregulate

PD-1 expression by Tregs (24–26). These cytokines stimulate anti-

tumor immunity in tumors located elsewhere in the body when they

travel through the blood and lymph fluid to sites distant from the RT

location, thereby inducing ABE. Yang et al. detected elevated levels of

serum IFN-g following RT for localized tumors, which promoted

tumor regression in the radiation field (27). Although some previous

studies focused on RT have suggested that some cytokines may

bimodal and have paradoxicalimmunosuppressive attributes as well,

in the era of radotherapy plus ICIs, more studies support the

enhancement of its anti-tumor activity (17, 18).
2.2 cGAS-STING is an essential pathway in
the abscopal effect

Several molecular signaling pathways involved in ABE have been

identified. Of these, accumulating evidence highlights the pivotal role of

cyclic guanine nucleotide-adenine nucleotide synthetase-interferon

gene-stimulating factor (cGAS-STING) pathway.Notably, the cGAS-

STING pathway not only directly activates antitumor immune cell-

mediated cytotoxicity, but also initiates multiple downstream signaling

cascades including (1): PD-L1/JAK-STAT (2), NF-kB (3), RAS-ERK1/

2, and (4) cGAS-STING-IFN axes. These interconnected networks

collectively potentiate antitumor immunity. Importantly, therapeutic
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modulation of these pathways may induce adenine base editing (ABE)

effects. DNA fragments generated by RT infiltrating the cytoplasm and

bind to cyclic guanosine-phosphate adenosine monophosphate

(cGAMP) synthase (cGAS) proteins, increasing the levels of

intracellular cGAMP. Intracellular cGAMP binds to interferon-gene-

stimulating (STING) proteins, which induce the interaction between

IFN-1 (IFN-alpha and IFN-beta) and IFNAR1/2 receptors.

Furthermore, IFNAR1/2 receptors directly activate NK cells and

macrophages, promoting DC maturation and proliferation and

activating CD4+ T lymphocytes and CD8+ T cells (28–31).

However, the cGAS-STING pathway can potentially promote

tumor cell proliferation while playing the role of a “guardian of

justice.” The cGAS-STING pathway is involved in the NF-kB-
induced elevation of interleukin (IL)-6 expression, which can inhibit

tumor and oxidative stress and promote tumor proliferation (32).

Sumaiah et al. reported that the non-classical STING pathway elevates

IL-6 in caffeine-damaged tumor cell DNA. Additionally, the authors

demonstrated that blocking this non-classical pathway or inhibiting the

expression of downstream extracellular signal-regulated kinases 1 and 2

led to a reduction in IL-6 levels. This finding suggests a potential means

to counteract the tumor growth-promoting effect of comedones (33).

Meanwhile, the immunosuppressive activity of cells generated by

apoptotic cells early in RT can be mitigated by raising the dose in a

single session and reducing the overall number of sessions (34).

Moreover, cGAS-STING upregulates programmed death-ligand (PD-

L) 1 by activating the JAK-STAT pathway; this enhances the systemic

efficacy of ICIs (35).Wang et al. discovered that blocking cGAS-STING

expression in a mouse melanoma model diminished the antitumor

efficacy of PD-L11 inhibitors. In contrast, intramuscularly injecting

cGMP into mice significantly enhanced the antitumor effects of PD-L1

inhibitors, suggesting that the cGAS pathway can initiate T cell

antitumor immunity via anti-PD-L1 (36). Notably, the gene for the

DNA 3′-5′ nucleic acid exonuclease DNase III (Trex1) is one of the

most important negative regulators of cGAS. Vanpouille-Box et al.

found that Trex1 could degrade broken DNA in the cytoplasm

following radiation therapy, preventing cGAS activation. This

weakening of tumor immunogenicity was more pronounced when a

single RT dose exceeded 10–12 Gy.

Moreover, ABE has been observed in the locally irradiated group

with knocked down Trex1 expression followed by treatment with a

cytotoxic T-lymphocyte-associated protein (CTLA)-4 inhibitor in a

mouse model of bilaterally inoculated tumors (37, 38).

In summary, local RT can achieve results akin to a catalyst through

T-cell-mediated immunity, with ABE potentially representing one of

the best outcomes of the “catalyst” (39). Hence, determining how RT

induces more frequent and stronger ABE is a prominent area

of research.
3 Rationale for the combination of RT
and immunotherapy

ICIs have become pivotal agents in the systemic management of

advanced malignancies. However, acquired resistance frequently

emerges during ICI therapy. Then combinatorial approaches
Frontiers in Oncology 03
incorporating local treatments are often employed clincally (40). RT

was the most widely utilized local treatment (1, 2),because it could

induce rapid tumor cell death within hours, generate neo-antigens in

situ, enhance the immunogenicity of tumor cells hereupon and

facilitate improved T-cell recognition. Furthermore, RT remodels the

tumor microenvironment (TME), promoting enhanced infiltration of

immune cells (41–43) and activating the previously mentioned

abscopal cGAS-STING signaling pathway (25, 44, 45). Notably, RT

upregulates critical immunomodulatory molecules on immune cells,

including ICAM-1, Fas, and MHC class I (46–48). This upregulation

potentiates a rapid augmentation of systemic anti-tumor immunity.

Conversely, downregulation of these molecules is associated with

immune to le rance and evas ion . Impor tant ly , the se

immunostimulatory effects exhibit a dose-dependent relationship

within the radiation dose range of 1 to 20 Gy (49).
4 Different RT parameters enhance
the efficacy of immune checkpoint
inhibitors

The total and fractionated doses of RT, different drugs for ICIs,

and sequence of RT and ICIs influence the efficacy of the

combination regimen.
4.1 Neither conventional segmentation nor
a single high dose of RT is optimal.

Okuma et al. reported a case of hepatocellular carcinoma with

lung and mediastinal lymph node metastases. the lung tumor

outside the radiation field also reduced significantly after

administering 60.75Gy/27F to the mediastinal lymph nodes (50).

However, ABE triggered by conventional segmentation has rarely

been reported, possibly because the killing of lymphocytes by

conventional segmentation is much greater than that of SBRT

(51). Furthermore, a study comparing the changes in the

vasculature when 60 Gy was divided into three, five, and eight

irradiations reported a reduction in the collapse of the vasculature

and unfavorable migration of T cells immediately after a single 60

Gy/3F RT (52). Additionally, Song et al. reported destruction of the

vasculature and hypoxia, among other consequences, after 20 Gy

RT; hence, it was unfavorable to the production of ABE (53).
4.2 SBRT is one of the most effective RT
techniques for inducing ABE

SBRT is defined as a dose of ≥ 5 Gy per fraction. Many split

doses can induce ABE, with 24GY/3F showing the most evidence.

Preclinical studies have confirmed the immune-enhancing

efficacy of SBRT regimens, with a total dose of 15–30 Gy divided

into 2–5 doses. In a mouse non-small cell lung cancer model, better

tumor control was found in 15 Gy/1F group than 15 Gy/5F group,

through stronger T-cell activation and infiltration (54). Schaue et al.
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compared the greatest reduction in melanoma tumor volume at the

same total 15Gy, 7.5 Gy/2F showed the best tumor control and

tumor immunity while maintaining low Treg numbers (55).

Furthermore, Dewan et al. used a different SBRT segmentation

method combined with CTLA-4 inhibitors in a mouse breast cancer

model and better local control and ABE efficacy was found with 24

Gy/3F than with 20 Gy alone and 30 Gy/5F. The efficacy of RT is

proportional to the activation and proliferation of CD8+ T-cells in

peripheral blood (56). Vanpouille-Box et al. combined CTLA-4

with 24 Gy/3F SBRT to induce ABE in homozygous mice and found

that a split dose of 4–12 Gy upregulated IFN-b production and

secretion through the cGAS-STING pathway. The latter increased

tumor efficacy against ICIs, whereas a single 20 or 30 Gy of RT-

induced Trex1-mediated degradation of cytoplasmic DNA and

abrogated the effects of IFN-b (37). Moreover, Mihaylov et al. at

the Miami Myrtle School of Medicine combined RT and ICIs in

mice with a high percentage of ABE, approximately 27% (4/15)

(57). Melanoma mouse models were treated with 3× 9.18 Gy for 1

week or 5×6.43 Gy for 10 days, with anti-PD1 antibodies

administered weekly. Both long- and short-course RT combined

with PD1 inhibitors triggered local and systemic antitumor efficacy

via CD8+ T cells. The tumor control was also similar in the RT field

for both radiotherapies (58). The ABE of varying divided

radiotherapies mapped in a mouse model of colon cancer showed

that the 24 Gy/3F modality had the strongest systemic immune

antitumor effect, either alone or in combination with a PD1

inhibitor (59). Animal studies by Mortezaee et al. confirmed a

stronger antitumor immune efficacy of 8–12 Gy than lower

doses (60).

In the following few decades of ABE’s discovery, clincal studies

on RT-induced ABE were mostly case reports, and the data

provided were heterogeneous,which implied that identifying the

patterns of ABE through summarizing the literature posed a

significant challenge. Reynders et al. analyzed 23 case reports with

a median age of 64.5 years and single doses ranging from 1.2 to 26

Gy with a mean total dose of 32 Gy (12–60.75 Gy). Regarding the

site of RT, 8 patients were treated with RT for the primary tumor

and 15 with RT for the metastatic site. ABE occurred 1–24 months

post-RT. Furthermore, the median ABE duration was 5 months,

with a median follow-up of 13 months (61). An analysis by Brix

showed that ABE was more common in advanced or older

progressive and metastatic melanomas, lymphomas, renal cell

carcinomas, and hepatocellular carcinomas in patients who

received palliative RT (62).

The safety of RT combined with ICIs in patients was first

validated by Brahmer in 2012, followed by several other clinical

studies (63). A phase I clinical trial evaluated the efficacy of

pabolizumab combined with SBRT in 24 patients with metastatic

cancer, of which 12 received 24 Gy/3F, and the other 12 received 17

Gy/1F. Two patients in the 24 Gy/3F group who had previously

progressed on PD-1 inhibitor therapy were included, and the

combination was effective, with the efficacy persisting for 9.2 and

28.1 months. One patient in the 17 Gy/1F group experienced

complete remission, while two patients continued to have stable

disease (7.4 and 7.0 months, respectively). Further analysis showed
Frontiers in Oncology 04
that the combination therapy induced PD-1 expression and

increased CD8+ T cell count (64). Additionally, a secondary

analysis of KETNOTE001 showed that progression-free survival

(PFS) could be prolonged from 2.1 to 4.4 months and overall

survival (OS) was also prolonged from 5.3 to 10.7 months if SBRT

was received before pabolizumab treatment in advanced non-small-

cell lung cancer. The efficacy was even more pronounced if the site

of RT was extracranial. Chen et al. conducted two retrospective

studies of SBRT combined with ICIs in metastatic non-small cell

lung cancer, 17 of 33 patients were in the SBRT+CTLA4 inhibitor

group, while 16 were in the SBRT+PD-1 inhibitor group. The field

response rates of the two groups were 24% vs. 37%, and the systemic

metastatic lesion efficiencies were 24% vs. 56%. The PFS rates at 3, 6,

12, and 18 months were 76% vs. 94%, 52% vs. 87%, 31% vs. 80%,

and 23% vs. 63%, respectively (p = 0.02), and the OS rates at 6, 1,

and 18 months were 76% vs. 87%, 47% vs. 80%, and 39% vs. 66%,

respectively (p = 0.08). This suggested that SBRT combined with

different ICIs to manage the same tumor type had varying immune-

enhancing efficacies, which could result in different survival benefits

for patients. Additionally, PD-1 inhibitors combined with SBRT

had an enhanced ability to induce ABE with longer-lasting efficacy

(65). Almost all current ABE case reports are peripheral. However,

Lin et al. reported a case of ABE observed extracranially with

second-line atelizumab following SBRT for brain metastases from

lung cancer. The authors suggested that immune cells could cross

the blood-brain barrier following RT, altering the immune

microenvironment of head tumors. However, further studies are

required to clarify this mechanism (66).

SBRT-based partial Tumor irradiation (SBRT-PATHY) is a novel

RT which aimed to induce ABE by targeting hypoxic clonogenic cells

by sparing the peritumoral immune microenvironment and regional

circulating lymphocytes, has shown the potential to induce ABE either

alone or in combination with ICIs. SBRT-PATHY has been developed

by Tubin et al, to enhance the radiotherapy therapeutic ratio of

advanced lung cancer (67, 68). At present, researches of SBRT-

PATHY mainly focuses on patients with bulky tumors, and have

already been confirmed in both clinical retrospective studies and

prospective phase II clinical studies that it did induce ABE and

enhance the anti-tumor efficacy (69–71). However, we believe the

most remarkable aspect of SBRT-PATHY is not the above-mentioned

therapeutic effect but its systemic anti-tumor efficacy and reversal of

ICIs resistance shown by only SBRT-PATHY therapy which may be

themost promising value of this technology. It may even be expected to

further reveal the potential mechanism of ABE.

Personalized ultrafractionated stereotactic adaptive radiation

therapy (PULSAR) is an novel RT approach explored at the

University of Texas Southwestern Medical Center for managing

brain metastases (72, 73). It tries to evaluate tumor changes during

treatment to personalize and adjust radiation delivery, aiming to

optimize therapeutic outcomes while minimizing side effects.

PULSAR is designed to deliver high-dose radiation at 2 to 4-week

intervals, about 20-30GY/4-6F. It has been reported several times in

preclinical and small-sample clinical studies, shows PULSAR plus

ICIs was more complementary than traditional daily fractions plus

ICIs in this preclinical model and better promise for optimizing
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patient management and reducing the risks of treatment (74–77).

The fractionation doses of PULSAR are consistent with conventional

SBRT, primary distinctions lying in treatment intervals and adaptive

planning implementation. Emerging PULSAR studies demonstrate

that radiotherapy-sequenced ICIs administration (RT→ICIs)

potentiates systemic therapeutic efficacy more effectively than

concurrent approaches which was align with established principles

of immunologic cascade activation of antitumor in vivo.

However, SBRT has several drawbacks. First, its bioequivalent

dose is often high, making it challenging to receive secondary RT

following uncontrolled or recurrent treatment at the same or

adjacent sites. Second, SBRT cannot be planned for multiple sites

of advanced tumors at the same isocenter, making accurate dose

calculations for the target area and organs at risk difficult. However,

progress in LDRT, which modifies the tumor immune

microenvironment, has overcome SBRT’s limitations.
4.3 LDRT holds new promise for
modulating the immune microenvironment
in localized therapy

The Perez and Brady Principles and Practice of Radiation

Oncology divides RT by fractionated dose: LDRT refers to doses

of 0.1–1 Gy per session; high-dose RT refers to doses of ≥ 8 Gy per

session; conventional fractionation refers to doses of 1.8–2.2 Gy per

session (78).

LDRT reshapes the tumor’s immune microenvironment without

damaging lymphocytes. Notably, inadequate anti-tumor T-cell

migration is the primary reason for the poor efficacy of ICIs. LDRT

activates immunity through the TH1 subpopulation of CD4+ T-cells

and promotes proliferative activation of primitive T-cells (79). In a

pancreatic cancer model, Klug et al. observed that LDRT enhanced

the proliferation of tumor-specific T cells by inducing endothelial cell

activation and the expression of TH1 chemokines and normalized the

abnormal vasculature of the tumor. This promotes the recruitment of

tumor-specific T cells and M1 polarization of macrophages to exert

antitumor effects (80). Classical radiobiological research has shown

that a 10% lethal dose for CD4+ T cells and CD8+ T cells ranges

from 3.32 to 3.84 Gy (81). Thus LDRT reshapes the tumor

microenvironment without killing T lymphocytes of the radiation

field and flowing bloodstream. On the contrary, LDRT can promote

the homing and activation of T lymphocytes, as well as their tumor

infiltration and cytotoxic effects. Compared with doses >1 Gy, 0.5 Gy

LDRT induces enhanced T cell infiltration. It also facilitates the

polarization shift of M2-type macrophages toward the M1-type,

thereby synergizing with CD8+ T cells to exert antitumor effects.

These immunomodulatory changes in the tumor microenvironment

resemble the therapeutic outcomes achieved through pharmaceutical

interventions promoting dendritic cell (DC) maturation and

proliferation (82). Herrera et al. validated in both animal models

and phase I clinical trials across multiple cancer types (including

ovarian and lung cancers) that LDRT can remodel the immune-

desert tumor microenvironment by enhancing T lymphocyte

infiltration through both naive CD4+ T cells and adaptive CD4+ T
Frontiers in Oncology 05
cells in the immune microenvironment, achieving NKG2D-

dependent tumor control (13).

LDRT can sensitize chemotherapy and reverse chemoresistance.

Ngoi et al. conducted a phase I clinical trial of whole abdomen LDRT

combined with paclitaxel weekly in 10 platinum-resistant ovarian

cancer patients, 9/10 achieved biochemical efficacy (> 50% decrease

in CA125) (83). Saikat Das et al. conducted a phase II single-arm trial to

evaluate the efficacy of LDRT combined with a paclitaxel+carboplatin

regimen as neoadjuvant treatment for IIB-IIIB cervical cancer prior to

radical RT and showed an overall response rate of up to 100% in 24

patients (84). Studies on LDRT for other tumor types have also been

conducted (85, 86). In a phase II-III clinical trial, the combination of

LDRT with induction chemotherapy in locally advanced

nasopharyngeal carcinoma and no 5-year survival benefits was

reported; The author conjectured that chemotherapy was not the best

option for the LDRT combination (87). Current evidence suggests,

however, that the result is more likely attributable to complete

disruption of cervical lymphatic drainage due to the high-dose

radiotherapy administered for nasopharyngeal carcinoma subsequently.

LDRT can improve the efficacy of ICIs through various

combinations. There are some key preclinical studies on the

combination of LDRT and SBRT. Liu et al. performed whole-body

0.1 Gy LDRT on mice initially using colon and breast cancer models,

and subsequently, administering 24Gy/3F RT to the primary tumors 3

days later. It was found that the growth of primary and metastatic

tumors was reduced, with increased CD8+ T-cell infiltration in

metastatic sites, decreased MDSCs and M2-polarized macrophages,

and suppressed metastatic ability (88). Savage et al. administrated 22

Gy/1F followed by 0.5 Gy/4F/2 days of LDRT to the same tumor in

mouse models of lung and breast cancer, found this new approach

could delay the tumor growth in mice, prolong survival, increase

immunosuppression, reduce immunosuppressive Treg cells and M2

polarized islets, and increased T-cell infiltration were found (89).

Barsoumian demonstrated the potent immunomodulatory effect role

of LDRT in improving the immune microenvironment and enhancing

the therapeutic efficacy of several different ICIs in lung adenocarcinoma

(89–91). Monjazeb et al. compared the efficacy of ICIs combined with

LDRT or SBRT in the multiline treatment of microsatellite-stabilized

metastatic colorectal cancer after progression. The LDRT group

received 2 Gy/4F for 2 days before the first 2 cycles of 1–4 cycles of

ICIs, which was administered twice a day for a total of 4 cycles.

Meanwhile, the SBRT group received 24 Gy/3F for 24 days within the

first cycle and 24 Gy/3F for 3 days after the second cycle; the 24 Gy/3F

was split within the first cycle. However, no systemic antitumor

response was induced in either the SBRT or LDFRT groups

combined with PD-L1/CTLA-4 inhibitors. Tumor micronuclei/

primary nuclear rupture was observed in two patients in the LDRT

group, and nuclear rupture was associated with activation of the GAS/

STING pathway. These findings provide a rationale for exploring more

optimized LDRT parameters (92). Furthermore, Patel et al. compared

the efficacy of metastatic lesion SBRT+/-LDRT in 74 patients with lung

cancer and melanoma that progressed on ICIs with the continuation of

immunotherapy. Follow-up was 13.6 months, with 39 enrolled in the

SBRT group and 35 in the SBRT+LDRT group. The 4-month disease

control rate in the SBRT+LDRT group was 37% vs. 47%, the objective
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efficacy rate was 26% vs. 19%, and the radiation field control rate was

23% vs. 11% (93). The immunosuppressive environment of the liver

leads to poor efficacy of various systemic therapies after hepatic

metastasis of tumors (94). A phase I clinical trial showed that whole

or partial liver RT in patients with liver metastases could altered the

poor prognosis of liver metastases. In addition, the preliminary results

of the corresponding phase II trial suggest that the local control rate of

liver metastases vs. lung metastatic lesions was 71% vs. 29%,

respectively, emphasizing a final result for these promising

outcomes (11).

Overall, LDRT demonstrated potent yet low-toxicity efficacy in

remodeling the immunosuppressive tumor microenvironment,

particularly in reversing immune-desert phenotypes. Its activity in

chemotherapy- and ICI-resistant populations warrants further

translational and clinical investigation.
4.4 Spatially fractionated radiotherapies

SFRT, also known as grid RT, has been used to deliver a high

but uniform dose of radiation to tumors by placing a regular mesh

of lead plates in the path of the radiation after it leaves the

collimator and before it enters the body, which blocks the beam

in nonporous areas. This therapy is divided into four main subtypes

based on the development of RT: two-dimensional grid-like

technology (GRID RT GRID-RT), three-dimensional lattice RT

(LRT), small-beam RT (minibeam RT MRT), and microbeam RT

(MBRT). The four subtypes differ primarily in the beam size.

Notably, the dose to the unobstructed area is the peak dose, while

the one to the obstructed area is the valley dose, used in the early

stages of large tumors to control the tumor while reducing the RT

dose to the surrounding normal tissues.

Preclinical studies have shown that SFRT alters the immune

microenvironment and induces ABE. In the B16F10 animal model,

Bazyar et al. found that combining an immune detection inhibitor

with MRT increased the efficacy of immune checkpoint inhibitors. In

contrast, the anti-tumor effect of this combination disappeared with

the addition of an inhibitor of CD8a or in T-cell immune-deficient

Rag-/- mice, suggesting that SFRT enhances the efficacy of immune

checkpoint inhibitors via CD8+ T lymphocytes (95). Bertho et al. used

a glioma rat model to compare normal and immunodeficient rats

receiving 30Gy of MBRT and the immune cells in the tumors of the

two groups with those in the peripheral blood. The authors found

that MBRT induced both T and B lymphocyte infiltration. However,

mice with completely regressed tumors following RT could not be

inoculated with these tumor cells again, confirming that high-dose

RT with MBRT mediates anti-tumor immunity via T lymphocytes

and produces a durable immune response (96). In addition,

differences in T lymphocyte-mediated efficacy have been observed

in several other animal models, including mouse lung cancer and

mouse triple-negative breast cancer models of SFRT (97). These

studies and others have highlighted the changes in the levels of the

inflammatory factors IL-10, IL-4, IL-6, TNF-a, and IFN-g secreted by
lymphocytes after tumors treated with SFRT, as well as the changes in

the chemokines IL-2 and CXCL1 (98). A single SFRT treatment also
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showed antitumor efficacy against unirradiated tumors in some

bilateral tumor models (97, 99, 100), suggesting that combining

SFRT and immune checkpoint inhibitors is promising to improve

antitumor efficacy.

In the era of ICIs, SFRT has beginning to show clinical promise.

Despite its century-long history, reports on the immunomodulatory

effects of SFRT remain scarce. Early clinical studies primarily focused

on safety and toxicity, though some evaluated immune responses. For

instance, Sathishkumar et al. demonstrated that GRID-RT (a form of

SFRT) significantly elevated TNF-a levels in peripheral blood at three

post-treatment time points in 34 patients, correlating with improved

tumor control in 2002 (101). Notably, case reports highlight SFRT’s

potential to enhance immune checkpoint inhibitor (ICI) efficacy. In

2021, Jiang et al. described an advanced NSCLC patient with rapid

progression who achieved complete remission after combining LRT,

conventional RT, SBRT, and ICI (102). Similarly, Massaccesi et al.

reported a case of renal cell carcinoma that progressed on third-line

immunotherapy following progression on targeted therapy. Partial

tumor remission was achieved using a combination of SFRT and

ICIs.These findings suggest that SFRT may overcome ICI resistance,

particularly in bulky tumors.

Although high-quality evidence remains limited, tumor

immunology experts hypothesize that SFRT remodels the

immunosuppressive tumor microenvironment, with preclinical data

implicating the low-dose tumor periphery as a critical zone for immune

potentiation. Further mechanistic and clinical validation is warranted
4.5 FLASH-RT

The concept of FLASH-RT was proposed by Dewey and Boain in

1959; however, it did not gain attention in the field of oncology until

2014 (103, 104). FLASH-RT, characterized by an ultra-high dose rate

of ≥ 40 Gy/s and a RT delivery time of < 200 ms, has become

important in the field of RT since it demonstrates different degrees of

normal tissue protection while controlling tumors. There are different

degrees of protection of normal tissue during RT (105, 106).

The immunomodulatory effects of FLASH-RT have been

observed in some preclinical studies. Simmons et al. found that

cytokines, such as IL-6, IL-1b, TNF-a, KC/GRO, and IL-4, were

elevated in the hippocampus after conventional RT in their study on

cognitive function following whole-brain RT in mice, but FLASH-RT

showed only three cytokines (IL-1b, TNF-a, and KC/GRO) evaluate

and the elevations were much lower, suggesting that FLASH-RT

attenuates radiculitis and reduces cognitive impairment following RT.

Some of these cytokines are involved in the immune response (107).

A comparison of conventional RT with FLASH-RT in the

abdominopelvic cavity in an ovarian cancer model revealed that

FLASH-RT irradiation increased the infiltration of T cells within the

tumor at earlier time points compared with conventional irradiation.

Furthermore, FLASH-RT irradiation increased the number of

cytolytic CD8+ T cells at later time points and enhanced the

efficacy of PD-1 therapy (108). In contrast, increased levels of CD3

tumor-infiltrating lymphocytes and decreased levels of regulatory T

cells in ovarian cancer correspond to improved prognosis and
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survival (109). In a mouse model of intestinal cancer, Shi et al. found

that FLASH-RT attenuated radiation enteritis by reducing CD8+ T

cell-mediated deleterious immune responses when combined with

ICIs or inmice with knockout of PDL-1, compared with conventional

RT. This study also provided a theoretical basis for using FLASH-RT

in combination with ICI (10).

Overall, as stated in a 2024 review (110), FLASH-RT is a novel RT

modality, and reports on its immune microenvironmental aspects are

limited. Electron beams, X-rays, and protons can produce FLASH-RT

effects at ultra-high doses. However, The specificity of FLASH-RT for

the immunemicroenvironment, its combinationmethods with ICIs, its

integration with traditional radiotherapies, and the theoretical

mechanisms explaining its distinctions between tumor and normal

tissues remain underexplored in preclinical and clinical studies.
4.6 The sequence of RT and ICIs is another
hot topic of current research.

In vivo, eliciting robust antitumor responses requires the

initiation and localized amplification of a cascading immune

reaction. The sequential engagement of immune components is

essential to induce positive feedback within this cascade. To achieve

systemic ABE effects, specific molecular ‘switches’must be activated

in accordance with fundamental cascade principles, thereby

propagating the reaction throughout the organism. thus the

temporal coordination between RT and ICIs emerged as a critical

determinant in ABE research (111).

Considering the theory that RT provides in situ antigens for

immunization, several studies have used RT followed by combined

ICIs, and better efficacy observed (75, 76, 112). Secondary analysis

of KENOTE-001 showed patients received RT before pabrolizumab

had significantly benefited in PFS (6.3 vs. 2 months) and OS (5.3 vs.

11.6 months) (112). Furthermore, the classic PACIFIC study

showed that immunomaintenance therapy after concurrent RT in

stage III could provide patients with a PFS benefit of approximately

1 year, with a 4-year OS rate of 36.3%–49.6% (113).
4.7 Multisite radiotherapy can enhances
ICIs efficacy and trigger ABE

Generating more in situ antigens via RT at more sites has also

produced satisfactory clinical results of enhanced immune efficacy

(114, 115). Additionally, multisite SBRT combined with ICIs was

explored, achieved good efficacy, and even induced ABE (115, 116),

providing an alternative for patients who cannot use ICIs.

Lastly, we emphasize that emerging evidence has revealed

immunomodulatory capacities across both conventional and

novel radiotherapy platforms—including comparative efficacy

studies of different radiation modalities (e.g., photons versus

particles, low-dose pulsed radiotherapy approaches. While these

investigations fall beyond the scope of the current systematic

review, we acknowledge this as a potential limitation and

welcome further scholarly discourse to advance this evolving field.
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5 Conclusion

In era of ICIs, the role of RT in regulating immunity remains

unclear. Various RT methods aimed to stimulate the body’s anti-

tumor immune response by engaging in different stages of

immune responses, including the generating of local immune

antigens, promoting the proliferation and activation of antigen-

presenting cells and alter the immune environment and other

links. In addition to SBRT and LDRT, some new RT techniques,

such as FLASH-RT and carbon ion RT, have also been utilized.

The impact of new techniques on the immune system and whether

they can promote distant effects remain inconclusive; So dose

some new combination of conventional radiotherapy techniques

approaches are being actively explored in this field. We belive,

with the rapid development of localized therapy and the

widespread use of ICIs, more ABE-focused studies will be

conducted, and RT, which has been shown to enhance systemic

ICIs, is promising.
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