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Chunlai Zhang1, Peng Zhong4, Jingqin Fang5* and Yi Wang2*

1Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China, 2Department
of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, China, 3School of
Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing, China,
4Department of Pathology, Daping Hospital, Army Medical University, Chongqing, China, 5Department
of Ultrasound, Daping Hospital, Army Medical University, Chongqing, China
Objective: To develop a radiomics nomogram based on radiomic features

derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-

MRI) combined with clinical-imaging characteristics in predicting the CD8

+Tumor-infiltrating lymphocytes (TILs) levels in patients with human epidermal

growth factor receptor 2 (HER2)-positive breast cancer (BC).

Materials and methods: A total of 126 BC patients with pathologically confirmed

HER2-positive were enrolled and randomly divided into training (n = 88) and

validation (n = 38) cohorts. A clinical-imaging model was built based on clinical

and MRI characteristics. Radiomics features were extracted from the third post-

contrast phase on DCE-MRI. Select K Best, the maximum relevance minimum

redundancy (mRMR), and least absolute shrinkage and selection operator

algorithm (LASSO) were used to select radiomics features and a radiomics

signature score (rad-score) was constructed by seven radiomics features.

Multivariate logistic regression analysis was used to construct a radiomics

nomogram model by combining with rad-score and independent clinical-

imaging factors. Performance of the clinical-imaging model, rad-score, and

radiomics nomogram model were evaluated using the area under the

curve (AUC).

Results: Seven radiomics features were used to build the rad-score. The rad-

score achieved good performance in predicting CD8+TILs with AUCs= 0.853

and 0.822, respectively. The radiomics nomogram model based on rad-score

and clinical-imaging features (tumor margin and enhancement pattern) yielded

an optimal AUC of 0.866 and 0.886 in the training and validation cohorts,

respectively. The radiomics nomogram significantly outperformed the clinical-
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imaging model (p < 0.05) and showed a trend toward better performance

compared to the rad-score alone (p > 0.05).

Conclusions: The MRI-based radiomics nomogram has the ability to predict CD8

+TILs levels, which could be useful in identifying potential in HER2-positive BC

patients who can benefit from immunotherapy.
KEYWORDS

radiomics, magnetic resonance imaging, CD8-positive tumor-infiltrating lymphocytes,
human epidermal growth factor receptor 2, breast cancer
Introduction

Breast cancer (BC) is a highly heterogeneous malignant tumor

with various biological characteristics associated with prognosis and

treatment response. In recent years, immunotherapy and immune

checkpoint blockade have gained significant attention in the clinical

management of BC patients (1). In comparison with conventional

treatment modalities such as chemotherapy and radiotherapy,

immunotherapy has been shown to exhibit a reduced incidence of

adverse effects and to be better tolerated by patients. However, the

efficacy of immunotherapy varies, with only a subset of BC patients

demonstrating a response. Therefore, predictive biomarkers are

crucial for identifying BC patients who would truly benefit from

immune-based therapies. Tumor-infiltrating lymphocytes (TILs)

a r e e s s e n t i a l c ompon en t s o f t h e t umo r immun e

microenvironment (TIME), which play an important role in

tumor genesis, progression, metastasis, and drug resistance

processes, and are considered as a biomarker of immune

infiltration and prognosis of cancer patients. Current evidence

suggests that the presence of TILs is associated with a favorable

prognosis in BC and other solid tumors patients (2).

T lymphocytes, comprising CD8+ T cells, CD4+ helper T cells,

and regulatory T cells, are the most widely distributed immune cell

types within TILs. CD8+ T cells execute key cytotoxic functions

within the TIME and mediate responses to immune checkpoint

inhibitors (ICIs). In BC management, ICIs have shown value in

improving patients’ clinical outcomes, and an increase in baseline

density of CD8+ T cells within tumors is associated with a favorable

response to immunotherapy (3). Among the different molecular

subtypes of BC, human epidermal growth factor receptor 2 (HER2)-

positive BC has been demonstrated to exhibit high immunogenicity,

with approximately 55% containing high TILs levels in the stroma

(4). A clinical trial has revealed that higher TILs levels in HER2-

positive BC patients after neoadjuvant chemotherapy are strongly

associated with increased rates of pathologic complete response and

overall survival (OS) (5). Moreover, increased TILs have shown to

be indicative of a better response to HER2-targeted therapy in

HER2-positive BC patients (6). Hou et al. (7) has demonstrated a

positive correlation between high CD8+TILs levels and prolonged

OS in HER2-positive BC patients, suggesting that CD8+ T cells-
02
mediated cytotoxic immune responses may predict better clinical

outcomes after standard chemotherapy and HER2 blockade

treatment. Consequently, precise assessment of CD8+TILs levels

before surgery is important for guiding precise treatment strategies

for patients with HER2-positive BC.

Currently, the assessment of CD8+TILs levels in BC relies on

immunohistochemical (IHC) staining of tissue specimens obtained

through surgical resection or needle biopsy. However, these invasive

and non-reproducible measures carry the risk of trauma or

complications, limiting their use in patients with poor clinical

conditions. Therefore, finding an accurate, non-invasive and

repeatable method to assess TILs levels may help predict clinical

outcomes for HER2-positive BC patients who may benefit not only

from neoadjuvant or anti-HER2-targeted therapies but also

from immunotherapy.

Recently, radiomics, which involves the extraction and analysis

of large numbers of quantitative image features from medical

images, has emerged as a promising computational medical

imaging technique (8). Dynamic contrast-enhanced magnetic

resonance imaging (DCE-MRI) is the most sensitive imaging

modality for detecting BC, making it suitable for clinical

application in radiomics. Many studies have demonstrated the use

of DCE-MRI radiomics in differentiating between benign and

malignant breast tumors (9), molecular subtyping of BC,

assessment of axillary lymph node status (10), and predicting

prognosis and treatment response (11). However, to the best of

our knowledge, there have been no studies using DCE-MRI

radiomics to predict CD8+TILs levels in HER2-positive BC. The

purpose of this study is to investigate the potential of a radiomics

nomogram, constructed using a combination of clinical-imaging

and DCE-MRI radiomics features, in predicting CD8+TILs levels in

HER2-positive BC.
Materials and methods

Patients

This retrospective study was approved by the Ethics Committee

of Daping Hospital [Approval No: 2023 (06)]. The clinical and
frontiersin.org

https://doi.org/10.3389/fonc.2025.1612631
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2025.1612631
imaging data of 158 BC patients with histologically confirmed

HER2-posit ive from January 2019 to July 2022 were

retrospectively collected, and 126 patients who met inclusion and

exclusion criteria were enrolled in this study. The inclusion criteria

included: (1) Female patients aged 18 years or older; (2)

Pathologically confirmed primary HER2-positive breast cancer;

(3) Patients underwent preoperative or pre-biopsy DCE-MRI

examination; (4) DCE-MRI showed visible breast mass with a

maximum diameter larger than 1.0 cm. The exclusion criteria

included: (1) Incomplete clinical or pathological data; (2)

Received chemotherapy, immunotherapy, or radiotherapy before

DCE-MRI; (3) Poor image quality on DCE-MRI; (4) Non-mass

enhancement on DCE-MRI. Patients were randomly divided into a

training cohort (n=88) and a validation cohort (n = 38) in a ratio of

7:3. The flow chart was shown in Figure 1.
MRI technique

All patients underwent bilateral breast MRI using a 1.5T

scanner (Magnetom Aera, Siemens Healthcare, Erlangen,

Germany). The MRI protocol included: T1WI (TR/TE=8.6ms/

4.7ms, FOV = 360mm×360mm, matrix size=384×384, Slice

thickness=4.0mm); Fat saturation T2WI (TR/TE=5600ms/57ms,

FOV = 340mm×340mm, matr ix s ize=320×320 , S l i ce

thickness=4.0mm); DCE-T1WI (TR/TE=4.62ms/1.75ms,

FOV = 360mm×360mm, matr ix s ize=320×320 , S l i ce

thickness=1.5mm). Gd-DTPA (Magnevist, Bayer Healthcare,

Berlin, Germany) was used as a contrast agent during the

enhanced scan and was injected into the elbow vein by a high-
Frontiers in Oncology 03
pressure syringe at a dose of 0.1 mmol/kg and a flow rate of 2.0 ml/s.

Then, 15ml of normal saline was injected at the same flow rate after

the contrast agent injection. A total of seven phases (one basal pre-

contrast and six continuous post-contrast phases) were

continuously collected without intervals. Each scanning duration

was approximately 60 seconds, a total of about 7 minutes.
Clinical data

The following clinical data were collected: age, menopausal

status, clinical TNM stage, histologic type, histologic grade, Ki67

expression (low expression<20%; high expression≥20% (12)),

estrogen receptor (ER) status, and progesterone receptor (PR)

status. ER and PR positive were defined as nuclear staining of at

least 1% of tumor cells (13).

The evaluation of CD8+TILs followed the recommendations of

the International TILs Working Group in 2014 (14). The whole

slide was scanned at low magnification (50×), and CD8+TILs were

identified by a faint yellow to brown coarse granule staining on the

cell membrane. Then, five high-power fields (200×) were randomly

selected to evaluate CD8+TILs expression based on the percentage

of positive lymphocytes in the tumor stroma, and the average value

was calculated as the average level of CD8+TILs in the entire tumor

area. Hotspot regions were avoided during the analysis process. As

there is currently no consensus on the threshold for CD8+TILs, the

median count was used as the cutoff value (15). The median of CD8

+TILs in this study was 30%, so CD8+TILs expression ≤ 30% was

low level and marked as (-), and > 30% was high level and marked as

(+). All IHC slides were jointly analyzed by two pathologists with 8
FIGURE 1

Flowchart of the study population.
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and 10 years of experience in breast pathology at our hospital, and

disagreements were resolved through consultation. Both

pathologists were unaware of the clinical and imaging data before

reviewing the slides.
MRI interpretation

Blinded to the clinical and histopathological findings, two

radiologists (reader 1 and 2, with 10 and 8 years of breast

imaging experience, respectively) independently reviewed the

MRI data. When compiling the statistics, if it was found that the

opinions of the two readers were inconsistent, then a consensus

would be reached through negotiation and discussion. MRI features

were recorded based on BI-RADS MRI lexicon (16–18), including

tumor maximum diameter (which was measured at the largest slice

of the tumor), shape (oval, round and irregular, with lobulated

consolidated into oval), margin (smooth margins were

circumscribed, irregular and spiculated margins were not

circumscribed), background parenchymal enhancement (BPE)

[visual estimation of normal background parenchymal

enhancement seen with the first contrast-enhanced sequence was

classified as minimal (<25%), mild (25%-50%), moderate (51%-

75%) or marked (>75%), enhancement pattern (homogenous was

confluent uniform enhancement within the entire mass;

heterogeneous was non-uniform with variable signal intensity;

rim enhancement was more pronounced enhancement towards

the periphery than the center.), time-intensity curve (TIC) pattern

(persistent was defined as a continued increase in signal intensity of

more than 10% over time; plateau remained a qualitative

description, defined as signal intensity that does not change over

time after the initial rise; washout was defined as a decrease of more

than 10% from the highest signal intensity during the initial rise),

and axillary lymph node size [selected the largest axillary lymph

node in the fat saturation T2WI sequence, measured its maximal

cross-sectional area by manually delineating the entire boundary of

the lymph node on the largest slice using the picture archiving and

communication system (PACS)].
Tumor segmentation and feature
extraction

As previous study (19)suggested, the contrast between breast

malignant lesions and the surrounding glandular background

occurs its peck about 60–180 seconds after injection of contrast

agent. In this study, the third post-contrast phase on DCE-MRI

(DCE-MRIphase3) was selected for tumor segmentation. First, the

“N4 Bias Field Correction” and “Image Intensity Filter” module

plugged in 3D-Slicer software (Version 4.11.20210226, https://

www.slicer.org/) were used to correct the bias filed and normalize

the image intensity. Radiologist 1 manually delineated each layer of
Frontiers in Oncology 04
regions of interest (ROI) by contouring the tumor along its

boundaries to obtain three-dimensional volumes of interest (VOI)

by 3D-Slicer software. Radiologist 2 delineated the ROIs for 40

randomly selected tumors. Radiologist 1 repeated the same

procedure for a second ROI depiction from the randomly selected

images after 1 month. During the delineation process, efforts were

made to exclude normal tissues surrounding the tumor but include

areas of hemorrhage, and necrosis. All VOIs were resampled to a

voxel size of 1.0 × 1.0 × 1.0 mm, and the bin width of the grayscale

histogram was fixed at 25 for image discretization. DCE-MRI

images were processed using five Laplacian Gaussian filters (i.e.,

the kernel size m was set to 1, 2, 3, 4, 5) and filters based on wavelet

variations (LLL, LLH, LHL, HLL, LHH, HLH, HHL, HHH).

Radiomics feature extraction was performed using the open-

source software package “Pyradiomics” on Python 3.7 (https://

www.python.org/), which included seven major categories: shape

feature, histogram, gray-level co-occurrence matrix (GLCM), gray-

level run length matrix (GLRM), gray-level size zone matrix

(GLSZM), neighboring gray tone difference matrix (NGTDM),

and gray-level dependence matrix (GLDM). A total of 1218

radiomics features were extracted from each VOI. These features

conformed to the guidelines of the Image Biomarker

Standardization Initiative Reference Manual (ISBI).
Radiomics nomogram construction

Only radiomics features with intra-observer intraclass

correlation coefficient (ICC) and inter-observer ICC greater than

0.75 were used for further analysis. Using the Darwin research

platform (https://www.yizhun-ai.com/), four-step procedure was

used to select the final radiomic features of the training cohort:

(a) all features were preprocessed by maximum absolute

normalization; (b) Use the “Select K Best” feature selection

module to reduce the feature dimension; (c) The maximum

relevance minimum redundancy (mRMR) algorithm was used to

retain top 20 features; (d) Finally, the least absolute shrinkage and

selection operator (LASSO) with 5-fold cross-validation was used to

filter out the optimal features.

In the training cohort, the selected radiomics features and their

corresponding LASSO regression coefficients were combined in a

weighted linear to establish the Rad-score, and the Rad-score of each

tumor was analyzed by univariate logistic regression to construct the

radiomics model. Meanwhile, univariate and multivariate logistic

regression analyses were performed to identify independent clinical-

imaging factors. Only factors with P<0.05 in univariate analysis were

incorporated intomultivariate analysis. These prominent factors were

used to construct a clinical-imaging model. Finally, a radiomics

nomogram model was constructed using multivariate logistic

regression combined with clinical-imaging features and Rad-score.

The performance of each model built by the training cohort was

verified in the verification cohort.
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Statistical analysis

Statistical analysis was performed using SPSS and R software.

The normality and homogeneity of variance of the data were

evaluated using the Kolmogorov-Smirnov test and Levene’s test.

Normally distributed continuous data were presented as mean ±

standard deviation (SD), while non-normally distributed data were

presented as median (interquartile range). Independent sample t-

tests or Mann-Whitney U tests were used for intergroup

comparisons. Categorical data were presented as frequencies and

percentages, and intergroup comparisons were performed using the

chi-square test or Fisher’s exact test. The receiver operating

characteristic (ROC) curve was plotted using Medcalc 20.0, and

the area under the curve (AUC), sensitivity, specificity, and

accuracy were calculated to evaluate model’s performance. Delong

test was used to compare the AUC differences among different

models. ICCs were calculated using the “psych” package, calibration

plots were performed using the “rms” package, and decision curve

analysis (DCA) was performed using the “devtools” package. p<0.05

was considered statistically significant.
Results

Patient characteristics and clinical-imaging
model

52.4% of patients (66/126) were low CD8+TILs level and 47.6%

(60/126) were high CD8+TILs level. BC patients’ clinical and

imaging features in the training and validation cohorts were

shown in Tables 1 and 2. Among these features, there were

significant differences in N stage, maximum diameter, tumor

margin, and enhancement pattern in the training and validation

cohorts, and T stage in the training cohort (p < 0.05). Classic MRI

features of HER2-positive BC with low and high CD8+TILs levels

were shown in Figure 2 and Figure 3. In the training cohort,

univariate analysis showed significant associations between several

risk factors and CD8+TILs levels, including T stage, N stage,

maximum diameter, tumor margin, and enhancement pattern (p

< 0.05). Multivariate regression analysis revealed that tumor margin

and enhancement pattern were independent risk factors (p < 0.05).

The AUC of the clinical-imaging model constructed by these two

variables was 0.785 [95% confidence interval (CI): 0.690-0.881] and

0.803 (95% CI: 0.654-0.951) in the training and validation

cohorts, respectively.
Features selection and rad-score model

A total of 1218 radiomics features were extracted from each

VOI. After removing features with inter-observer and intra-

observer ICCs ≤ 0.75, 1093 features were obtained. In the training

cohort, the Select K Best algorithm and mRMR algorithm were used

for dimensionality reduction. Finally, 7 features were selected by the

LASSO regression algorithm, including 1 shape feature, 2 first-order
Frontiers in Oncology 05
statistical features, and 4 texture features (Figure 4). In both the

training and validation cohorts, the Rad-score in high CD8+TILs

level was significantly higher than the low CD8+TILs level (p <

0.001) (Figure 5). The Rad-score model demonstrated good

performance in predicting CD8+TILs levels, with AUC of 0.853

(95% CI: 0.771-0.935) and 0.822 (95% CI: 0.686-0.958) in the

training and validation cohorts, respectively. The Rad-score

formula was as follows:

Rad-score=1.326×log-sigma-3-0-mm-3D_firstorder_Kurtosis-

1 .236×log-s igma-2-0-mm-3D_gldm_Smal lDependence

LowGrayLevelEmphasis+1.075×wavelet-LHL_glszm_Small

AreaHighGrayLevelEmphasis+1.039×wavelet-LHL_firstorder_Mean

+0.960×wavelet-HLH_glcm_Imc2 + 0.833×original_shape_

Maximum2DDiameterColumn-0.760×log-sigma-4-0-mm-

3D_glcm_Imc1-1.770.
Radiomics nomogram model

The radiomics nomogram model was constructed based on the

selected clinical-imaging risk factors (tumor margin and

enhancement pattern) and rad-score (Figure 6). Calibration

curves (Figure 7) showed the probability values of high CD8

+TILs levels predicted by the radiomics nomogram model was in

good agreement with the true values. Hosmer-Lemeshow test

showed that the radiomics nomogram model was well calibrated

in the training (p = 0.837) and validation (p = 0.600) cohorts. DCA

showed that the radiomics nomogram model was more valuable in

clinical application than clinical-imaging model and rad-score

model (Figure 7). Table 3 summarized the effectiveness of

different models in predicting CD8+TILs levels. ROC curves of

the three models for both the training and validation cohorts were

shown in (Figure 7). The radiomics nomogram model achieved

optimal predictive performance, with AUC of 0.866 (95% CI: 0.792-

0.941) and 0.886 (95% CI: 0.778-0.994) in the training and

validation cohorts, respectively. In the training cohort, Delong

test showed that the radiomics nomogram model had a

significantly higher diagnostic performance than the clinical-

imaging model (p = 0.016), whereas there was no significant

difference between the radiomics nomogram and Rad-score

models (p = 0.550) (Table 4).
Discussion

In this study, we established and validated anMRI-based radiomics

nomogram by incorporating Rad-score and conventional MRI features

to predict the CD8+TILs levels in HER2-positive BC. The radiomics

nomogram model exhibited favorable performance for differentiating

low CD8+TILs from high CD8+TILs levels in the HER2-positive BC,

with an AUC of 0.866 and 0.886 in the training and validation cohorts,

respectively. These findings suggest that the MRI-based radiomics

nomogram could serve as an economical, effective and non-invasive

tool for stratifying HER2-positive BC patients who may benefit

from immunotherapy.
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TABLE 1 Comparison of clinical features between HER2-positive breast cancer patients with low and high CD8+TILs levels in the training and
validation cohorts.

Variables

Training cohort (n=88)

P value

Validation cohort (n=38)

P valueLow CD8+TILs
level (n=46)

High CD8+TILs
level (n=42)

Low CD8+TILs
level (n=20)

High CD8+TILs
level (n=18)

Age (year),
mean ± SD

49.57 ± 11.06 54.19 ± 10.72 0.051 51.85 ± 6.91 52.61 ± 9.91 0.783

Menopause 0.157 0.757

No 21(45.7%) 13(31.0%) 10(50.0%) 10(55.6%)

Yes 25(54.3%) 29(69.0%) 10(50.0%) 8(44.4%)

T stage 0.002 0.051

Tis 2(4.3%) 0(0.0%) 2(10.0%) 0(0.0%)

T1 3(6.5%) 1(2.4%) 2(10.0%) 1(5.6%)

T2 37(80.4%) 27(64.3%) 15(75.0%) 11(61.1%)

T3 2(4.3%) 6(14.3%) 1(5.0%) 5(27.8%)

T4 2(4.3%) 8(19.0%) 0(0.0%) 1(5.6%)

N stage 0.028 0.009

N0 23(50.0%) 12(28.6%) 10(50.0%) 2(11.1%)

N1 17(37.0%) 19(45.2%) 9(45.0%) 11(61.1%)

N2 3(6.5%) 5(11.9%) 1(5.0%) 3(16.7%)

N3 3(6.5%) 6(14.3%) 0(0.0%) 2(11.1%)

Metastasis 0.315 0.395

M0 38(82.6%) 33(78.6%) 18(90.0%) 14(77.8%)

M1 1(2.2%) 4(9.5%) 2(10.0%) 4(22.2%)

Mx 7(15.2%) 5(11.9%) 0(0.0%) 0(0.0%)

Histologic type 0.465 0.488

Non-invasive 4(8.7%) 2(4.8%) 2(10.0%) 0(0.0%)

Invasive 42(91.3%) 40(95.2%) 18(90.0%) 18(100.0%)

Histologic grade 0.368 0.633

I 0(0.0%) 0(0.0%) 0(0.0%) 0(0.0%)

II 36(78.3%) 36(85.7%) 17(85.0%) 17(94.4%)

III 10(21.7%) 6(14.3%) 3(15.0%) 1(5.6%)

Ki-67 0.974 0.606

Low 13(28.3%) 12(28.6%) 3(15.0%) 1(5.6%)

High 33(71.7%) 30(71.4%) 17(85.0%) 17(94.4%)

ER status 0.177 1.000

Negative 23(50.0%) 2764.3%) 12(60.0%) 11(61.1%)

Positive 23(50.0%) 15(35.7%) 8(40.0%) 7(38.9%)

PR status 0.572 0.522

Negative 28(60.9%) 28(66.7%) 11(55.0%) 12(66.7%)

Positive 18(39.1%) 14(33.3%) 9(45.0%) 6(33.3%)
F
rontiers in Oncology
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HER2, human epidermal growth factor receptor 2;TILs, Tumor-infiltrating lymphocytes; SD, standard deviation; ER, estrogen receptor; PR, progesterone receptor.
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TABLE 2 Comparison of imaging features between HER2-positive breast cancer patients with low and high CD8+TILs level s in the training and validation cohorts.

Variables
Training cohort (n=88)

P value
Validation cohort (n=38)

P valueLow CD8+TILs
level (n=46)

High CD8+TILs
level (n=42)

Low CD8+TILs
level (n=20)

High CD8+TILs
level (n=18)

Maximum diameter
(cm),
mean ± SD

2.56 ± 0.91 3.05 ± 1.10 0.023 2.38(1.93,2.69) 3.44(2.45,4.56) 0.002

Shape 0.572 1.000

Round/oval 44(95.7%) 39(92.9%) 19(95.0%) 17(94.4%)

Irregular 2(4.3%) 3(7.1%) 1(5.0%) 1(5.6%)

Margin 0.001 0.028

Circumscribed 36(78.3%) 19(45.2%) 13(65.0%) 5(27.8%)

Not circumscribed 10(21.7%) 23(54.8%) 7(35.0%) 13(72.2%)

Enhancement pattern 0.000 0.022

Rim 7(15.2%) 8(19.0%) 1(5.0%) 7(38.9%)

Heterogeneous 12(26.1%) 28(66.7%) 10(50.0%) 8(44.4%)

Homogeneous 27(58.7%) 6(14.3%) 9(45.0%) 3(16.7%)

BPE 0.787 1.000

Minimal (<25%) 28(60.9%) 26(61.9%) 7(35.0%) 5(27.8%)

Mild (25%-50%) 12(26.1%) 12(28.6%) 9(45.0%) 11(61.1%)

Moderate (51%-75%) 3(6.5%) 4(9.5%) 4(20.0%) 2(11.1%)

Marked (>75%) 3(6.5%) 0(0.0%) 0(0.0%) 0(0.0%)

TIC pattern 0.387 0.103

I (persistent) 2(4.3%) 0(0.0%) 0(0.0%) 0(0.0%)

II (plateau) 27(58.7%) 25(59.5%) 7(35.0%) 12(66.7%)

III (washout) 17(37.0%) 17(40.5%) 13(65.0%) 6(33.3%)

ALN size (cm2),
mean ± SD

2.22 ± 2.34 3.07 ± 3.29 0.166 4.06 ± 9.88 4.59 ± 3.60 0.832
F
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HER2, human epidermal growth factor receptor 2;TILs, Tumor-infiltrating lymphocytes; SD, standard deviation; BPE, background parenchymal enhancement; TIC, time-intensity curve; ALN,
axillary lymph node.
FIGURE 2

Classic MRI features of breast cancers with low and high CD8+TILs levels. A HER2-positive breast cancer ((A) HE ×200) with low CD8+TILs level
(about 20%) ((B) IHC×200) presented an oval mass with circumscribed margin (red arrow) and homogeneous enhancement on DCE-MRI (C, D). A
HER2-positive breast cancer ((E) HE ×200) with high CD8+TILs level (about 80%) ((F) IHC×200) presented an oval mass with not circumscribed
margin (white arrow) and heterogeneous enhancement on DCE-MRI (G, H). MRI, magnetic resonance imaging; TILs, Tumor-infiltrating lymphocytes;
HER2, human epidermal growth factor receptor 2; HE, hematoxylin and eosin staining; IHC, immunohistochemical; DCE-MRI: dynamic contrast-
enhanced magnetic resonance imaging.
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In this study, tumors exhibiting elevated levels of CD8+TILs

demonstrated a significantly higher clinical T-stage and N-stage,

suggesting that these tumors possessed a higher degree of

malignancy. In terms of morphology, this study found that

tumors with higher levels of CD8+ TILs tended to exhibit longer

diameters, more not circumscribed margin, and heterogeneous

enhancement. However, it should be noted that there were some

discrepancies between the conclusions of other researchers and

those of this study. Pujani et al. (20) believed that the TILs level of

breast cancer larger than 5 cm was significantly elevated, and the

proportion of HER2-positive breast cancer subtypes was 16.83%

(17/101) in their study population. Bian et al. (21) concluded that
Frontiers in Oncology 08
the smaller tumor diameter was associated with higher TILs level,

and the proportion of HER2-positive breast cancer was only 7.14%

(11/154) in their study population. The reason why our research

conclusion was similar to the former but different from the latter

might be that the study populations we included were all patients

with HER2-positive breast cancer. Choi et al. (22) observed that

there was no association between tumor margin and TILs level, but

they divided the TIL levels into three groups (low: <10%,

intermediate: 10-50%, high: >50%) among patients with ER-

negative/HER2-positive BC. Furthermore, Celebi et al. (23)

observed that tumors exhibiting high TILs demonstrated more

homogeneous enhancement compared to those with low TILs.
FIGURE 3

Classic MRI features of breast cancers with low and high CD8+TILs levels. A HER2-positive breast cancer ((A) HE ×200) with low CD8+TILs level
(about 10%) ((B) IHC×200) presented an oval mass with circumscribed margin (red arrow), and the TIC curve was plateau on DCE-MRI (C, D). A
HER2-positive breast cancer ((E) HE ×200) with high CD8+TILs level (about 60%) ((F) IHC×200) presented an irregular mass with not circumscribed
margin (white arrow), and TIC curve was washout on DCE-MRI (G, H). MRI, magnetic resonance imaging; TILs, Tumor-infiltrating lymphocytes;
HER2, human epidermal growth factor receptor 2; HE, hematoxylin and eosin staining; IHC, immunohistochemical; DCE-MRI: dynamic contrast-
enhanced magnetic resonance imaging, TIC, time-intensity curve.
FIGURE 4

Result of selected radiomics features. Seven radiomics features were presented, including 1 morphological feature, 2 first-order statistical features,
and 4 texture features.
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However, in Celebi’s study, the proportion of HER2-positive breast

cancer was only 5.06% (8/158), and enhancement pattern was not

identified through the multivariate logistic regression analysis.

What was most notable was that their study included different

type breast cancers and only focused on TILs, not CD8+TILs.

Utilizing univariate and multivariate logistic regression analyses,

we identified tumor margin and enhancement pattern as

independent predictors of high CD8+TILs levels. The clinical-

imaging model, constructed on these two factors, demonstrated

an area under the curve (AUC) of 0.785 (95% confidence interval

[CI]: 0.690-0.881) in the training cohort and 0.803 (95% CI: 0.654-

0.951) in the validation cohort.

Radiomics has recently emerged as a prevalent research tool in

the field of tumor studies. This methodology involves the extraction

of high-throughput quantitative features from medical images,

facilitating the identification of subtle changes within tumors that
Frontiers in Oncology 09
are challenging to discern through visual assessment. A few

previous studies have used radiomics to predict the TILs level in

BC. Yu et al. (24) developed a radiomics model from digital

mammograms, demonstrating excellent predictive performance

for TILs level in both the training (AUC = 0.830) and validation

cohorts (AUC = 0.790). Tang et al. (25) reported that features

extracted from the delayed phase MRI, particularly DCEPhase6,

provided superior information regarding the extent of TILs

infiltration in comparison to features from other phases.

However, these previous works only discussed overall TILs levels

within all molecular subtypes of BC. Conversely, this study is the

first attempt to develop a radiomics nomogram based on DCE-MRI

Phase3 images for predicting the CD8+TILs levels in HER2-

positive BC.

In this study, the rad-score model was constructed using seven

features, which were primarily derived from Gaussian filtering and
FIGURE 5

Comparison of rad-score between different CD8+TILs levels. High CD8+TILs level had higher rad-score than the low CD8+TILs level in the training
(A) and validation cohorts (B) (p < 0.001). TILs, Tumor-infiltrating lymphocytes.
FIGURE 6

Radiomics nomogram. Radiomics nomogram constructed by rad-score and clinical-imaging features (tumor margin and enhancement pattern) for
predicting high CD8+TILs level in the training cohort. TILs, Tumor-infiltrating lymphocytes.
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FIGURE 7

Calibration curves, DCA and ROC curves for different models. Calibration curves in the training (A) and validation (B) cohorts demonstrated the
excellent discriminatory ability of the radiomics nomogram (the black solid line fitted to the diagonal ideal line). DCA in the training (C) and validation
(D) cohorts revealed that the radiomics nomogram showed good clinical practicability and achieved the greatest net benefit. ROC curves in the
training (E) and validation (F) cohorts showed radiomics nomogram had the highest AUC. DCA, decisive curve analysis, ROC, receiver operating
characteristic; AUC, area under the curve.
TABLE 3 Different models predict the effectiveness of CD8+TILs levels in HER2-positive breast cancer.

Models

Training cohort (n=88) Validation cohort (n=38)

AUC (95% CI)
Sensitivity

(%)
Specificity

(%)
AUC (95% CI)

Sensitivity
(%)

Specificity (%)

Clinical-imaging model
0.785

(0.690,0.881)
76.2% 71.7%

0.803
(0.654, 0.951)

77.8% 80.0%

Rad-score
0.853

(0.771,0.935)
85.7% 82.6%

0.822
(0.686, 0.958)

83.3% 80.0%

Radiomics Nomogram
model

0.866
(0.792,0.941)

83.3% 78.3%
0.886

(0.778, 0.994)
77.8% 90.0%
F
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TILs, Tumor-infiltrating lymphocytes; HER2, human epidermal growth factor receptor 2; AUC, area under the curve; CI, confidence interval.
TABLE 4 Comparison of AUC values in different models.

Models
Training cohort (n=88) Validation cohort (n=38)

Z value P value Z value P value

Clinical-imaging model vs Rad-score 1.263 0.206 0.222 0.825

Clinical-imaging model vs Radiomics nomogram model 2.412 0.016 1.398 0.162

Rad-score vs Radiomics nomogram model 0.598 0.550 1.376 0.169
AUC, area under the curve.
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wavelet transformation of the original images. In both the training and

validation cohorts, the rad-score of the high CD8+TILs level group was

significantly higher than that those of the low CD8+TILs level group.

These findings could be attributed to the fact that CD8+TILs are

cytotoxic T cells that produce gamma interferon, which generates a

tumor inflammatory environment such as central necrosis and edema

(26). Thus, tumors with higher levels of CD8+TILs tend to have a more

heterogeneous enhancement pattern. In this study, the rad-score model

achieved an AUC of 0.853 in the training cohort and 0.822 in the

validation cohort to stratify high and low levels of CD8+TILs. Arefan

et al. (27) used imaging and gene expression data from 73 BC patients

in the TCIA and TCGA databases to establish the relationship between

radiomics features and tumor immune cell abundance by constructing

a multivariate logistic regression model. The results showed that the

predicted AUC of CD8+ T cell abundance was 0.740 and 0.620 in the

cross-validation and external independent validation cohorts,

respectively. The higher AUC for predicting CD8+TILs levels in this

study may be attributed to the fact that the study focused on a

particular BC molecular subtype and included more patient samples.

This study showed that the radiomics nomogram model based

on rad-score and clinical-imaging features (tumor margin and

enhancement pattern) exhibits optimal performance in predicting

the CD8+TILs levels in HER2-positive BC. In the training cohort,

the efficiency of the radiomics nomogram model was significantly

higher than clinical-imaging model, and the difference was

statistically significant (p = 0.016). Although the radiomics

nomogram model was slightly higher than the rad-score, there

was no statistical significance between them (p > 0.05). This finding

indicated that radiomics features were strong components of the

radiomics nomogram, while conventional imaging data were of

limited value for model improvement.

There are several limitations in this study. Firstly, the study is

retrospective, and there may be inherent biases in data collection.

Secondly, this study is a single-center study with a limited number

of cases and lacks external validation. Thirdly, this study lacks

information on patient treatment response and prognosis. Future

studies will further explore the relationship between DCE-MRI

radiomic features and treatment response or prognosis in HER2-

positive breast cancer patients with different CD8+TILs levels in the

multi-center to enhance the clinical applicability of our findings.
Conclusion

In conclusion, this study shows that the MRI-based radiomics

nomogram has a good performance for predicting the CD8+TILs

levels in HER2-positive BC. Our findings indicate a promising

future for the guiding of immunotherapy in HER2-positive BC

patients and deserve further in-depth study.
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