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Multi-parametric MRI-based
radiomics nomogram for
predicting lymphovascular space
invasion in early-stage cervical
adenocarcinoma
Ke-Ying Wang1†, Mei-Ling Xiao1,2†, Yu-Han Fang1,3†,
Jie-Jun Cheng3, Zi-Jing Lin1, Ying Li1* and Jin-Wei Qiang1*

1Department of Radiology, Jinshan Hospital, Fudan University, Shanghai, China, 2Department of
Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of
Medicine, Hangzhou, China, 3Department of Radiology, Shanghai First Maternity and Infant Hospital,
Tongji University School of Medicine, Shanghai, China
Purpose: To develop a magnetic resonance imaging (MRI)-based radiomics

nomogram to predict lymphovascular space invasion (LVSI) status in patients

with early-stage cervical adenocarcinoma (CAC).

Methods: Clinicopathological and MRI data from 310 patients with

histopathologically confirmed early-stage CAC were retrospectively analyzed.

Patients were divided into training (n = 186) and validation (n = 124) cohorts.

Tumor volumes of interest (VOIs) were segmented on T2-weighted imaging (FS-

T2WI) and aligned to diffusion-weighted imaging (DWI), apparent diffusion

coefficient (ADC) maps, and T1-weighted imaging (CE-T1WI) sequences.

Radiomics features were extracted and screened using Pearson correlation and

least absolute shrinkage and selection operator (LASSO) regression, and a radscore

was calculated for each patient. Multivariate logistic regression identified clinical risk

factors, and a radiomics nomogram was constructed by integrating the radscore

with clinical risk factors. Receiver operating characteristic (ROC) curves and areas

under the curve (AUCs) were used to evaluate the performance of the clinicalmodel,

radiomics model, and nomogram. Decision curve analysis was used to assesses the

clinical utility of the nomogram.

Results: Seventeen radiomics features were selected to construct the radscore.

Menopause and tumor diameterwere identified as independent clinical risk factors for

LVSI. The radiomics nomogram achieved AUCs of 0.80 (95% CI: 0.74-0.86) and 0.78

(95% CI: 0.69-0.86) in the training and validation cohorts, outperforming the clinical

model (AUCs: 0.69 and 0.62) and comparable to the radiomics model (AUCs: 0.79

and 0.78). Decision curve analysis showed the nomogram provided clinical benefit.

Conclusions: The radiomics nomogram, integrating radiomic features and

clinical risk factors, could be used to predict LVSI status in early-stage CAC

accurately, supporting preoperative clinical decision-making.
KEYWORDS

cervical adenocarcinoma, lymphovascular space invasion, magnetic resonance imaging,
radiomics, nomogram
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Introduction

Cervical cancer (CC) is the fourth most common cancer and cause

of death among women, with approximately 570,000 new cases and

310,000 deaths annually worldwide (1). The 5-year overall survival rate

of patients with early CC after surgery is greater than 65%, but the

recurrence rate is as high as 30% (2, 3). Cervical adenocarcinoma

(CAC) is the second most prevalent histological subtype of CC

following cervical squamous cell carcinoma (SCC, the most prevalent

histological subtype of CC) (4). In recent years, with the popularization

of CC screening and the application of the HPV vaccine, the mortality

rate of SCC has been decreased (5, 6). However, the incidence and

mortality of CAC are increasing annually (7).

The prognosis and selection of postoperative treatment plans

for patients with early CC following radical resection are primarily

contingent upon postoperative pathological risk factors influencing

recurrence. Risk factors such as the histological type of the tumor,

tumor size, positive surgical margin, involvement of the lower

uterine segment, lymphovascular space invasion (LVSI), depth of

stromal invasion, parametrial invasion, and lymph node metastasis

(LNM) are associated with a higher recurrence rate and poorer

survival outcomes in patients (8–10). Most patients with stage IB-

IIA cervical cancer, based on the International Federation of

Gynecology and Obstetrics (FIGO) staging system, are treated

with hysterectomy-based surgery with pelvic lymph node

dissection (PLND). Adjuvant radiotherapy (RT) or concurrent

chemoradiotherapy (CCRT) after operation can improve

progression-free survival and overall survival for patients with

early stage CC with these risk factors (11). Therefore, a

preoperative and noninvasive assessment to predict adverse

pathologic factors is of great importance to optimize a treatment

plan to lower the incidence of post-treatment morbidity and

improve the quality of life.

Lymphovascular space invasion (LVSI) is defined as the presence

of malignant cells within endothelial-lined vascular or lymphatic spaces

outside of the primary invasive tumor, which plays a crucial role in

tumor invasion and metastasis (12). Previous study showed that, LVSI

is an essential prognostic factor for recurrence as well as overall survival

in patients with early-stage CC (13). For CC patients with early-stage

without LVSI, conization is recommended. However, for CC patients

with early-stage with LVSI, radical hysterectomy and pelvic lymph

node dissection is recommended (14). Furthermore, due to the more

aggressive characteristics of CAC, it is important to predict LVSI in

CAC preoperative. However, at present, most reported studies of LVSI

in CC are based on SCC. Therefore, it is of great clinical usefulness to

establish a stable and reliable prediction model for LVSI in early-

stage CAC.

Magnetic resonance imaging (MRI) is a noninvasive imaging

modality widely used in the assessment of female pelvic tumors (15,

16). However, for conventional MRI, the assessment of the imaging

results performed by radiologists. LVSI status is unable to be

assessed. Radiomics is an innovative technology, which transform

the visual image information into high-dimensional (17).

Radiomics has been gradually applied to predict LVSI status in

gynecological pelvic tumors (18–20). While radiomics-based
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prediction of LVSI has been extensively explored in SCC, limited

attention has been given to CAC, a histologically distinct and more

aggressive subtype. Given CAC’s glandular architecture and higher

heterogeneity, radiomic patterns may differ significantly.

We assumed that radiomics could be useful in predicting LVSI in

CAC preoperatively. Thus, this study aimed to establish and validate a

multi-parametric MRI-based nomogram for preoperatively predicting

LVSI status in patients with early-stage CAC.
Materials and methods

Ethnic consideration

This study was reviewed and approved by the Institutional

Review Board of Jinshan Hospital, Fudan University (No.

JIEC2024-S45). Informed consent was waived for all patients due

to the retrospective nature of the study. The methods conducted

adhered to relevant guidelines and regulations.
Patients

A total of 375 patients with CAC confirmed by histology from

June 2018 to September 2021 were screened in the medical imaging

information system. The clinicopathological and MRI data of

patients were analyzed.

The inclusion criteria for early-stage CAC were as follows:

Histopathologically confirmed early-stage CAC (FIGO stage IB-

IIB). Availability of clinicopathological information. Patients

underwent surgery within one month following the MRI

examination. MRI sequences included fat-saturated T2-weighted

imaging (FS-T2WI), T1-weighted imaging (T1WI), diffusion-

weighted imaging (DWI), apparent diffusion coefficient (ADC)

maps, and contrast-enhanced (CE)-T1WI. Exclusion criteria were

as follows: Tumors too small to be seen (lesion diameter < 1 cm).

Poor image quality with obvious artifacts. Patients receiving

adjuvant radiotherapy or chemotherapy before surgery. Finally, a

total of 310 early-stage CAC patients were enrolled in the study.

Among them, 186 patients were assigned to the training cohort,

while 124 patients were assigned to the validation cohort in a 6:4

ratio randomly.
Clinical information

The demographic and clinicopathological data of all enrolled

patients were reviewed, including age, reproductive history, family

history of malignancy, menopausal status, FIGO stage, LVSI status

on pathology, tumor diameter, and parametrial invasion status on

MRI. Parametrial invasion was assessed based on the disruption of

the normal hypointense stromal ring on T2-weighted imaging

(T2WI). Loss of the hypointense stromal ring continuity, direct

tumor extension into the parametrial fat, or irregularity in the

surrounding tissue signal were considered indicative of invasion.
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The MRI features were interpreted by two radiologists (radiologist 1

and radiologist 2, with 3 and 15 years of experience in gynecological

imaging, respectively) to reach consensus, and confirmed by

radiologist 3 (with 25 years of experience in gynecological

imaging) in cases of disagreement.
Image scan and segmentation

MRI was performed on a 3.0 T MR system (Verio Siemens

Erlangen Germany). MRI sequences and parameters are listed in

Appendix I. Using ITK-SNAP software (http://www.itksnap.org),

the regions of interest (ROIs) were manually drawn along the tumor

margin on each FS-T2WI slice by radiologist 1 and automatically

matched to DWI, ADC maps, and delay-phase CE-T1WI sequences.

The volume of interest (VOI) of the tumor was automatically displayed

following ROI delineation. One month later, 30 patients were

randomly selected for ROI delineation by radiologist 1 and

radiologist 2. Interclass and intraclass correlation coefficients (ICCs)

were calculated to evaluate the reproducibility of radiomics features.
Image feature extraction and selection

The VOIs were imported into the Pyradiomics (version 3.2.0)

toolkit, which runs in a Python (version 3.9.0) environment, to

extract radiomics features. Before feature extraction, all images were

resampled to an isotropic voxel size of 1×1×1 mm³ and underwent

Z-score normalization to standardize intensity distributions across

sequences. These preprocessing steps were performed to minimize

scanner-related variability and systematic bias. Features with high

collinearity (Pearson r > 0.9) were filtered prior to LASSO

regression. Features with an ICC > 0.75 were considered to have

satisfactory reproducibility and were retained. Pearson’s correlation

was then utilized to detect redundant features, and if the correlation

coefficient was > 0.9 for both features, the one with the larger mean

absolute coefficient was eliminated. The least absolute shrinkage

and selection operator (LASSO) regression was performed to select

radiomics features associated with LVSI in early-stage CAC. Penalty

parameter adjustment was performed using 10-fold cross-validation

to select nonzero coefficient features associated with LVSI.
Nomogram development and evaluation

Univariate and multivariate logistic regression analyses were

performed, with a stepwise backward selection method was applied

to screen clinical independent risk factors for CAC LVSI. The stopping

criterion was Akaike’s likelihood ratio test. The final inclusion of

clinical risk factors was based on relevant studies of CAC LVSI risk

factors. The radscore was computed for each patient using the selected

radiomics features and their corresponding regression coefficients. A

radiomics nomogram was established by combining the radscore with
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selected clinical risk factors. Receiver operating characteristic (ROC)

curves with the area under the curves (AUC) were employed to assess

the diagnostic efficacy of the models. Calibration curves were used to

evaluate the goodness of fit of the nomogram (agreement between

predicted and observed results), and the clinical utility of the

nomogram was assessed using decision curve analysis.
Statistical analysis

Statistical analyses were performed using R software (version 4.4.0;

http://www.R-project.org). Quantitative variables were presented as

mean ± standard deviation (SD) for normal distributions or as

median and interquartile range for non-normal distributions, and

were compared using the Student’s t-test or Mann-Whitney U test.

Qualitative variables were compared using the Chi-square test or

Fisher’s exact test. DeLong’s test was used to compare the diagnostic

performance between the radiomics nomogram and radiologists. A

p-value ≤ 0.05 was considered statistically significant.
Results

Clinical characteristics

Of the 310 patients with early-stage CAC, there were 186 LVSI (+)

and 124 LVSI (-) cases confirmed by surgical pathology. The

clinicopathological features of patients with LVSI (+) and LVSI (-)

are listed in Table 1. The flowchart of inclusion, exclusion, and

grouping of patients with early-stage CAC is shown in Figure 1.

Univariate analysis was used to screen for potential clinical

predictors of LVSI. Variables with P < 0.05 were further assessed

using multivariate logistic regression to identify independent risk

factors. Univariate analysis revealed that menopause, tumor

diameter, parametrial invasion on MRI (PMIMR), and disruption of

the cervical stromal ring on MRI (DCSRMR) were four differential

features between the LVSI (+) and LVSI (-) groups in the training and

validation cohorts (all P < 0.05). Multivariate logistic regression analysis

(Table 2) demonstrated that menopause and tumor diameter were

independent risk factors for LVSI in early-stage CAC. A clinical model

was developed based on these two clinical independent risk factors.
Radiomic feature selection and radscore
construction

In the training cohort, 405 features were identified on DWI, FS-

T2WI, and delay-phase CE-T1WI sequences. Following feature

selection, 17 radiomics features were selected, as illustrated in

Figure 2, and the diagnostic efficacy of the 17 radiomics features

were showed in Supplementary Table 1. These features included first-

order features based on the original image and texture features,

including the gray size region matrix (GLSZM), gray level co-
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occurrence matrix (GLCM), gray level dependency matrix (GLDM),

and gray level run length matrix (GLRLM). The selected features and

their corresponding nonzero weighting coefficients are shown in

Figure 3. The radscore was calculated using the following formula:

Radscore  =  0:05635  +  0:09305� T2 firstorder _Maximum + 0:0728� T2

glcm _ ClusterTendency + 0:04676� T2 glcm _ InverseVariance − 0:10165

� T2 glszm _GrayLevelNonUniformity − 0:03472� T2

glszm _ LargeAreaHighGrayLevelEmphasis − 0:08877� T2

gldm_DependenceNonUniformityNormalmalized + 0:03044� DWl

firstorder _ Kurtosis − 0:08385� DWI glcm _ ClusterProminence + 0:05277

� DWI glcm _ClusterShade + 0:00252� DWI glcm _ Idmn − 0:14647� DWI

glrlm _ ShorRunEmphasis + 0:11027� DWI glszm _ ZoneEntropy + 0:06508

� DWI gldm _ LargeDependenceLowGrayLevelEmphasis + 0:06673� DWI

gldm_ SmallDependenceHighGrayLevelEmphasis + 0:08309� C

firsorder _ 10Percentile + 0:03913� C

glszm _ LargeAreaLowGrayLevelEmphasis − 0:06199� C glszm _ ZonePercentage
Radiomics nomogram development and
validation

AnMRI radiomics nomogram was developed by integrating the

radscore with clinical independent risk factors. To minimize

collinearity, tumor diameter-although a significant clinical

predictor-was excluded from the final nomogram, as size-related

information was already embedded in radiomic features such as

firstorder_Maximum, and only menopause was retained as a

clinical factor. The nomogram for predicting LVSI in early-stage

CAC is shown in Figure 4. Calibration curves demonstrated good
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agreement between predicted and observed results of the

nomogram in both the training and validation cohorts (Figure 4).
Diagnostic performance evaluation

Table 3 presents the diagnostic performance of the clinical

model, radscore, and nomogram in the training and validation

cohorts. For predicting LVSI status in early-stage CAC: The AUCs

of the clinical model were 0.69 (95% CI: 0.62-0.77) in the training

cohort and 0.62 (95% CI: 0.52-0.72) in the validation cohort. The

AUCs of the radscore were 0.79 (95% CI: 0.73-0.86) and 0.78 (95%

CI: 0.69-0.86) in the training and validation cohorts, respectively.

The AUCs of the radiomics nomogram were 0.80 (95% CI: 0.74-

0.86) and 0.78 (95% CI: 0.69-0.86) in the training and validation

cohorts. The nomogram’s AUCs were significantly higher than

those of the clinical model (both P < 0.001), although not

significantly different from those of the radscore in both the

training (P = 0.462) and validation cohorts (P = 0.871).

Decision curve analysis (Figure 5) indicated that, within a

threshold probability range of 1% to 86%, the radiomics

nomogram and radscore provided greater clinical net benefits

than the full diagnosis of LVSI (+) or LVSI (-).
Discussion

This study developed and validated a multi-parametric MRI-

based radiomics nomogram to preoperatively predict LVSI status in

early-stage CAC. The results demonstrated that the nomogram,

combining radiomics features and clinical factors, achieved high
TABLE 1 Comparison of clinicopathologic features between LVSI (+) and LVSI (-) in patients with early-stage CAC.

Characteristics
Training cohort Validation cohort

LVSI(+) (N=110) LVSI(-) (N=76) P-value LVSI(+) (N=110) LVSI(-) (N=76) P-value

Age (y) 48 ± 10.9 46 ± 8.6 0.191 48 ± 10.3 48 ± 9.7 0.966

Family CA history 7 (6.4%) 2 (2.6%) 0.413 8 (10.5%) 11 (22.9%) 0.107

Reproductive history 98 (89.1%) 73 (96.1%) 0.150 74 (97.4%) 44 (91.7%) 0.312

Menopause 53 (48.2%) 22 (28.9%) 0.013 31(40.8%) 21 (43.8%) 0.009

FIGO stage I/II 83/27 (75.5%/24.5%)
64/12
(84.2%/15.8%)

0.208 56/20 (73.7%/26.3%)
37/11
(77.1%/22.9%)

0.831

Tumor
diameter (cm)

3.9 ± 1.1 3.3 ± 1.2 0.002 3.7 ± 1.2 3.2 ± 1.0 0.017

PMIMR 28 (25.5%) 9 (11.8%) 0.036 11 (14.5%) 4 (8.3%) 0.046

DCSRMR 73 (66.4%) 32 (42.1%) 0.002 43 (56.6%) 26 (54.2%) 0.038
CAC, cervical adenocarcinoma; LVSI, lymph-vascular space invasion; FIGO, International Federation of Gynecology and Obstetrics; PMIMR, parametrial invasion on MRI; DCSRMR,
disruption of the cervical stromal ring on MRI.
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predictive performance. These findings highlight the potential of

radiomics to enhance noninvasive risk stratification in CAC

patients. Unlike prior studies that predominantly target SCC or

use fewer imaging modalities, our nomogram specifically addresses

CAC, a histologically distinct and more aggressive subtype. By

leveraging features from T2WI, DWI, and CE-T1WI and

integrating clinical risk factors, our model demonstrated superior

diagnostic performance (AUC: 0.80 and 0.78) compared to prior

models, which often reported AUCs in the range of 0.70-0.75. This

comprehensive, CAC-specific approach fills an important gap in

current radiomics research.

Previous studies commonly identify tumor size as significant

predictors of LVSI in SCC. Dong S et al. indicated that LVSI was

strongly associated with maximum tumor diameter in SCC (21).

Chen et al.’s retrospective study showed that gross tumor volume

and the maximum diameter of CC were helpful in quantitatively
Frontiers in Oncology 05
predicting the presence of LVS (22). The probably pathological

mechanism could be that LVSI was mainly around the tumor. The

larger the tumor size, the deeper the surrounding invasion and there

was more likely to involve LVSI (10). Burghardt E et al. reported

that tumor volume has been applied for the evaluation of patients

with early invasive CAC (23). In this study, although tumor

diameter was statistically significant, it was excluded from the

final nomogram due to collinearity with radiomics features

encoding size and intensity (e.g., firstorder_Maximum). Retaining

diameter would risk inflating the model through feature

redundancy. The nomogram thus reflects the added

discriminative power of radiomics texture and intensity

descriptors beyond simple morphometrics, particularly in tumors

with heterogeneous architecture like CAC. Menopause emerged as

an other independent clinical predictor of LVSI. This finding aligns

with previous studies suggesting that hormonal changes may

influence tumor biology, promoting aggressiveness and metastatic

potential in postmenopausal women. Similar studies in SCC have

also identified menopausal status as a significant factor (24).

By integrating multi-parametric MRI sequences (T2WI, DWI,

and CE-T1WI), this study captured a comprehensive range of

tumor characteristics. Unlike studies that often focus on fewer

imaging modalities, this approach leverages the full spectrum of

MRI data to enhance predictive power. The inclusion of DWI and

ADC-based features aligns with previous findings that diffusion

metrics are particularly effective in predicting LVSI (25). Seventeen

radiomics features, including first-order and texture metrics

(GLSZM, GLCM, GLDM, and GLRLM), were selected for LVSI
TABLE 2 Multivariate logistic regression analysis of risk factors for LVSI
in cervical adenocarcinoma in the training group.

Characteristics
Multivariate logistic regression analysis

Estimate Std. error t value Pr(>|t|)

Menopause 0.29 0.11 2.62 0.009

Tumor diameter 0.09 0.04 2.50 0.013

PMIMR -0.01 0.11 -0.11 0.911

DCSRMR - 0.15 0.08 - 1.90 0.060
FIGURE 1

Flowchart of patient inclusion and exclusion and grouping. (CAC, cervical adenocarcinoma; MRI, magnetic resonance imaging; FS-T2WI, fat-suppressed T2-
weighted imaging; T1WI, T1-weighted imaging; DWI, diffusion-weighted imaging; ADC, apparent diffusion coefficient; CE-T1WI, contrast-enhanced T1WI).
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prediction. Texture features such as GLCM_ClusterTendency and

GLSZM_GrayLevelNonUniformity may reflect intratumoral

heterogeneity, which correlates with glandular irregularity,

necrosis, and microvascular infiltration seen in CAC with LVSI.

CAC’s glandular architecture often leads to heterogeneous signal

intensities on MRI, which radiomics can capture through such

features. These patterns may indirectly reflect histologic indicators

of aggressiveness and vascular invasion, supporting their relevance

in LVSI prediction. While similar features have been reported in

SCC studies, which demonstrated the association between GLSZM,

GLDM and GLRLM-derived heterogeneity metrics and LVSI (26).

This study is unique in demonstrating their predictive value in
Frontiers in Oncology 06
CAC, where glandular histology and more aggressive behavior may

influence radiomics signatures. CAC’s glandular structure

introduces more pronounced heterogeneity and texture variations

compared to SCC. This may explain the stronger association

between LVSI and texture features like GLSZM in this study. This

result highlights the complexity of CAC, where LVSI prediction is

complicated by unique biological pathways.

The nomogram achieved AUCs of 0.80 and 0.78 in the training

and validation cohorts, respectively, significantly outperforming the

clinical model alone. Although the diagnostic performance of the

nomogram was only slightly improved compared to the radscore

alone, the inclusion of clinical variables enhances interpretability
FIGURE 2

LASSO coefficient profiles using the LASSO algorithm to select 17 radiomics features (A) using 10-fold cross-validation to select the parameters l
(B). A vertical line is drawn at the optimal value to generate 17 features with non-zero coefficients.
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and usability in real-world settings. The graphical format of the

nomogram facilitates easier clinical decision-making and patient

counseling, which can aid in individualized treatment planning.

These findings underscore the potential of radiomics for

noninvasive LVSI prediction, enabling early risk stratification. Li

et al. (27) developed a nomogram by combining the CE-T1WI

sequence and whole red blood cell count to discriminate between

LVSI and non-LVSI patients, with AUCs of 0.75 and 0.73 in the

training and validation cohorts, respectively. In contrast to previous

radiomics investigations, this study boasted a larger sample size and

a stronger focus on CAC patients, resulting in better predictive

power (28). However, this study extends the application to CAC, a

less common and more aggressive subtype, addressing a gap in

existing literature. Compared to studies by previers studies, our

model may be attributed to the exclusive focus on CAC and use of

multi-parametric MRI, allowing better texture characterization of

glandular tumor heterogeneity. Additionally, our sample size is

among the largest in CAC-focused radiomics literature, increasing

model stability.

The current study had several limitations. First, although our

sample is the largest to date focused on early-stage CAC, it remains

from a single institution, and the lack of external validation and the

moderate size of the validation cohort (n = 124) may introduce

overfitting, particularly in high-dimensional radiomics modeling.
Frontiers in Oncology 07
Future multi-center prospective studies are needed to confirm the

reproducibility of our model across diverse imaging protocols and

populations. Second, only one clinical risk factor was included, which

did not enhance much of the predictive capability of the nomogram

compared to the radscore alone. This observation may be attributed

to the CAC subtype of patients in this study. Third, blood tumor

markers, including CA125, CA199, and CEA, as well as genomic and

proteomic features, were not included in this study. Fourth, all images

were acquired from a single 3T scanner. Therefore, we could not

assess feature robustness across different vendors or protocols. This

restricts the clinical transferability of our radiomics model and

warrants further validation under scanner variability. Fifth, tumors

<1 cm were excluded due to segmentation limitations, potentially

introducing selection bias. These smaller tumors may exhibit lower

LVSI prevalence, and excluding them could skew results. Although

inter- and intra-observer reproducibility was high, the manual

segmentation process still carries some subjectivity. Importantly,

radiologists performing segmentation were blinded to LVSI status

to mitigate incorporation bias. Finally, although decision curve

analysis supports the potential clinical utility of our model, direct

comparison with visual MRI interpretation by expert radiologists was

not performed. Such comparison is essential to establish the

incremental value of radiomics in real-world decision-making and

will be the focus of future prospective trials.
FIGURE 3

Selected 17 radiomics features and their respective non-zero weighting coefficient.
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TABLE 3 Diagnostic efficacy of clinical model, radscore and nomogram in the training and validation cohorts.

Model AUC (95% CI) ACC SPE SEN NPV PPV P-value#

Training

Clinical risk factors 0.69 (0.62 - 0.77) 0.58 0.71 0.48 0.49 0.70 < 0.001

Radscore 0.79 (0.73 - 0.86) 0.72 0.81 0.66 0.60 0.85 0.462

Nomogram 0.80 (0.74 - 0.86) 0.74 0.79 0.70 0.65 0.83 –

Validation

Clinical risk factors 0.62 (0.52 - 0.72) 0.53 0.43 0.59 0.40 0.63 < 0.001

Radscore 0.78 (0.69 - 0.86) 0.74 0.68 0.78 0.68 0.78 0.871

Nomogram 0.78 (0.69 - 0.86) 0.72 0.81 0.66 0.60 0.85 –
F
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ACC, accuracy; AUC, area under the curve; 95% CI, 95%confidence interval; SPE, specificity; SEN, sensitivity; NPV, negative predictive value; PPV, positive predictive value. #, compared with
nomogram by DeLong’s test; -, not applied
FIGURE 4

Radiomics nomograms integrating radscore and clinical independent risk factors (menopause) based on the training cohort (A). The calibration
curves of the training (B) and validation cohorts (C) show good agreement between the predicted and actual observations of the nomograms.
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In conclusion, we developed a radiomics nomogram by

integrating multi-parametric MRI radiomics and clinical

independent risk factors, that can preoperatively and non-

invasively predict LVSI status in patients with early-stage CAC,

thereby help gynecologist in formulating individualized

treatment strategies.
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