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Lactylation-related gene 
signatures identify glioma 
molecular subtypes with 
prognostic, immunological, 
and therapeutic implications 
Yanliang Tang, Xiaoli Zhang, Xiaofei Tang, Ye Yuan 
and Wenwen Wang* 

Department of Neurology, Fuyang Hospital of Traditional Chinese Medicine, Hangzhou, 
Zhejiang, China 
Introduction: Lactic acid is a by-product of energy metabolism and a signaling 
molecule that influences tumor progression by regulating immune cell function, 
angiogenesis, and epigenetic modifications. 

Methods: This study analyzed data from the TCGA database on gliomas to 
systematically elucidate the expression patterns, prognostic value, and functional 
regulatory networks of lactylation-related genes. 

Results: In this study, 17 lactylation-related prognostic genes were identified 
through the analysis of TCGA-GBM data. Using non- negative matrix 
factorization (NMF), two GBM subtypes based on lactylation- related genes 
(LRGs), termed GBM1 and GBM2, were identified. Survival analysis revealed that 
the overall survival (OS) of the GBM1 group was significantly lower than that of 
GBM2 group. Furthermore, notable differences were observed in the expression 
of key GBM-associated molecular markers between the two subtypes. Tumor 
microenvironment (TME) analysis demonstrated distinct immune landscapes and 
genomic characteristics between GBM1 and GBM2. The GBM1 group exhibited 
higher immune cell infiltration and immune function scores compared to GBM2. 
Drug sensitivity analysis further revealed differences in response to 
chemotherapy and targeted therapies between the two subtypes. In vitro data 
demonstrated that LCP1 knockdown suppressed cell proliferation and invasion, 
and promoted apoptosis in glioma cells. 

Conclusion: In conclusion, our study systematically uncovers the significant role 
of LRGs in GBM molecular subtyping, prognosis evaluation, and therapeutic 
guidance. These findings offer new insights and potential strategies for the 
personalized treatment of GBM. 
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Introduction 

Gliomas are the most common primary malignant tumors of 
the central nervous system, accounting for over 30% of all brain 
tumors. Among them, glioblastoma multiforme (GBM; WHO grade 
IV) has garnered significant attention due to its pronounced 
invasiveness, high recurrence rate, and extremely poor prognosis 
(1). Despite continuous advancements in multimodal therapies, 
including surgery, radiotherapy, and chemotherapy, the median 
survival of GBM patients remains under 15 months, with a 5-year 
survival rate of less than 5% (2). This grim situation underscores the 
urgent need to deeply elucidate the molecular mechanisms driving 
glioma malignancy. In recent years, the intersection of tumor 
metabolic reprogramming and epigenetic regulation has offered 
new perspectives for glioma biology and potential treatment 
strategies. A hallmark of gliomas is the Warburg effect, or aerobic 
glycolysis, which leads to the accumulation of substantial amounts 
of lactate in the tumor microenvironment (TME) (3). Traditionally 
regarded as a metabolic byproduct, lactate is now recognized as a 
critical signaling molecule that influences tumor progression by 
modulating immune cell function, regulating angiogenesis, and 
altering epigenetic landscapes (4, 5). 

Posttranslational modifications (PTMs) are covalent alterations, 
either reversible or irreversible, that modify protein function and 
dynamics by adding chemical groups or cleaving peptide bonds, 
thereby regulating diverse biological processes (6). The types of PTMs 
include phosphorylation, ubiquitination, acetylation, methylation, 
glycosylation, sumoylation, and palmitoylation (7). PTMs have 
been validated in glioma progression, including ubiquitination, 
sumoylation, and acetylation (8–10). Lactylation is a newly 
discovered PTM first reported in 2019 (11), which involves the 
covalent attachment of lactyl groups that is derived from lactate to 
lysine residues on histones, directly regulating chromatin structure 
and transcriptional regulation (12). Lactylation plays a key role in 
macrophage polarization, immune regulation within tumors, and the 
cellular response to metabolic stress (13–16). For example, elevated 
lactate levels in the TME have been shown to induce histone H3K18 
lactylation, thereby promoting the expression of pro-tumor genes 
such as PD-L1 and inhibiting anti-tumor immune responses (17, 18). 
Additionally, lactate can be reused by oxidative tumor cells as an 
energy substrate, facilitating tumor progression through a “metabolic 
symbiosis” model (19). Collectively, lactate is not merely a metabolic 
by product, but also a core regulatory factor of the malignancy and a 
potential therapeutic target. With the rapid advancement of high-
throughput sequencing technologies, public databases such as TCGA, 
CGGA, and GTEx have become valuable resources for exploring the 
molecular heterogeneity of gliomas (20, 21). Prognostic models based 
on machine learning, including LASSO-Cox regression, have been 
successfully applied to identify metabolism-related genes in gliomas 
(22), while WGCNA has proven effective in detecting hub genes 
associated with lactylation modifications (23). Moreover, integrative 
analyses of epigenomics (e.g., ChIP-seq, ATAC-seq) and 
metabolomics offer the potential to uncover how lactylation 
influences chromatin accessibility and transcription factor activity 
(24, 25). Lactylation has been revealed to be involved in GBM 
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development, prognosis and treatment (26). One group used an 
integrated analysis of transcriptome and scRNA sequencing, and 
identified prognostic genes related to histone lactylation in GBM (27). 
However, a comprehensive and systematic analysis of the regulatory 
network underlying lactylation modifications is still lacking. To date, 
no molecular classification system for gliomas based on LRGs has 
been established. 

In this study, we systematically analyzed glioma data from the 
TCGA database to elucidate the expression patterns, prognostic 
value, and functional regulatory networks of LRGs. First, we 
screened differentially expressed LRGs (such as EEF1A1, S100A4, 
RPL5) and established a molecular subtyping system based on these 
genes. This classification stratified glioma patients into distinct 
molecular subtypes, allowing for prognostic assessment through 
survival analysis. subsequently, we utilized WGCNA and Gene Set 
Enrichment Analysis (GSEA) to reveal the biological pathways 
associated with these gene sets. Furthermore, we conducted 
protein-protein interaction (PPI) networks to predict potential 
downstream targets and interaction partners of lactylation 
regulators. This study is the first to systematically define 
molecular subtypes of GBM based on LRGs, thereby shedding 
light on the underlying molecular heterogeneity. Our findings 
may provide valuable insights into prognostic prediction and pave 
the way for personalized therapeutic strategies in GBM. 
Materials and methods 

Collection and processing of 
transcriptomic data 

RNA sequencing (RNA-seq) data for GBM, along with 
corresponding clinical information, were downloaded from the 
Cancer Genome Atlas (TCGA) database (https://www.cancer.gov/ 
about-nci/organization/ccg/research/structural-genomics/tcga). 
After filtering, 168 GBM samples with available survival and clinical 
data, as well as 5 normal brain tissue samples, were selected for 
analysis. Expression data were converted into transcripts per 
million (TPM) format and log2-transformed for subsequent 
analysis. Somatic mutation data were downloaded separately from 
the TCGA dataset. The LRGs were sourced from previous published 
studies (28). A PPI network of the LRGs was constructed using the 
STRING database (https://string-db.org/cgi/input.pl). 
Collection and processing of single-cell 
transcriptomics data 

Single-cell RNA-seq data were obtained from the GEO database 
GSE271618, which comprises approximately 25,000 cells in total. Data 
analysis was conducted using R and the Seurat package. Quality control 
was performed by filtering cells based on mitochondrial and ribosomal 
gene content, setting gene expression thresholds between 200–1000 for 
mitochondrial and 200–2000 for ribosomal genes. Key Seurat functions 
used included NormalizeData, FindVariableFeatures, and ScaleData for 
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normalization, identification of highly variable genes, and scaling, 
respectively. Principal component analysis (PCA) was performed 
using the “RunPCA” function. Batch effects across samples were 
corrected using the Harmony package, and dimensionality reduction 
and clustering were performed using uniform manifold approximation 
and projection (UMAP). Cell type annotation was based on established 
marker genes. 
Identification of differentially expressed 
and prognostic genes 

Differential expression analysis between GBM patients and 
healthy controls were performed using the limma R package 
(version 3.60.6). Significantly differentially expressed genes 
(DEGs) were defined using the thresholds: adjusted P < 0.05 and 
|log2 fold change| > 1. Visualization of DEGs was conducted using 
the R packages pheatmap (version 1.0.12), dplyr (version 1.1.4), 
ggplot2 (version 3.5.1), and ggrepel (version 0.9.6). 

By intersecting the DEGs with LRGs, 100 LRGs in GBM were 
identified. Univariate Cox regression analysis was then performed 
on these 100 genes with a threshold of p < 0.05, resulting in the 
identification of 17 prognostically relevant genes. A Venn diagram 
was generated using the VennDiagram package (version 1.7.3). A 
forest plot displaying hazard ratios (HRs) and p-value for the 17 
genes was created using the survival R package (version 3.7.0). 
Identification of molecular subtypes of 
GBMs through consensus clustering 

To classify GBM molecular subtypes, consensus clustering was 
performed using the 17 identified prognostic LRGs within the 
TCGA-GBM cohort. Non-negative matrix factorization (NMF) 
was applied via the NMF R package. The optimal number of 
clusters was evaluated for k values ranging from 2 to 5, with 
1,000 iterations to ensure result stability. Heatmaps were 
generated using the pheatmap package to visualize clustering 
outcomes. PCA was used to determine whether the identified 
subtypes could effectively distinguish GBM samples. Survival 
differences between subtypes were evaluated using the survival 
and survminer packages to investigate the relationship between 
molecular subtypes and OS. 
Assessment of immune cell infiltration 

TME characteristics were calculated for each GBM sample based 
on the gene expression patterns using the ESTIMATE, including 
stromal score, immune score and estimate score. To quantify 
immune cell infiltration, single-sample gene set enrichment analysis 
(ssGSEA) was performed using transcriptomic data and immune-relate 
gene sets. The Wilcoxon rank-sum test was employed to compare the 
immune cell infiltration levels between the two identified 
GBM subtypes. 
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Drug sensitivity analysis 

Drug sensitivity analysis was conducted using the pRRophetic R 
package (version 0.5), which builds prognostic models from gene 
expression profiles of cancer cell lines to estimate the drug response 
in patient samples. The half-maximal inhibitory concentration 
(IC50) values were calculated for selected chemotherapeutic and 
targeted drugs. Boxplots were used to visualize and compare 
differences in drug sensitivity (IC50 values) between the 
GBM subtypes. 
Weighted gene co-expression network 
analysis 

WGCNA was performed on the TCGA-GBM dataset using the 
WGCNA package (version 1.73). The top 25% of genes with the 
highest variance across samples were selected for analysis. Pearson 
correlation coefficients were calculated to construct an adjacency 
matrix, with a soft-thresholding power of 5 applied to enhance 
network scale-freeness. The adjacency matrix was then converted 
into a Topological Overlap Matrix (TOM) and gene modules were 
identified using a dynamic tree-cutting algorithm. Within the 
identified modules, genes most strongly correlated with LRGs 
were defined as feature genes related to lactylation. 
Gene set enrichment analysis 

Reference gene sets c5.go.v2024.1.Hs.symbols.gmt (GO) and 
c2.cp.kegg_medicus.v2024.1.Hs.symbols.gmt (KEGG) were 
downloaded from the Molecular Signatures Database (MSigDB) 
v4.0. GSEA was performed to assess pathway activity differences 
between the two molecular subtypes. DEGs between subtypes were 
identified using the limma package (version 3.60.6). Subsequently, 
GO and KEGG were conducted to describe the functional roles of 
the DEGs. 
Cell culture 

Human glioma cell lines U251 and LN229 were bought from 
the Cell bank of the Chinese Academy of Science (Shanghai, China). 
Cells were maintained in RPMI-1640 medium supplemented with 
10% fetal bovine serum at 37°C in a humidified atmosphere 
containing 5% CO2. 
Transfection 

Lentivirus shRNAs targeting LCP1 (shRNA#1: GCG GAC ATT 
TAG GAA CTG GAT; shRNA#2: CCT GGG TAT AGA GTA CGA 
GAA) and a negative control shRNA were purchased from 
GenePharma (Shanghai, China). Transfections were performed 
using Lipofectamine 3000 Reagent (Invitrogen, Carlsbad, USA) 
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according to the manufacturer’s protocol. Transfection efficiency 
was assessed by Western blotting. 
Western blotting 

Total protein was extracted using RIPA lysis buffer and 
separated by SDS-PAGE, then transferred onto a PVDF 
membrane. Membranes were blocked with 5% skim milk at room 
temperature for 1 hour, followed by incubation with primary 
antibodies and then the appropriate secondary antibodies. The 
primary antibodies used were anti-LCP1 (1:1000, #5350, Cell 
Signaling Technology, MA, USA) and anti-GAPDH antibodies 
(1:5000, #2118, CST, MA, USA). 
CCK-8 assay 

Cell viability was measured using the Cell Counting Kit-8 
(CCK-8) assay. Glioma cells transfected with shLCP1 were seeded 
into plates and incubated for various time pints. Subsequently, cells 
were incubated with 10 µL of CCK-8 solution for 2 hours. The OD 
value at 450 nm was assessed using a microplate reader. 
EdU assay 

Cell proliferation was evaluated using an EdU kit (Beyotime, 
China). Transfected cells were seeded into 24-well plates and 
cultured for 72 hours, followed by incubation with EdU solution 
for 4 hours. Cells were then fixed with 4% paraformaldehyde and 
treated with Click reaction mixture for half hour. Hoechst 33342 
was used for nuclear staining. Images were acquired using a 
fluorescence microscope, and the proportion of EdU-positive cells 
were quantified using ImageJ software. 
 

Apoptosis assay 

Apoptosis was analyzed using an Annexin V-FITC/PI apoptosis 
detection kit. Following shLCP1 transfection, glioma cells were 
harvested, washed, and resuspended in 500 mL of  1×binding
buffer. Then, 5 µL of Annexin V-FITC and 10 mL of propidium 
iodide (PI) were added. Apoptotic cells were detected using 
flow cytometry. 
Transwell invasion assay 

Cell invasive capacity was measured using Transwell chambers 
(Corning, USA) pre-coated with Matrigel. The lower chambers 
were filled with medium containing 10% fetal bovine serum. 
Transfected cells suspended in serum-free medium were added to 
the upper chamber. After 24 hours of incubation, non-invading 
cells were removed by a cotton swab. Invading cells on the lower 
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surface of the membrane were fixed with 4% polyformaldehyde, 
stained with crystal violet, and imaged. The number of invaded cells 
was counted under a macroscope. 
Statistical analysis 

All statistical analyses were performed using R software (version 
4.4.1) and relevant R packages. For Wilcoxon rank-sum tests, chi-
square test, Kaplan–Meier survival analysis, and t-test, a p-value < 
0.05 was considered statistically significant. For GO, KEGG, and 
GSEA analyses, a false discovery rate (FDR) < 0.05 was used to 
determine statistical significance. 
Results 

Identification of lactylation-related 
prognostic genes in GBM 

First, mRNA expression data from 168 GBM tumor tissues and 5 
normal brain tissues were obtained from the TCGA database, along 
with corresponding clinical information. Differential expression 
analysis was performed, a volcano plot displayed significantly 
upregulated and downregulated genes among all samples 
(Figure 1A). The differential genes of P <0.05 (Supplementary 
Figure 1A). By intersecting 6,638 DEGs with 327 previously reported 
LRGs, a total of 100 GBM-associated LRGs were discovered 
(Figure 1B). The top 20 differentially expressed LRGs were visualized 
in a heatmap (Figure 1C). Univariate Cox regression analysis was then 
conducted on the 100 candidate genes, resulting in the identification of 
17 prognostic LRGs: EEF1A1, FABP5, KRT1, LCP1, LGALS1, LSP1, 
PDLIM1, PFN1, RPL13, RPL29, RPL5, RPS11, S100A11, S100A4, 
SARNP, SPR, and UBE2E1. These genes were associated with 
varying hazard ratios, as shown in the forest plot (Figure 1D). A 
gene correlation heatmap highlighted strong positive correlations 
between several genes at the transcriptomic level, including EEF1A1 
with RPL13, RPL29, RPL5, and RPS11; LCP1 with LSO1 and S100A11; 
LGALS1 with PFN1, S100A11, and S100A4; PFN1 with LGALS1 and 
S100A11 (Figure 1E; Supplementary Figure 1B). To explore protein-
level interactions, a PPI network was constructed using the STRING 
database. The network revealed extensive interconnectivity among 
proteins encoded by these prognostic genes, including both known 
and predicted interactions (Figure 1F). 
Identification of novel GBM subtypes via 
unsupervised learning 

To explore the prognostic ability of LRGs in GBM, unsupervised 
clustering was performed using the NMF algorithm based on the 
expression of 17 prognostic LRGs in 168 GBM patients. The optimal 
number of clusters was determined to be two, resulting in the 
classification of samples into two distinct subtypes: GBM1 (n = 50) 
and GBM2 (n =118) (Figures 2A, B; Supplementary Figure 2). 
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Principal component analysis (PCA) further confirmed that these 
subtypes could be effectively distinguished based on the expression 
profiles of the 17 LRGs (Figure 2C). Kaplan–Meier survival analysis 
revealed that patients in the GBM1 group had significantly shorter 
OS compared to those in the GBM2 group (P = 0.031) (Figure 2D). 
Expression analysis showed substantial differences in LRG expression 
between the two clusters (Figure 2E). Specifically, LCP1, LSP1, 
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PDLIM1, PFN1, LGALS1, S100A11, and S100A4 were highly 
expressed in the GBM1 cluster, while SARNP, UBE2E1, RPL13, 
RPL5, EEF1A1, RPL29, and RPS11 were significantly upregulated in 
the GBM2 cluster. Additionally, among the 168 GBM patients, only 8 
exhibited IDH1 missense mutations. Notably, all 8 patients belonged 
to the GBM2 group, consistent with GBM2 higher overall survival 
compared to the GBM1 group. 
FIGURE 1 

Differential expression analysis of lactylation-related genes in GBM. (A) Volcano plot of differentially expressed genes (DEGs) in GBM. (B) Venn 
diagram showing the overlap between glioblastoma DEGs and lactylation-related genes. (C) Heatmap displaying the top 40 lactylation-related DEGs. 
(D) Forest plot of prognostic lactylation-related DEGs, based on univariate Cox regression. (E) Correlation analysis among intersecting genes. 
(F) Protein–protein interaction (PPI) network illustrating known and predicted interactions among prognostic lactylation-related DEGs. 
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The TME plays a critical role in glioma progression, encompassing 
both tumor and non-tumor components, including innate and 
adaptive immune cells with pro- or anti-tumor activities. To 
investigate the immunological landscape of the identified GBM 
subtypes, we applied the ssGSEA algorithm to quantify the 

TME characteristics in GBM clusters 
Frontiers in Oncology 06
infiltration of 29 immune cell types in each sample (Figure 3A). 
Using the Wilcoxon rank-sum test, we compared the abundance of 
16 immune cell types across two GBM clusters and found significant 
differences in 10 of them. These included activated dendritic cells 
(aDCs), DC8, macrophages, mast cells, neutrophils, T helper cells, T 
follicular helper (Tfh) cells, Th2 cells, tumor-infiltrating lymphocytes 
(TILs), and regulatory T cells (Tregs) (Figure 3B). Furthermore, the 
FIGURE 2 

Molecular subtype classification of GBM based on lactylation-related DEGs. (A) Consensus clustering identified two distinct subtypes (k = 2). 
(B) Consensus matrix heatmap and cumulative distribution function (CDF) plot illustrating clustering stability. (C) Principal component analysis (PCA) 
showing clear separation between GBM1 and GBM2 subtypes. (D) Kaplan–Meier survival curves comparing overall survival between the two 
subtypes. (E) Expression patterns of 17 lactylation-related DEGs across GBM1 and GBM2 subtypes. 
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activity of 13 immune-related functions was analyzed between the two 
subtypes. Significant differences were observed in 11 immune functions 
(Figure 3C), including APC_co_inhibition, APC_co_stimulation, 
chemokine receptor (CCR), Check-point, Cytolytic activity, HLA, 
Frontiers in Oncology 07 
Inflammation-promoting, Para inflammation, T_cell_co-inhibition, 
T_cell_co-stimulation, and Type_II_IFN_Response. These findings 
indicate that the GBM1 subtype exhibits a more immunologically 
active TME, as indicated by higher immune cell infiltration and 
FIGURE 3
 

Tumor microenvironment characteristics of lactylation-based GBM subtypes. (A) Heatmap of 28 immune cell infiltration profiles across samples.
 
(B) Comparison of 16 immune cell infiltration scores between GBM1 and GBM2 subtypes. (C) Comparison of 13 immune-related pathway activity 
scores between subtypes. (D) Expression levels of 30 immune checkpoint genes in the two GBM subtypes. (E) ESTIMATE-derived immune and 
stromal scores in GBM1 and GBM2. (F) Waterfall plot of somatic mutation frequencies in the GBM1 cluster. (G) Waterfall plot of somatic mutation 
frequencies in the GBM2 cluster. *P < 0.05; **P < 0.01; ***P < 0.001. 
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immune function scores. Consistent with this, expression analysis of 30 
immune checkpoint genes revealed generally elevated levels in the 
GBM1 cluster (Figure 3D). 

We further evaluated the stromal and immune scores using the 
ESTIMATE algorithm. Both scores were significantly higher in 
GBM1 than in GBM2, indicating greater infiltration of stromal 
and immune cells  within  the TME  of  the GBM1 subtype

(Figure 3E). Given that tumor genomic alterations are closely 
associated with immune phenotypes, we examined the somatic 
mutation landscape of the two GBM subtypes using TCGA 
mutation data. While the most frequently mutated genes, 
including TP53, EGFR, TTN, MUC16, FLG, ATRX, LRP2, 
SPTA1, and LRP1, were common to both subtypes, they occurred 
at higher frequencies in the GBM2 group (Figures 3F, G). These 
findings highlight distinct genomic and immunological profiles 
between GBM1 and GBM2. 
 

GO and KEGG Pathway enrichment 
analysis 

To further investigate the molecular differences between the 
GBM1 and GBM2 subtypes, we performed differential expression 
analysis. Using a significance threshold of P < 0.05 and |log2 FC| > 
1, a total of 849 DEGs were identified between the two groups. 
These DEGs were subsequently subjected to GO and KEGG 
enrichment analyses to explore their biological implications. GO 
enrichment analysis revealed significant enrichment in biological 
processes (BP) related to the positive regulation of cytokine 
production and in cellular components (CC) associated with 
secretory granule membranes. KEGG pathway analysis showed 
notable enrichment in the cytokine–cytokine receptor interaction 
pathway (Figures 4A, B),  suggesting  active immune and

inflammatory signaling differences between the two subtypes. To 
gain a more detailed understanding of the functional divergence, 
GSVA was conducted to evaluate enrichment scores of GO and 
KEGG terms across subtypes. In GBM1, the enriched GO terms 
included sulfuric ester hydrolase activity, protein sequestering 
activity, and osteoclast proliferation (Figure 4C). KEGG 
pathway enrichment in GBM1 highlighted pathways such as 
AHR signaling, and NF-kB-mediated transcription activation 
(Figure 4D), indicating subtype-specific involvement in 
inflammation and immune regulation. 
Drug sensitivity profiling 

To assess the therapeutic relevance of the identified GBM 
subtypes, we performed drug sensitivity analysis based on gene 
expression data using the pRRophetic algorithm. A panel of 
chemotherapeutic and targeted agents was evaluated by 
estimating the half-maximal inhibitory concentration (IC50) 
values for each subtype. GBM1 exhibited significantly higher IC50 
values for several compounds, including BMS-509744, AP-24534, 
GSK-650394,  GW843682X,  etoposide,  and  KIN001-260  
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(Figures 5A–F), suggesting that these drugs may be more effective 
in the GBM2 subtype. In contrast, GBM1 demonstrated greater 
sensitivity to 17-AAG, AZ628, lapatinib, AICAR, XAV939, and 
vinblastine, as indicated by lower IC50 values (Figures 5G–L). These 
findings imply subtype-specific vulnerabilities that could inform 
personalized treatment strategies. 
Weighted gene co-expression network 
analysis of GBM subtypes 

To identify transcriptional modules driven by LRG in GBM 
subtypes, WGCNA was conducted. A total of 13 co-expressed gene 
modules were identified. Of these, three modules (yellow, black, and 
grey) demonstrated strong positive correlation with GBM1 and 
negative correlation with GBM2, whereas modules including 
brown, red, blue, pink, purple, green, and turquoise were 
predominantly associated with GBM2 (Figure 6). Within the 
yellow module, 399 hub genes were identified as central to the 
lactylation-related regulatory network. A PPI network constructed 
from this module revealed seven key hub genes: CD4, IL6, CD44, 
CD74, IL1B, CXCL1, and CXCL8. These genes are well-known 
immune  and  inflammatory  mediators,  reinforcing  the  
immunologically active profile of the GBM1 subtype. 
Single-cell transcriptomic mapping of 
lactylation-associated genes 

scRNA-seq data were analyzed using the Seurat package in R. 
Low-quality cells were excluded by filtering based on the percentage 
of mitochondrial and ribosomal gene expression. Data 
normalization was performed using the normalizedata function, 
and the top 2,000 highly variable genes were identified using 
findvariablefeatures (Supplementary Figures 3A–D). Batch effects 
between samples were corrected using the Harmony algorithm, and 
Uniform Manifold Approximation and Projection (UMAP) was 
applied for dimensionality reduction and clustering. A total of 
25,000 tumor-derived cells were clustered into nine distinct 
groups (Figure 7A). Based on marker gene expression profiles 
(Figure 7B), these clusters were annotated into six main cell types: 
endothelial cells, T/NK cells, macrophages, monocytes, astrocytes, 
and neutrophils (Figure 7C). Using the FindAllMarkers function, 
the top three marker genes for each cell type were identified 
(Supplementary Figure 3E). 

The expression patterns of the 17 prognostic LRGs across these 
six cell types were evaluated. FABP5, LCP1 and UBE2E1 were 
mainly expressed in endothelial cells, while KRT1, PDLIM1, and 
RPS11 were enriched in T/NK cells. PFN1, RPL29 and RPL5 were 
primarily expressed in macrophage cells, whereas S100A4, SARNP 
and SPRLSP1 were highly expressed in monocytes (Figure 7D). 
Moreover, S100A11 and LGALS1 were enriched in astrocytes, while 
EEF1A1 and RPL13 were predominantly expressed in neutrophils. 
These expression patterns reveal cell-type-specific roles of LRGs in 
the GBM microenvironment (Figure 7D). 
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Downregulation of LCP1 inhibits cell 
proliferation and invasion 

Among 17 LGRs, LCP1, LSP1, PDLIM1, PFN1, LGALS1, 
S100A11, and S100A4 were highly expressed in the GBM1 
cluster, while SARNP, UBE2E1, RPL13, RPL5, EEF1A1, RPL29, 
and RPS11 were upregulated in the GBM2 cluster. Given that 
patients in the GBM1 cluster had significantly shorter overall 
survival than those in GBM2, we prioritized the seven genes 
enriched in GBM1 for further investigation. Upon reviewing the 
literature, we found that the functions of LSP1 (29), PDLIM1 (30), 
Frontiers in Oncology 09
PFN1 (31), LGALS1 (32), S100A11 (33), and S100A4 (34) have 
already been studied in the context of GBM. However, LCP1 has not 
been characterized in GBM, making it a novel and promising 
candidate for functional validation. To explore the role of LCP1 
in glioma, we transfected U251 and LN229 cells with shLCP1 to 
knock down the expression of LCP1. We chose LN229 and U251 
cells to reflect the phenotypic diversity of GBM. LN229 represents a 
more epithelial-like phenotype with moderate invasiveness, while 
U251 exhibits a mesenchymal-like phenotype and higher invasive 
potential. This diversity allowed us to assess whether the effects of 
LCP1 knockdown were consistent across distinct GBM subtypes. 
FIGURE 4 

Functional enrichment analysis of lactylation-related DEGs. (A) Gene Ontology (GO) enrichment analysis of DEGs. (B) KEGG pathway enrichment 
analysis of DEGs. (C) Heatmap of enriched hallmark gene sets between GBM1 and GBM2. (D) Heatmap of enriched KEGG pathways distinguishing 
the two subtypes. 
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Western blot analysis confirmed that shLCP1 effectively reduced 
LCP1 protein levels in both glioma cell lines (Figure 8A). CCK-8 
assays demonstrated that downregulation of LCP1 significantly 
suppressed cell viability in U251 and LN229 cells (Figure 8B). 
Similarly, EdU incorporation assays showed that downregulation 
Frontiers in Oncology 10 
of LCP1 suppressed cell proliferation in both U251 and LN229 cells 
(Figures 8C, D). Notably, Annexin V-FITC/PI staining revealed that 
LCP1 depletion by shLCP1 transfection induced apoptosis in U251 
and LN229 cells (Figure 9A). To assess the effect of LCP1 on cell 
invasive ability, Transwell invasion assay were performed in U251 
FIGURE 5
 

Drug sensitivity analysis of GBM subtypes. Comparison of estimated IC50 values for various drugs is illustrated. (A) BMS-509744, (B) AP-24534,
 
(C) GSK-650394, (D) GW843682X, (E) Etoposide, (F) KIN001-260, (G) 17-AAG, (H) AZ628, (I) Lapatinib, (J) AICAR, (K) XAV939, (L) Vinblastine. 
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and LN229 cells, showing that LCP1 knockdown markedly reduced 
the invasive capacity of both glioma cell lines (Figure 9B). Taken 
together, our findings indicated that oncogenic role of LCP1 is not 
limited to a specific phenotypic background. These results support 
the robustness of LCP1 as a functional target in GBM regardless of 
mesenchymal or epithelial-like characteristics. 
Frontiers in Oncology 11 
Discussion 

By integrating bulk and scRNA data with LRGs, this study 
comprehensively elucidates the multifaceted role of lactylation in 
GBM, specifically in prognostic prediction, molecular subtyping, 
and tumor immune microenvironment characterization, and 
FIGURE 6 

Co-expression network analysis of lactylation-related genes. (A) Scale-free topology model fit and soft-thresholding power selection. (B) Gene 
dendrogram after dynamic tree cutting and module merging. (C) Heatmap showing the correlation between 13 gene modules and GBM subtypes. 
(D) Key genes in the yellow module with correlation coefficients > 0.5. (E) Protein–protein interaction network of representative genes in the 
turquoise module. 
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potential therapeutic targeting (35, 36). We identified 17 
lactylation-associated prognostic genes and stratified GBM 
patients into two distinct subtypes (GBM1 and GBM2), which 
exhibited significance differences in overall survival, immune cell 
infiltration, immune checkpoint expression, and somatic mutation 
profiles. This work establishes the first systematic framework 
Frontiers in Oncology 12 
linking lactylation to GBM classification, prognosis, and precision 
treatment strategies, offering novel insights for individualized 
therapeutic approaches. 

Lactate, a key metabolite of the TME, not only fuels tumor 
energy metabolism via the Warburg effect but also regulates gene 
expression through lactylation-based epigenetic modifications. All 
FIGURE 7 

Heterogeneity in the expression of key genes in GBM at the single-cell level. (A) UMAP plot showing distinct cell subsets identified in GBM samples. 
(B) Annotation of cell types within GBM tissues based on single-cell RNA sequencing data. (C) Expression profiles of representative marker genes 
and lactylation-related key genes across different cellular subpopulations. (D) Heatmap displaying the expression levels of key lactylation-related 
genes across annotated cell types. 
frontiersin.org 

https://doi.org/10.3389/fonc.2025.1613423
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Tang et al. 10.3389/fonc.2025.1613423 
17 LRGs identified, including EEF1A1, RPL family, S100A family 
members, were associated with poor prognosis (HR > 1) in 
univariate Cox analysis, suggesting their oncogenic roles in GBM 
progression (37). Notably, the strong positive correlation between 
ribosomal proteins (such as RPL13 and RPL5) and EEF1A1 suggests 
that lactylation may drive the malignant phenotype of GBM by 
enhanced ribosome biogenesis and protein translation efficiency. 
Additionally, S100A11 and S100A4, as calcium-binding proteins 
(38, 39), have been reported to promote tumor metastasis by 
activating inflammatory pathways such as NF-kB (40, 41). Their 
co-expression with immune-related genes such as LCP1 and 
LGALS1 further suggests that lactylation may affect GBM 
progression by coordinating inflammatory response and immune 
evasion. The high interaction among these genes in the PPI network 
supports their cooperative function in functional pathways, which 
may jointly constitute a potential “lactylation regulatory network” 
driving GBM aggressiveness. 

Based on the NMF-based classification of 17 prognostic LRGs, 
GBM patients were divided into GBM1 (high immune infiltration 
type) and GBM2 (low immune infiltration type). These subtypes 
exhibited significant differences in survival outcomes, tumor immune 
microenvironment characteristics, and genomic profiles. TME 
analysis revealed that GBM1 subtype was associated with higher 
immune cell infiltration, particularly macrophages and TILs, and 
Frontiers in Oncology 13 
elevated expression of immune checkpoint molecules such as PD-L1 
and CTLA-4, suggesting a greater potential responsiveness to 
immune checkpoint inhibitors (42). On the contrary, the 
immunosuppressive microenvironment observed in the GBM2 
subtype may be linked to its higher mutation burden (such as 
EGFR, TTN) and activation of ribosomal-related pathways. 
Previous studies have demonstrated that GBM subtypes with 
heightened immune infiltration are generally more responsive to 
immunotherapy (43, 44), while metabolic reprogramming, such as 
lactate accumulation, can promote immune escape by inhibiting T 
cell function (45, 46). Moreover, the elevated mutation frequencies of 
TP53 and ATRX in the GBM2 may contribute to increased genomic 
instability, further exacerbating prognosis (47, 48). These findings 
emphasize the importance of combining molecular subtyping and 
TME characteristics to guide individualized treatment. 

GO and KEGG enrichment analyses indicated that the cytokine­
receptor interaction pathway was significantly activated in the GBM1 
subtype, including the IL-6/JAK/STAT3 signaling. This is consistent 
with the high expression of PFN1 and RPL29 in macrophages, as 
identified through scRNA seq results. Macrophages, as primary 
source of pro-inflammatory factors in the TME (49, 50), may 
undergo lactylation modifications that facilitate the formation of an 
immunosuppressive microenvironment by regulating the secretion of 
cytokines such  as  IL-6 and  CXCL8 (51). Additionally, GSVA analysis 
FIGURE 8 

LCP1 knockdown suppresses cell viability and proliferation in glioma cells. (A) Western blot analysis was performed to measure the knockdown 
efficacy of shLCP1 in U251 and LN229 cells. (B) CCK-8 assays were performed to evaluate cell viability at various time points following shLCP1 
transfection in U251 and LN229 cells. (C) EdU assays were carried out to assess cell proliferation in U251 and LN229 cells 72 hours post-transfection 
with shLCP1. (D) Quantification of EdU-positive cells in U251 and LN229 cells following LCP1 knockdown. ***p < 0.001. 
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demonstrated enrichment of the sulfate hydrolase activity pathway in 
GBM1, suggesting that lactylation may influence extracellular matrix 
(ECM) remodeling through sulfation modification, thereby 
enhancing tumor aggressiveness (52). 

Drug sensitivity analysis uncovered distinct therapeutic 
vulnerabilities between the two subtypes. GBM2 exhibited greater 
sensitivity to topoisomerase inhibitors such as etoposide, potentially 
correlating with its higher proliferative activity. Conversely, GBM1 
demonstrated increased sensitivity to 17-AAG (an HSP90 inhibitor) 
Frontiers in Oncology 14 
and lapatinib (an EGFR/HER2 inhibitor), which may be attributed 
to its immune cell-dependent stress response pathway (53, 54). 
These results offer a crucial foundation for informed clinical drug 
selection and personalized treatment regimens. WGCNA identified 
gene co-expression modules specifically associated with the GBM 
subtypes. In particular, the yellow module, associated with GBM1, 
included hub genes such as CD4, IL6, and CXCL8, which are central 
to immune regulation. For instance, IL6 is known to induce the 
polarization of M2 macrophages via STAT3 signaling (55), whereas 
FIGURE 9 

LCP1 knockdown induces apoptosis and inhibits cell invasion. (A) Annexin V-FITC/PI staining was used to evaluate apoptosis in U251 and LN229 cells 
after shLCP1 transfection for 72 hours. (B) Left: Transwell invasion assays were conducted to assess the invasive capacity of U251 and LN229 cells 24 
hours post-transfection with shLCP1. Right: Quantification of invaded cells from the Transwell assay. ***p < 0.001.. 
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CXCL8 enhances angiogenesis by recruiting neutrophils (56, 57). 
Single-cell sequencing further unveiled cell type-specific expression 
patterns of LRGs. For example, FABP5 and UBE2E1 were highly 
expressed in endothelial cells, potentially promoting angiogenesis 
by regulating fatty acid metabolism (58). Conversely, the 
enrichment of RPL5 and RPS11 in T/NK cells indicates that 
lactylation may influence lymphocyte function and thus modulate 
the anti-tumor immune response. 

Given the high heterogeneity of GBM, the prognosis of IDH 
wild-type (WT) GBM patients is generally worse than that of IDH 
mutant (MUT) patients (59). One study identified two distinct 
immune infiltration subtypes in GBM, with Gene Cluster A 
characterized by a hot immune phenotype, low IDH1 mutation 
frequency, elevated immune-related gene expression, and favorable 
prognosis and immunotherapy response, whereas Cluster B 
exhibited a cold immune phenotype, high expression of neuronal­
related genes, low immune reactivity, and lacked such clinical 
benefits (60). Another study identified ten ferroptosis-related 
genes associated with IDH1 status in GBM, which highlight their 
potential as biomarkers and therapeutic targets, especially in IDH1 
WT GBM with poor prognosis (61). A pathway-based classification 
of  IDH  WT  GBM  ident ified  four  metabol ica l ly  and  
developmentally distinct subtypes, revealing that mitochondrial 
GBM exhibits the best prognosis and unique vulnerability to 
oxidative phosphorylation inhibitors, offering new avenues for 
precision metabolic therapy (62). In our study, IDH1 missense 
mutations were found in only 8 of 168 GBM patients, all within the 
GBM2 subgroup with favorable survival, suggesting a potential 
association between IDH1 mutations and improved prognosis. 

LCP1 has been reported to be involved in tumorigenesis and 
progression across various cancer types. For instance, one study 
demonstrated that LCP1 contributes to olaparib resistance by 
activating the JAK2/STAT3 signaling pathway in ovarian cancer 
(63). Additionally, LCP1 has been identified as a contributor for 
chidamide resistance in gastric cancer (64). Another study reported 
that LCP1 is associated with immune infiltration and may serve as a 
prognostic biomarker in triple-negative breast cancer (65). 
Similarly, LCP1 has been validated as a prognostic biomarker and 
is linked to immune infiltrate in gastric cancer (66). In the present 
study, we found that LCP1 promotes cell proliferation and invasion 
while inhibiting apoptosis in glioma cells. The consistent effects of 
LCP1 knockdown in both epithelial-like LN229 and mesenchymal­

like U251 cells underscore its broad oncogenic role and support its 
potential as a promising therapeutic target across diverse 
GBM phenotypes. 

Utilizing orthotopic GBM mouse models with LCP1 
knockdown would provide in vivo validation of the in vitro 
findings. Moreover, no evidence has been presented to confirm 
whether LCP1 is directly regulated through lactylation. Besides 
LCP1, other 16 LRGs such as LGALS1 and RPL29 should be 
validated in glioma progression in future studies This study has 
several limitations that should be acknowledged. The sample size is 
small, particularly the small number of normal brain tissue samples, 
which may affect the robustness and accuracy of DEG identification. 
Although unsupervised clustering analysis was performed, the 
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predictive capability of the model was not validated using an 
independent test set. As a result, the model may be overfitted to 
the specific patterns of the training data. In such cases, the 
clustering results may serve only as a descriptive analysis of the 
training set and may not generalize well to new or unseen data. 
There is a lack of in vitro and in vivo experiments to verify the 
specific regulatory mechanism by which lactylation influences gene 
expression and function. It is important to note that direct detection 
of protein lactylation using mass spectrometry or western blotting 
was not performed in this study, highlighting a key direction for 
future research. Absence of clinical treatment response data limits 
the direct clinical translational value of the molecular subtyping 
model. This study is constrained by its dependence on retrospective 
public datasets, and validation with patient-derived samples is 
essential to confirm the robustness of the identified subtypes. 
Moreover, whether lactylation-related signatures serve as 
diagnostic biomarkers in gliomas remains unclear, which 
warrants further in-depth investigation. Future studies should 
leverage organoid models or spatial transcriptomics to further 
investigate the role of lactylation in GBM cell-microenvironment 
interactions. Furthermore, prospective cohort studies are warranted 
to validate the prognostic and therapeutic power of the 
prognostic models. 
Conclusion 

This study systematically clarified the pivotal role of LRGs in 
GBM  prognosis,  molecular  classification,  and  immune  
microenvironment modulation. The identification of two 
molecular subtypes, GBM1 and GBM2, provides a novel 
framework for personalized treatment stratification in GBM. 
These findings highlight the clinical potential of targeting 
lactylation and de-lactylation pathways and underscore the need 
for further research into the crosstalk between lactylation 
modifications and the tumor immune microenvironment. Such 
efforts may ultimately pave the way for the development of 
innovative immunometabolic therapies in GBM. 
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