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Lactylation-related gene
signatures identify glioma
molecular subtypes with
prognostic, immunological,
and therapeutic implications

Yanliang Tang, Xiaoli Zhang, Xiaofei Tang, Ye Yuan
and Wenwen Wang*

Department of Neurology, Fuyang Hospital of Traditional Chinese Medicine, Hangzhou,
Zhejiang, China

Introduction: Lactic acid is a by-product of energy metabolism and a signaling
molecule that influences tumor progression by regulating immune cell function,
angiogenesis, and epigenetic modifications.

Methods: This study analyzed data from the TCGA database on gliomas to
systematically elucidate the expression patterns, prognostic value, and functional
regulatory networks of lactylation-related genes.

Results: In this study, 17 lactylation-related prognostic genes were identified
through the analysis of TCGA-GBM data. Using non- negative matrix
factorization (NMF), two GBM subtypes based on lactylation- related genes
(LRGs), termed GBM1 and GBM2, were identified. Survival analysis revealed that
the overall survival (OS) of the GBM1 group was significantly lower than that of
GBM2 group. Furthermore, notable differences were observed in the expression
of key GBM-associated molecular markers between the two subtypes. Tumor
microenvironment (TME) analysis demonstrated distinct immune landscapes and
genomic characteristics between GBM1 and GBM2. The GBM1 group exhibited
higher immune cell infiltration and immune function scores compared to GBM2.
Drug sensitivity analysis further revealed differences in response to
chemotherapy and targeted therapies between the two subtypes. In vitro data
demonstrated that LCP1 knockdown suppressed cell proliferation and invasion,
and promoted apoptosis in glioma cells.

Conclusion: In conclusion, our study systematically uncovers the significant role
of LRGs in GBM molecular subtyping, prognosis evaluation, and therapeutic
guidance. These findings offer new insights and potential strategies for the
personalized treatment of GBM.
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Introduction

Gliomas are the most common primary malignant tumors of
the central nervous system, accounting for over 30% of all brain
tumors. Among them, glioblastoma multiforme (GBM; WHO grade
IV) has garnered significant attention due to its pronounced
invasiveness, high recurrence rate, and extremely poor prognosis
(1). Despite continuous advancements in multimodal therapies,
including surgery, radiotherapy, and chemotherapy, the median
survival of GBM patients remains under 15 months, with a 5-year
survival rate of less than 5% (2). This grim situation underscores the
urgent need to deeply elucidate the molecular mechanisms driving
glioma malignancy. In recent years, the intersection of tumor
metabolic reprogramming and epigenetic regulation has offered
new perspectives for glioma biology and potential treatment
strategies. A hallmark of gliomas is the Warburg effect, or aerobic
glycolysis, which leads to the accumulation of substantial amounts
of lactate in the tumor microenvironment (TME) (3). Traditionally
regarded as a metabolic byproduct, lactate is now recognized as a
critical signaling molecule that influences tumor progression by
modulating immune cell function, regulating angiogenesis, and
altering epigenetic landscapes (4, 5).

Posttranslational modifications (PTMs) are covalent alterations,
either reversible or irreversible, that modify protein function and
dynamics by adding chemical groups or cleaving peptide bonds,
thereby regulating diverse biological processes (6). The types of PTMs
include phosphorylation, ubiquitination, acetylation, methylation,
glycosylation, sumoylation, and palmitoylation (7). PTMs have
been validated in glioma progression, including ubiquitination,
sumoylation, and acetylation (8-10). Lactylation is a newly
discovered PTM first reported in 2019 (11), which involves the
covalent attachment of lactyl groups that is derived from lactate to
lysine residues on histones, directly regulating chromatin structure
and transcriptional regulation (12). Lactylation plays a key role in
macrophage polarization, immune regulation within tumors, and the
cellular response to metabolic stress (13-16). For example, elevated
lactate levels in the TME have been shown to induce histone H3K18
lactylation, thereby promoting the expression of pro-tumor genes
such as PD-L1 and inhibiting anti-tumor immune responses (17, 18).
Additionally, lactate can be reused by oxidative tumor cells as an
energy substrate, facilitating tumor progression through a “metabolic
symbiosis” model (19). Collectively, lactate is not merely a metabolic
by product, but also a core regulatory factor of the malignancy and a
potential therapeutic target. With the rapid advancement of high-
throughput sequencing technologies, public databases such as TCGA,
CGGA, and GTEx have become valuable resources for exploring the
molecular heterogeneity of gliomas (20, 21). Prognostic models based
on machine learning, including LASSO-Cox regression, have been
successfully applied to identify metabolism-related genes in gliomas
(22), while WGCNA has proven effective in detecting hub genes
associated with lactylation modifications (23). Moreover, integrative
analyses of epigenomics (e.g., ChIP-seq, ATAC-seq) and
metabolomics offer the potential to uncover how lactylation
influences chromatin accessibility and transcription factor activity
(24, 25). Lactylation has been revealed to be involved in GBM

Frontiers in Oncology

10.3389/fonc.2025.1613423

development, prognosis and treatment (26). One group used an
integrated analysis of transcriptome and scRNA sequencing, and
identified prognostic genes related to histone lactylation in GBM (27).
However, a comprehensive and systematic analysis of the regulatory
network underlying lactylation modifications is still lacking. To date,
no molecular classification system for gliomas based on LRGs has
been established.

In this study, we systematically analyzed glioma data from the
TCGA database to elucidate the expression patterns, prognostic
value, and functional regulatory networks of LRGs. First, we
screened differentially expressed LRGs (such as EEF1A1, S100A4,
RPL5) and established a molecular subtyping system based on these
genes. This classification stratified glioma patients into distinct
molecular subtypes, allowing for prognostic assessment through
survival analysis. subsequently, we utilized WGCNA and Gene Set
Enrichment Analysis (GSEA) to reveal the biological pathways
associated with these gene sets. Furthermore, we conducted
protein-protein interaction (PPI) networks to predict potential
downstream targets and interaction partners of lactylation
regulators. This study is the first to systematically define
molecular subtypes of GBM based on LRGs, thereby shedding
light on the underlying molecular heterogeneity. Our findings
may provide valuable insights into prognostic prediction and pave
the way for personalized therapeutic strategies in GBM.

Materials and methods

Collection and processing of
transcriptomic data

RNA sequencing (RNA-seq) data for GBM, along with
corresponding clinical information, were downloaded from the
Cancer Genome Atlas (TCGA) database (https://www.cancer.gov/
about-nci/organization/ccg/research/structural-genomics/tcga).
After filtering, 168 GBM samples with available survival and clinical
data, as well as 5 normal brain tissue samples, were selected for
analysis. Expression data were converted into transcripts per
million (TPM) format and log2-transformed for subsequent
analysis. Somatic mutation data were downloaded separately from
the TCGA dataset. The LRGs were sourced from previous published
studies (28). A PPI network of the LRGs was constructed using the
STRING database (https://string-db.org/cgi/input.pl).

Collection and processing of single-cell
transcriptomics data

Single-cell RNA-seq data were obtained from the GEO database
GSE271618, which comprises approximately 25,000 cells in total. Data
analysis was conducted using R and the Seurat package. Quality control
was performed by filtering cells based on mitochondrial and ribosomal
gene content, setting gene expression thresholds between 200-1000 for
mitochondrial and 200-2000 for ribosomal genes. Key Seurat functions
used included NormalizeData, FindVariableFeatures, and ScaleData for
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normalization, identification of highly variable genes, and scaling,
respectively. Principal component analysis (PCA) was performed
using the “RunPCA” function. Batch effects across samples were
corrected using the Harmony package, and dimensionality reduction
and clustering were performed using uniform manifold approximation
and projection (UMAP). Cell type annotation was based on established
marker genes.

Identification of differentially expressed
and prognostic genes

Differential expression analysis between GBM patients and
healthy controls were performed using the limma R package
(version 3.60.6). Significantly differentially expressed genes
(DEGs) were defined using the thresholds: adjusted P < 0.05 and
[log2 fold change| > 1. Visualization of DEGs was conducted using
the R packages pheatmap (version 1.0.12), dplyr (version 1.1.4),
ggplot2 (version 3.5.1), and ggrepel (version 0.9.6).

By intersecting the DEGs with LRGs, 100 LRGs in GBM were
identified. Univariate Cox regression analysis was then performed
on these 100 genes with a threshold of p < 0.05, resulting in the
identification of 17 prognostically relevant genes. A Venn diagram
was generated using the VennDiagram package (version 1.7.3). A
forest plot displaying hazard ratios (HRs) and p-value for the 17
genes was created using the survival R package (version 3.7.0).

Identification of molecular subtypes of
GBMs through consensus clustering

To classify GBM molecular subtypes, consensus clustering was
performed using the 17 identified prognostic LRGs within the
TCGA-GBM cohort. Non-negative matrix factorization (NMF)
was applied via the NMF R package. The optimal number of
clusters was evaluated for k values ranging from 2 to 5, with
1,000 iterations to ensure result stability. Heatmaps were
generated using the pheatmap package to visualize clustering
outcomes. PCA was used to determine whether the identified
subtypes could effectively distinguish GBM samples. Survival
differences between subtypes were evaluated using the survival
and survminer packages to investigate the relationship between
molecular subtypes and OS.

Assessment of immune cell infiltration

TME characteristics were calculated for each GBM sample based
on the gene expression patterns using the ESTIMATE, including
stromal score, immune score and estimate score. To quantify
immune cell infiltration, single-sample gene set enrichment analysis
(ssGSEA) was performed using transcriptomic data and immune-relate
gene sets. The Wilcoxon rank-sum test was employed to compare the
immune cell infiltration levels between the two identified
GBM subtypes.
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Drug sensitivity analysis

Drug sensitivity analysis was conducted using the pRRophetic R
package (version 0.5), which builds prognostic models from gene
expression profiles of cancer cell lines to estimate the drug response
in patient samples. The half-maximal inhibitory concentration
(IC50) values were calculated for selected chemotherapeutic and
targeted drugs. Boxplots were used to visualize and compare
differences in drug sensitivity (IC50 values) between the
GBM subtypes.

Weighted gene co-expression network
analysis

WGCNA was performed on the TCGA-GBM dataset using the
WGCNA package (version 1.73). The top 25% of genes with the
highest variance across samples were selected for analysis. Pearson
correlation coefficients were calculated to construct an adjacency
matrix, with a soft-thresholding power of 5 applied to enhance
network scale-freeness. The adjacency matrix was then converted
into a Topological Overlap Matrix (TOM) and gene modules were
identified using a dynamic tree-cutting algorithm. Within the
identified modules, genes most strongly correlated with LRGs
were defined as feature genes related to lactylation.

Gene set enrichment analysis

Reference gene sets ¢5.go.v2024.1.Hs.symbols.gmt (GO) and
c2.cp.kegg_medicus.v2024.1.Hs.symbols.gmt (KEGG) were
downloaded from the Molecular Signatures Database (MSigDB)
v4.0. GSEA was performed to assess pathway activity differences
between the two molecular subtypes. DEGs between subtypes were
identified using the limma package (version 3.60.6). Subsequently,
GO and KEGG were conducted to describe the functional roles of
the DEGs.

Cell culture

Human glioma cell lines U251 and LN229 were bought from
the Cell bank of the Chinese Academy of Science (Shanghai, China).
Cells were maintained in RPMI-1640 medium supplemented with
10% fetal bovine serum at 37°C in a humidified atmosphere
containing 5% CO,.

Transfection

Lentivirus shRNAs targeting LCP1 (shRNA#1: GCG GAC ATT
TAG GAA CTG GAT; shRNA#2: CCT GGG TAT AGA GTA CGA
GAA) and a negative control shRNA were purchased from
GenePharma (Shanghai, China). Transfections were performed
using Lipofectamine 3000 Reagent (Invitrogen, Carlsbad, USA)
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according to the manufacturer’s protocol. Transfection efficiency
was assessed by Western blotting.

Western blotting

Total protein was extracted using RIPA lysis buffer and
separated by SDS-PAGE, then transferred onto a PVDF
membrane. Membranes were blocked with 5% skim milk at room
temperature for 1 hour, followed by incubation with primary
antibodies and then the appropriate secondary antibodies. The
primary antibodies used were anti-LCP1 (1:1000, #5350, Cell
Signaling Technology, MA, USA) and anti-GAPDH antibodies
(1:5000, #2118, CST, MA, USA).

CCK-8 assay

Cell viability was measured using the Cell Counting Kit-8
(CCK-8) assay. Glioma cells transfected with shLCP1 were seeded
into plates and incubated for various time pints. Subsequently, cells
were incubated with 10 pL of CCK-8 solution for 2 hours. The OD
value at 450 nm was assessed using a microplate reader.

EdU assay

Cell proliferation was evaluated using an EdU kit (Beyotime,
China). Transfected cells were seeded into 24-well plates and
cultured for 72 hours, followed by incubation with EdU solution
for 4 hours. Cells were then fixed with 4% paraformaldehyde and
treated with Click reaction mixture for half hour. Hoechst 33342
was used for nuclear staining. Images were acquired using a
fluorescence microscope, and the proportion of EdU-positive cells
were quantified using ImageJ software.

Apoptosis assay

Apoptosis was analyzed using an Annexin V-FITC/PI apoptosis
detection kit. Following shLCP1 transfection, glioma cells were
harvested, washed, and resuspended in 500 UL of 1xbinding
buffer. Then, 5 uL of Annexin V-FITC and 10 uL of propidium
iodide (PI) were added. Apoptotic cells were detected using
flow cytometry.

Transwell invasion assay

Cell invasive capacity was measured using Transwell chambers
(Corning, USA) pre-coated with Matrigel. The lower chambers
were filled with medium containing 10% fetal bovine serum.
Transfected cells suspended in serum-free medium were added to
the upper chamber. After 24 hours of incubation, non-invading
cells were removed by a cotton swab. Invading cells on the lower
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surface of the membrane were fixed with 4% polyformaldehyde,
stained with crystal violet, and imaged. The number of invaded cells
was counted under a macroscope.

Statistical analysis

All statistical analyses were performed using R software (version
4.4.1) and relevant R packages. For Wilcoxon rank-sum tests, chi-
square test, Kaplan-Meier survival analysis, and t-test, a p-value <
0.05 was considered statistically significant. For GO, KEGG, and
GSEA analyses, a false discovery rate (FDR) < 0.05 was used to
determine statistical significance.

Results

Identification of lactylation-related
prognostic genes in GBM

First, mRNA expression data from 168 GBM tumor tissues and 5
normal brain tissues were obtained from the TCGA database, along
with corresponding clinical information. Differential expression
analysis was performed, a volcano plot displayed significantly
upregulated and downregulated genes among all samples
(Figure 1A). The differential genes of P <0.05 (Supplementary
Figure 1A). By intersecting 6,638 DEGs with 327 previously reported
LRGs, a total of 100 GBM-associated LRGs were discovered
(Figure 1B). The top 20 differentially expressed LRGs were visualized
in a heatmap (Figure 1C). Univariate Cox regression analysis was then
conducted on the 100 candidate genes, resulting in the identification of
17 prognostic LRGs: EEF1A1, FABP5, KRT1, LCP1, LGALS1, LSP1,
PDLIM1, PEN1, RPL13, RPL29, RPL5, RPS11, S100A11, S100A4,
SARNP, SPR, and UBE2EI. These genes were associated with
varying hazard ratios, as shown in the forest plot (Figure 1D). A
gene correlation heatmap highlighted strong positive correlations
between several genes at the transcriptomic level, including EEF1A1
with RPL13, RPL29, RPL5, and RPS11; LCP1 with LSO1 and S100A11;
LGALS]1 with PFN1, S100A11, and S100A4; PFN1 with LGALSI and
S100A11 (Figure 1E; Supplementary Figure 1B). To explore protein-
level interactions, a PPI network was constructed using the STRING
database. The network revealed extensive interconnectivity among
proteins encoded by these prognostic genes, including both known
and predicted interactions (Figure 1F).

Identification of novel GBM subtypes via
unsupervised learning

To explore the prognostic ability of LRGs in GBM, unsupervised
clustering was performed using the NMF algorithm based on the
expression of 17 prognostic LRGs in 168 GBM patients. The optimal
number of clusters was determined to be two, resulting in the
classification of samples into two distinct subtypes: GBM1 (n = 50)
and GBM2 (n =118) (Figures 2A, B; Supplementary Figure 2).
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Differential expression analysis of lactylation-related genes in GBM. (A) Volcano plot of differentially expressed genes (DEGs) in GBM. (B) Venn
diagram showing the overlap between glioblastoma DEGs and lactylation-related genes. (C) Heatmap displaying the top 40 lactylation-related DEGs.
(D) Forest plot of prognostic lactylation-related DEGs, based on univariate Cox regression. (E) Correlation analysis among intersecting genes.

(F) Protein—protein interaction (PPI) network illustrating known and predicted interactions among prognostic lactylation-related DEGs.

Principal component analysis (PCA) further confirmed that these
subtypes could be effectively distinguished based on the expression
profiles of the 17 LRGs (Figure 2C). Kaplan-Meier survival analysis
revealed that patients in the GBM1 group had significantly shorter
OS compared to those in the GBM2 group (P = 0.031) (Figure 2D).
Expression analysis showed substantial differences in LRG expression
between the two clusters (Figure 2E). Specifically, LCP1, LSPI,
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PDLIM1, PFN1, LGALSI, S100A11, and S100A4 were highly
expressed in the GBMI1 cluster, while SARNP, UBE2E1, RPLI13,
RPL5, EEF1A1, RPL29, and RPS11 were significantly upregulated in
the GBM2 cluster. Additionally, among the 168 GBM patients, only 8
exhibited IDH1 missense mutations. Notably, all 8 patients belonged
to the GBM2 group, consistent with GBM2 higher overall survival
compared to the GBM1 group.
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Molecular subtype classification of GBM based on lactylation-related DEGs. (A) Consensus clustering identified two distinct subtypes (k = 2).

(B) Consensus matrix heatmap and cumulative distribution function (CDF) plot illustrating clustering stability. (C) Principal component analysis (PCA)
showing clear separation between GBM1 and GBM2 subtypes. (D) Kaplan—Meier survival curves comparing overall survival between the two
subtypes. (E) Expression patterns of 17 lactylation-related DEGs across GBM1 and GBM2 subtypes.

TME characteristics in GBM clusters

The TME plays a critical role in glioma progression, encompassing
both tumor and non-tumor components, including innate and
adaptive immune cells with pro- or anti-tumor activities. To
investigate the immunological landscape of the identified GBM
subtypes, we applied the ssGSEA algorithm to quantify the
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infiltration of 29 immune cell types in each sample (Figure 3A).
Using the Wilcoxon rank-sum test, we compared the abundance of
16 immune cell types across two GBM clusters and found significant
differences in 10 of them. These included activated dendritic cells
(aDCs), DC8, macrophages, mast cells, neutrophils, T helper cells, T
follicular helper (Tth) cells, Th2 cells, tumor-infiltrating lymphocytes
(TILs), and regulatory T cells (Tregs) (Figure 3B). Furthermore, the
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FIGURE 3

Tumor microenvironment characteristics of lactylation-based GBM subtypes. (A) Heatmap of 28 immune cell infiltration profiles across samples.
(B) Comparison of 16 immune cell infiltration scores between GBM1 and GBM2 subtypes. (C) Comparison of 13 immune-related pathway activity
scores between subtypes. (D) Expression levels of 30 immune checkpoint genes in the two GBM subtypes. (E) ESTIMATE-derived immune and
stromal scores in GBM1 and GBM2. (F) Waterfall plot of somatic mutation frequencies in the GBM1 cluster. (G) Waterfall plot of somatic mutation

frequencies in the GBM2 cluster. *P < 0.05; **P < 0.01; ***P < 0.001.

activity of 13 immune-related functions was analyzed between the two
subtypes. Significant differences were observed in 11 immune functions
(Figure 3C), including APC_co_inhibition, APC_co_stimulation,
chemokine receptor (CCR), Check-point, Cytolytic activity, HLA,
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Inflammation-promoting, Para inflammation, T_cell_co-inhibition,
T_cell_co-stimulation, and Type_II_IFN_Response. These findings
indicate that the GBMI subtype exhibits a more immunologically
active TME, as indicated by higher immune cell infiltration and
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immune function scores. Consistent with this, expression analysis of 30
immune checkpoint genes revealed generally elevated levels in the
GBMI1 cluster (Figure 3D).

We further evaluated the stromal and immune scores using the
ESTIMATE algorithm. Both scores were significantly higher in
GBMI1 than in GBM2, indicating greater infiltration of stromal
and immune cells within the TME of the GBM1 subtype
(Figure 3E). Given that tumor genomic alterations are closely
associated with immune phenotypes, we examined the somatic
mutation landscape of the two GBM subtypes using TCGA
mutation data. While the most frequently mutated genes,
including TP53, EGFR, TTN, MUCI16, FLG, ATRX, LRP2,
SPTA1, and LRPI1, were common to both subtypes, they occurred
at higher frequencies in the GBM2 group (Figures 3F, G). These
findings highlight distinct genomic and immunological profiles
between GBM1 and GBM2.

GO and KEGG Pathway enrichment
analysis

To further investigate the molecular differences between the
GBM1 and GBM2 subtypes, we performed differential expression
analysis. Using a significance threshold of P < 0.05 and |log, FC| >
1, a total of 849 DEGs were identified between the two groups.
These DEGs were subsequently subjected to GO and KEGG
enrichment analyses to explore their biological implications. GO
enrichment analysis revealed significant enrichment in biological
processes (BP) related to the positive regulation of cytokine
production and in cellular components (CC) associated with
secretory granule membranes. KEGG pathway analysis showed
notable enrichment in the cytokine-cytokine receptor interaction
pathway (Figures 4A, B), suggesting active immune and
inflammatory signaling differences between the two subtypes. To
gain a more detailed understanding of the functional divergence,
GSVA was conducted to evaluate enrichment scores of GO and
KEGG terms across subtypes. In GBM1, the enriched GO terms
included sulfuric ester hydrolase activity, protein sequestering
activity, and osteoclast proliferation (Figure 4C). KEGG
pathway enrichment in GBM1 highlighted pathways such as
AHR signaling, and NF-xB-mediated transcription activation
(Figure 4D), indicating subtype-specific involvement in
inflammation and immune regulation.

Drug sensitivity profiling

To assess the therapeutic relevance of the identified GBM
subtypes, we performed drug sensitivity analysis based on gene
expression data using the pRRophetic algorithm. A panel of
chemotherapeutic and targeted agents was evaluated by
estimating the half-maximal inhibitory concentration (IC50)
values for each subtype. GBM1 exhibited significantly higher IC50
values for several compounds, including BMS-509744, AP-24534,
GSK-650394, GW843682X, etoposide, and KIN001-260
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(Figures 5A-F), suggesting that these drugs may be more effective
in the GBM2 subtype. In contrast, GBM1 demonstrated greater
sensitivity to 17-AAG, AZ628, lapatinib, AICAR, XAV939, and
vinblastine, as indicated by lower IC50 values (Figures 5G-L). These
findings imply subtype-specific vulnerabilities that could inform
personalized treatment strategies.

Weighted gene co-expression network
analysis of GBM subtypes

To identify transcriptional modules driven by LRG in GBM
subtypes, WGCNA was conducted. A total of 13 co-expressed gene
modules were identified. Of these, three modules (yellow, black, and
grey) demonstrated strong positive correlation with GBM1 and
negative correlation with GBM2, whereas modules including
brown, red, blue, pink, purple, green, and turquoise were
predominantly associated with GBM2 (Figure 6). Within the
yellow module, 399 hub genes were identified as central to the
lactylation-related regulatory network. A PPI network constructed
from this module revealed seven key hub genes: CD4, IL6, CD44,
CD74, IL1B, CXCL1, and CXCL8. These genes are well-known
immune and inflammatory mediators, reinforcing the
immunologically active profile of the GBMI subtype.

Single-cell transcriptomic mapping of
lactylation-associated genes

scRNA-seq data were analyzed using the Seurat package in R.
Low-quality cells were excluded by filtering based on the percentage
of mitochondrial and ribosomal gene expression. Data
normalization was performed using the normalizedata function,
and the top 2,000 highly variable genes were identified using
findvariablefeatures (Supplementary Figures 3A-D). Batch effects
between samples were corrected using the Harmony algorithm, and
Uniform Manifold Approximation and Projection (UMAP) was
applied for dimensionality reduction and clustering. A total of
25,000 tumor-derived cells were clustered into nine distinct
groups (Figure 7A). Based on marker gene expression profiles
(Figure 7B), these clusters were annotated into six main cell types:
endothelial cells, T/NK cells, macrophages, monocytes, astrocytes,
and neutrophils (Figure 7C). Using the FindAllMarkers function,
the top three marker genes for each cell type were identified
(Supplementary Figure 3E).

The expression patterns of the 17 prognostic LRGs across these
six cell types were evaluated. FABP5, LCP1 and UBE2E1 were
mainly expressed in endothelial cells, while KRT1, PDLIMI, and
RPS11 were enriched in T/NK cells. PFN1, RPL29 and RPL5 were
primarily expressed in macrophage cells, whereas S100A4, SARNP
and SPRLSP1 were highly expressed in monocytes (Figure 7D).
Moreover, SI00A11 and LGALS1 were enriched in astrocytes, while
EEF1A1 and RPL13 were predominantly expressed in neutrophils.
These expression patterns reveal cell-type-specific roles of LRGs in
the GBM microenvironment (Figure 7D).
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FIGURE 4

Functional enrichment analysis of lactylation-related DEGs. (A) Gene Ontology (GO) enrichment analysis of DEGs. (B) KEGG pathway enrichment
analysis of DEGs. (C) Heatmap of enriched hallmark gene sets between GBM1 and GBM2. (D) Heatmap of enriched KEGG pathways distinguishing
the two subtypes.

PENI (31), LGALSI (32), SI00A11 (33), and S100A4 (34) have
already been studied in the context of GBM. However, LCP1 has not
been characterized in GBM, making it a novel and promising

Downregulation of LCP1 inhibits cell
proliferation and invasion

Among 17 LGRs, LCP1, LSP1, PDLIMI1, PENI1, LGALSI,
S100A11, and S100A4 were highly expressed in the GBMI1
cluster, while SARNP, UBE2E1, RPL13, RPL5, EEF1Al, RPL29,
and RPS11 were upregulated in the GBM2 cluster. Given that
patients in the GBMI1 cluster had significantly shorter overall

candidate for functional validation. To explore the role of LCP1
in glioma, we transfected U251 and LN229 cells with shLCP1 to
knock down the expression of LCP1. We chose LN229 and U251
cells to reflect the phenotypic diversity of GBM. LN229 represents a
more epithelial-like phenotype with moderate invasiveness, while
survival than those in GBM2, we prioritized the seven genes U251 exhibits a mesenchymal-like phenotype and higher invasive
enriched in GBM1 for further investigation. Upon reviewing the

literature, we found that the functions of LSP1 (29), PDLIM1 (30),

potential. This diversity allowed us to assess whether the effects of
LCP1 knockdown were consistent across distinct GBM subtypes.
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Drug sensitivity analysis of GBM subtypes. Comparison of estimated IC50 values for various drugs is illustrated. (A) BMS-509744, (B) AP-24534,
(C) GSK-650394, (D) GW843682X, (E) Etoposide, (F) KINO01-260, (G) 17-AAG, (H) AZ628, (1) Lapatinib, (J) AICAR, (K) XAV939, (L) Vinblastine.

Western blot analysis confirmed that shLCP1 effectively reduced
LCP1 protein levels in both glioma cell lines (Figure 8A). CCK-8
assays demonstrated that downregulation of LCP1 significantly
suppressed cell viability in U251 and LN229 cells (Figure 8B).
Similarly, EAU incorporation assays showed that downregulation
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of LCP1 suppressed cell proliferation in both U251 and LN229 cells
(Figures 8C, D). Notably, Annexin V-FITC/PI staining revealed that
LCP1 depletion by shLCP1 transfection induced apoptosis in U251
and LN229 cells (Figure 9A). To assess the effect of LCP1 on cell
invasive ability, Transwell invasion assay were performed in U251
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and LN229 cells, showing that LCP1 knockdown markedly reduced
the invasive capacity of both glioma cell lines (Figure 9B). Taken
together, our findings indicated that oncogenic role of LCP1 is not
limited to a specific phenotypic background. These results support
the robustness of LCP1 as a functional target in GBM regardless of
mesenchymal or epithelial-like characteristics.
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Discussion

By integrating bulk and scRNA data with LRGs, this study
comprehensively elucidates the multifaceted role of lactylation in
GBM, specifically in prognostic prediction, molecular subtyping,
and tumor immune microenvironment characterization, and
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potential therapeutic targeting (35, 36). We identified 17
lactylation-associated prognostic genes and stratified GBM
patients into two distinct subtypes (GBM1 and GBM2), which
exhibited significance differences in overall survival, immune cell
infiltration, immune checkpoint expression, and somatic mutation
profiles. This work establishes the first systematic framework
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linking lactylation to GBM classification, prognosis, and precision
treatment strategies, offering novel insights for individualized
therapeutic approaches.

Lactate, a key metabolite of the TME, not only fuels tumor
energy metabolism via the Warburg effect but also regulates gene
expression through lactylation-based epigenetic modifications. All
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LCP1 knockdown suppresses cell viability and proliferation in glioma cells. (A) Western blot analysis was performed to measure the knockdown
efficacy of shLCP1 in U251 and LN229 cells. (B) CCK-8 assays were performed to evaluate cell viability at various time points following shLCP1
transfection in U251 and LN229 cells. (C) EJU assays were carried out to assess cell proliferation in U251 and LN229 cells 72 hours post-transfection
with shLCP1. (D) Quantification of EdU-positive cells in U251 and LN229 cells following LCP1 knockdown. ***p < 0.001

17 LRGs identified, including EEF1A1, RPL family, SI00A family
members, were associated with poor prognosis (HR > 1) in
univariate Cox analysis, suggesting their oncogenic roles in GBM
progression (37). Notably, the strong positive correlation between
ribosomal proteins (such as RPL13 and RPL5) and EEF1A1 suggests
that lactylation may drive the malignant phenotype of GBM by
enhanced ribosome biogenesis and protein translation efficiency.
Additionally, SI00A11 and S100A4, as calcium-binding proteins
(38, 39), have been reported to promote tumor metastasis by
activating inflammatory pathways such as NF-«xB (40, 41). Their
co-expression with immune-related genes such as LCP1 and
LGALSI further suggests that lactylation may affect GBM
progression by coordinating inflammatory response and immune
evasion. The high interaction among these genes in the PPI network
supports their cooperative function in functional pathways, which
may jointly constitute a potential “lactylation regulatory network”
driving GBM aggressiveness.

Based on the NMF-based classification of 17 prognostic LRGs,
GBM patients were divided into GBM1 (high immune infiltration
type) and GBM2 (low immune infiltration type). These subtypes
exhibited significant differences in survival outcomes, tumor immune
microenvironment characteristics, and genomic profiles. TME
analysis revealed that GBM1 subtype was associated with higher
immune cell infiltration, particularly macrophages and TILs, and

Frontiers in Oncology

13

elevated expression of immune checkpoint molecules such as PD-L1
and CTLA-4, suggesting a greater potential responsiveness to
immune checkpoint inhibitors (42). On the contrary, the
immunosuppressive microenvironment observed in the GBM2
subtype may be linked to its higher mutation burden (such as
EGFR, TTN) and activation of ribosomal-related pathways.
Previous studies have demonstrated that GBM subtypes with
heightened immune infiltration are generally more responsive to
immunotherapy (43, 44), while metabolic reprogramming, such as
lactate accumulation, can promote immune escape by inhibiting T
cell function (45, 46). Moreover, the elevated mutation frequencies of
TP53 and ATRX in the GBM2 may contribute to increased genomic
instability, further exacerbating prognosis (47, 48). These findings
emphasize the importance of combining molecular subtyping and
TME characteristics to guide individualized treatment.

GO and KEGG enrichment analyses indicated that the cytokine-
receptor interaction pathway was significantly activated in the GBM1
subtype, including the IL-6/JAK/STAT3 signaling. This is consistent
with the high expression of PFN1 and RPL29 in macrophages, as
identified through scRNA seq results. Macrophages, as primary
source of pro-inflammatory factors in the TME (49, 50), may
undergo lactylation modifications that facilitate the formation of an
immunosuppressive microenvironment by regulating the secretion of
cytokines such as IL-6 and CXCL8 (51). Additionally, GSVA analysis
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FIGURE 9

LCP1 knockdown induces apoptosis and inhibits cell invasion. (A) Annexin V-FITC/PI staining was used to evaluate apoptosis in U251 and LN229 cells
after shLCP1 transfection for 72 hours. (B) Left: Transwell invasion assays were conducted to assess the invasive capacity of U251 and LN229 cells 24
hours post-transfection with shLCP1. Right: Quantification of invaded cells from the Transwell assay. ***p < 0.001..

demonstrated enrichment of the sulfate hydrolase activity pathway in
GBM], suggesting that lactylation may influence extracellular matrix
(ECM) remodeling through sulfation modification, thereby
enhancing tumor aggressiveness (52).

Drug sensitivity analysis uncovered distinct therapeutic
vulnerabilities between the two subtypes. GBM2 exhibited greater
sensitivity to topoisomerase inhibitors such as etoposide, potentially
correlating with its higher proliferative activity. Conversely, GBM1
demonstrated increased sensitivity to 17-AAG (an HSP90 inhibitor)
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and lapatinib (an EGFR/HER2 inhibitor), which may be attributed
to its immune cell-dependent stress response pathway (53, 54).
These results offer a crucial foundation for informed clinical drug
selection and personalized treatment regimens. WGCNA identified
gene co-expression modules specifically associated with the GBM
subtypes. In particular, the yellow module, associated with GBM1,
included hub genes such as CD4, IL6, and CXCLS, which are central
to immune regulation. For instance, IL6 is known to induce the
polarization of M2 macrophages via STAT3 signaling (55), whereas
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CXCL8 enhances angiogenesis by recruiting neutrophils (56, 57).
Single-cell sequencing further unveiled cell type-specific expression
patterns of LRGs. For example, FABP5 and UBE2E1 were highly
expressed in endothelial cells, potentially promoting angiogenesis
by regulating fatty acid metabolism (58). Conversely, the
enrichment of RPL5 and RPSI1 in T/NK cells indicates that
lactylation may influence lymphocyte function and thus modulate
the anti-tumor immune response.

Given the high heterogeneity of GBM, the prognosis of IDH
wild-type (WT) GBM patients is generally worse than that of IDH
mutant (MUT) patients (59). One study identified two distinct
immune infiltration subtypes in GBM, with Gene Cluster A
characterized by a hot immune phenotype, low IDH1 mutation
frequency, elevated immune-related gene expression, and favorable
prognosis and immunotherapy response, whereas Cluster B
exhibited a cold immune phenotype, high expression of neuronal-
related genes, low immune reactivity, and lacked such clinical
benefits (60). Another study identified ten ferroptosis-related
genes associated with IDHI status in GBM, which highlight their
potential as biomarkers and therapeutic targets, especially in IDH1
WT GBM with poor prognosis (61). A pathway-based classification
of IDH WT GBM identified four metabolically and
developmentally distinct subtypes, revealing that mitochondrial
GBM exhibits the best prognosis and unique vulnerability to
oxidative phosphorylation inhibitors, offering new avenues for
precision metabolic therapy (62). In our study, IDHI1 missense
mutations were found in only 8 of 168 GBM patients, all within the
GBM2 subgroup with favorable survival, suggesting a potential
association between IDH1 mutations and improved prognosis.

LCP1 has been reported to be involved in tumorigenesis and
progression across various cancer types. For instance, one study
demonstrated that LCP1 contributes to olaparib resistance by
activating the JAK2/STAT3 signaling pathway in ovarian cancer
(63). Additionally, LCP1 has been identified as a contributor for
chidamide resistance in gastric cancer (64). Another study reported
that LCP1 is associated with immune infiltration and may serve as a
prognostic biomarker in triple-negative breast cancer (65).
Similarly, LCP1 has been validated as a prognostic biomarker and
is linked to immune infiltrate in gastric cancer (66). In the present
study, we found that LCP1 promotes cell proliferation and invasion
while inhibiting apoptosis in glioma cells. The consistent effects of
LCP1 knockdown in both epithelial-like LN229 and mesenchymal-
like U251 cells underscore its broad oncogenic role and support its
potential as a promising therapeutic target across diverse
GBM phenotypes.

Utilizing orthotopic GBM mouse models with LCP1
knockdown would provide in vivo validation of the in vitro
findings. Moreover, no evidence has been presented to confirm
whether LCP1 is directly regulated through lactylation. Besides
LCP1, other 16 LRGs such as LGALSI and RPL29 should be
validated in glioma progression in future studies This study has
several limitations that should be acknowledged. The sample size is
small, particularly the small number of normal brain tissue samples,
which may affect the robustness and accuracy of DEG identification.
Although unsupervised clustering analysis was performed, the
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predictive capability of the model was not validated using an
independent test set. As a result, the model may be overfitted to
the specific patterns of the training data. In such cases, the
clustering results may serve only as a descriptive analysis of the
training set and may not generalize well to new or unseen data.
There is a lack of in vitro and in vivo experiments to verify the
specific regulatory mechanism by which lactylation influences gene
expression and function. It is important to note that direct detection
of protein lactylation using mass spectrometry or western blotting
was not performed in this study, highlighting a key direction for
future research. Absence of clinical treatment response data limits
the direct clinical translational value of the molecular subtyping
model. This study is constrained by its dependence on retrospective
public datasets, and validation with patient-derived samples is
essential to confirm the robustness of the identified subtypes.
Moreover, whether lactylation-related signatures serve as
diagnostic biomarkers in gliomas remains unclear, which
warrants further in-depth investigation. Future studies should
leverage organoid models or spatial transcriptomics to further
investigate the role of lactylation in GBM cell-microenvironment
interactions. Furthermore, prospective cohort studies are warranted
to validate the prognostic and therapeutic power of the
prognostic models.

Conclusion

This study systematically clarified the pivotal role of LRGs in
GBM prognosis, molecular classification, and immune
microenvironment modulation. The identification of two
molecular subtypes, GBM1 and GBM2, provides a novel
framework for personalized treatment stratification in GBM.
These findings highlight the clinical potential of targeting
lactylation and de-lactylation pathways and underscore the need
for further research into the crosstalk between lactylation
modifications and the tumor immune microenvironment. Such
efforts may ultimately pave the way for the development of
innovative immunometabolic therapies in GBM.
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