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Background: Polyamine metabolism is closely associated with tumorigenesis,

progression, and the tumor microenvironment (TME). This study aimed to

determine whether polyamine metabolism-related genes (PMRGs) could

predict prognosis and immunotherapy efficacy in Breast Cancer (BC).

Methods: We conducted a comprehensive multi-omics analysis of PMRG

expression profiles in BC. Consensus cluster analysis was used to identify

PMRG expression subtypes in the METABRIC cohort. Univariate and

multivariate Cox regression analyses were performed to identify independent

prognostic genes, which were subsequently used to construct a predictive

model for BC, along with a novel nomogram based on PMRGs. The model was

validated using an independent cohort (GSE86166). Independent prognostic

genes were further verified in BC tissues using quantitative real-time PCR

(qRT-PCR), Semi-quantitative Western blot, and immunohistochemistry.

Additionally, we analyzed the immune microenvironment and enriched

pathways across different subtypes using multiple algorithms. Finally, the

“oncoPredict” R package was used to assess potential drug sensitivities in high-

risk and low-risk groups.

Results: Seventeen polyamine metabolism genes were identified. PMRGs were

abundantly expressed in tumor cells, with 12 survival-related genes being
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selected. In the METABRIC cohort, two PMRG expression subtypes were

identified, with cancer- and immune-related pathways being more active in

cluster B, which was associated with a worse prognosis. Six genes were used to

construct a prognostic model through univariate and multivariate Cox regression

analyses. The predictive performance of the polyamine metabolism model was

validated by ROC curve analysis (training cohort: METABRIC, AUC3years=0.684;

validation cohort: GSE86166, AUC3years=0.682). A nomogram combining risk

scores and clinicopathological features was constructed. Decision Curve Analysis

(DCA) demonstrated that the model could guide clinical treatment strategies.

Four high-risk independent prognostic factors (OAZ1, SRM, SMOX, and SMS)

were validated as being upregulated in breast cancer tissues. The model

successfully stratified BC patients into high-risk and low-risk groups, with the

high-risk group exhibiting poorer clinical outcomes. Functional analysis revealed

significant differences in immune status and drug sensitivity between high-risk

and low-risk groups.

Conclusions: This study elucidated the biological characteristics of PMRG

expression subtypes in BC, identifying a polyamine-related prognostic

signature and four novel biomarkers to accurately predict prognosis and

immunotherapy response in BC patients.
KEYWORDS
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1 Introduction

Polyamines (PAs) are small polycationic alkyl amines, including

putrescine, spermidine, and spermine. Polyamines fulfill important

cellular functions not only in eukaryotes, but in virtually all

organisms, including prokaryotes as well (1). Polyamines exist in

mammalian cells at millimolar concentrations. These molecules

contain multiple amino groups, primarily produced by the

decarboxylation of specific amino acids, and are essential for

normal cell growth and development in eukaryotic organisms.

PAs are involved in various cellular activities through interactions

with negatively charged DNA, RNA, or proteins (2, 3), and their

depletion leads to cell stagnation. They participate in stabilizing cell

structures, binding nucleic acids, and biosynthesizing proteins

(4, 5). Mutations in polyamine metabolism (PM) enzymes or

transporters are linked to Snyder-Robinson syndrome and other

diseases (6–9).

Breast cancer is the second most common cancer worldwide,

affecting approximately 42,000 women annually and representing

the leading cause of cancer-related deaths among females (10). Due

to the high heterogeneity of BC treatments are increasingly targeted

toward subtypes, stages, and grades (11). Conventional therapies for

BC include surgery, chemotherapy, and radiotherapy (12).

Currently, immunotherapy has gained significant attention,

encompassing immune checkpoint blockade, vaccines, immune-
02
oncolytic virus drugs, and adoptive cell therapy (13). The

advancement of targeted and immunotherapy approaches has

expanded treatment options, particularly for advanced cases.

However, many patients fail to respond effectively, highlighting

the need to identify novel biomarkers that can accurately predict

immunotherapy response.

Many evidence strengthens the hypothesis that a rise in

intracellular PA concentrations, mainly through an up-regulation

of PA biosynthetic enzymes, is associated with increased cell

proliferation and is usually linked to tumorigenesis (14–16).

Dysregulated PM has been observed in various cancers, including

breast, colorectal, prostate, skin, renal, and lung cancers (17–24).

Elevated PA levels have also been detected in body fluids of cancer

patients (25, 26). PM functions downstream of major oncogenic

pathways (27), and inhibitors of key biosynthetic enzymes in PM

pathways can significantly impact tumor progression. Thus, PM is

closely associated with tumorigenesis and represents a key target for

cancer therapy. While targeted PMRG therapies offer a promising

approach for BC, it remains unclear how PM affects the tumor

microenvironment (TME) and its role in immunotherapy.

In this study, we identified 17 PMRGs from the literature and

combined multi-omics data from the METABRIC, TCGA, and GEO

datasets, including transcriptomics, single-cell sequencing, and copy

number variation analyses. We classified two PMRG expression

subtypes in the METABRIC cohort, uncovering significant
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differences in immune cell infiltration and pathways, suggesting that

PM strongly influences TME characteristics. Using univariate and

multivariate Cox analyses, we identified six prognostic genes to

develop a risk score model for predicting patient survival, which

was validated in the independent GSE86166 cohort. Furthermore, we

confirmed the expression of key prognostic genes (OAZ1, SRM,

SMOX, SMS) in clinical tissues through qRT-PCR, Western blot,

and immunohistochemistry assays. The PMRG model revealed

distinct immune features and immunotherapy responses across BC

subtypes, enabling the prediction of clinical responses to

chemotherapy. This is the first study to comprehensively investigate

the role of PMRGs in BC patients from the perspectives of prognosis

and immunotherapy response.
2 Materials and methods

2.1 Data Collection

The RNA sequencing expression profile data for BC samples were

collected from the TCGA database (https://portal.gdc.cancer.gov/),

including 113 normal and 1113 cancer cases. The training dataset

was obtained from the Molecular Taxonomy of Breast Cancer

International Consortium (METABRIC) database, comprising

1,992 cases (https://www.cbioportal.org/). The validation dataset

(GSE86166) included 305 cases from the Gene Expression Omnibus

(GEO) database (http://www.ncbi.nlm.nih.gov/geo/). The single-

cell dataset GSE161529 was sourced from the Tumor Immune

Single-Cell Hub (TISCH; http://tisch.comp-genomics.org) (28).
2.2 Expression of genes related to
polyamine metabolism and protein-protein
interaction network

We collected 17 genes related to polyamine metabolism from the

literature (29) (Supplementary Table S1) and compared their

expression levels in tumor tissues and adjacent normal tissues using

the TCGA database. A protein-protein interaction (PPI) network was

constructed using the STRING platform (https://string-db.org/)

to analyze the interconnections among these genes (30).
2.3 Copy number variation analysis

Copy number variation (CNV) is common in cancers and often

serves as a driving event. Chromosomal regions are frequently lost

or gained in cancer patients, and CNVs are significantly associated

with BC risk (31). Breast cancer CNV data were downloaded from

XENA (https://xena.ucsc.edu/) to investigate alterations in

polyamine metabolism genes and their chromosomal locations.
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2.4 Consensus clustering

Consensus cluster analysis was performed using the

“ConsensusClusterPlus” R package. The K-means method was

employed to identify distinct patterns related to polyamine

metabolism gene expression. Principal component analysis (PCA)

was conducted to analyze clustering of the two subtypes, and the

“ggplot2” R package was used to validate clustering reliability with the

uniform manifold approximation and projection (UMAP) method.
2.5 Functional enrichment analysis

We downloaded “c2.cp.kegg.symbols.gmt” and “c5.go.symbols.

gmt” data from the MSigDB database (https://www.gsea-msigdb.

org/gsea/msigdb) and performed gene set variation analysis

(GSVA) using the “GSVA” R package (32).
2.6 Development and validation of
prognostic features based on polyamine
metabolism-related genes

Univariate Cox regression analysis was conducted on the

training METABRIC cohort to identify survival-associated genes.

A multivariate Cox regression model was subsequently applied to

determine key genes and calculate their coefficients for both the

training cohort (METABRIC) and the validation cohort

(GSE86166). Six polyamine metabolism-related genes closely

associated with overall survival (OS) were identified. The risk

score was calculated as follows:

Risk score = ( − 0:2114 * ATP13A2) + (0:53550 * OAZ1) +

( − 0:39230 * PAOX) + (0:21820 * SMOX)

+ (0:41053 * SRM) + (0:1241 * SMS) :

The model’s predictive performance was assessed using Kaplan-

Meier (KM) survival curves and receiver operating characteristic

(ROC) curve analysis over time.
2.7 Construction and evaluation of
prediction Nomogram

The “survival” R package was used to compare the prognosis of

high-risk and low-risk groups in the METABRIC and GSE86166 BC

cohorts. A prognostic nomogram based on the six independent

prognostic genes was developed using the “rms” R package. This

nomogram predicted 1-, 3-, and 5-year survival rates for BC

patients. DCA was performed to evaluate the clinical net

benefit (33).
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2.8 Relationship between risk score and
immune cell infiltration

CIBERSORT and ssGSEA R scripts were used to quantify risk

scores and immune cell infiltration (34). CIBERSORT was applied

to estimate the proportions of immune cell types in high-risk and

low-risk groups, with the sum of immune cell type scores equaling 1

for each sample. Spearman correlation analysis was performed to

investigate the relationship between risk scores and immune-

infiltrating cells.
2.9 Immune characteristic analysis

Tumor mutation burden (TMB) for each patient in the

METABRIC cohort was evaluated using the “ESTIMATE”

software package (35). Differences in TMB between high-risk and

low-risk subgroups, including Stromal Score, Immune Score, and

ESTIMATE Score, were analyzed.
2.10 Chemotherapy response prediction

The “oncoPredict” package was used to predict the sensitivity of

therapeutic agents for the different subgroups (36).
2.11 Patient samples

Human BC specimens and nearby nontumorigenic specimens

were collected from 40 diagnosed BC patients without preoperative

treatment during surgery from June 2018 to October 2022 at the

First Affiliated Hospital of China Medical University. Among them,

20 samples were embedded in paraffin for immunohistochemical

analysis; The remaining samples were all rapidly frozen in liquid

nitrogen and then stored at -80°C for future use. This study was

approved by the Ethics Committee of the First Affiliated Hospital of

China Medical University.
2.12 qRT-PCR

Fifteen paired cancer and adjacent tissue samples from BC

patients were collected at our institution and stored at -80°C. Total

RNA was extracted using Trizol (Sigma) following the

manufacturer’s protocol, and RNA quality was assessed using a

Nanodrop (Thermo). cDNA was synthesized via reverse

transcription using Hiscript QRT supermix for qPCR (Vazyme).

QRT-PCR was performed using SYBR Green Mastermix (Vazyme),

with b-actin serving as the reference gene. Expression levels were

quantified using the 2-DDCt method. Primer sequences for target

genes are listed in Supplementary Table S2.
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2.13 Western blot

Five paired cancer and adjacent tissue samples from BRCA

patients were collected and stored at -80°C. Protein concentration

was measured using Beyotime reagents (China). Twenty micrograms

of protein were mixed with 5× SDS loading buffer, separated via 10%

sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-

PAGE), and transferred to a PVDF membrane (Millipore). The

membrane was blocked with 3% BSA buffer in PBS at room

temperature for 1 hour, followed by overnight incubation at 4°C

with primary antibodies diluted in 3% BSA buffer. The next day,

membranes were washed with TBST and incubated with specific

secondary antibodies at room temperature for 2 hours. Protein

expression 33was detected using an ECL chemiluminescence

kit (Beyotime).

Antibodies used in this study:
• Anti-OAZ1 (Ornithine Decarboxylase Antizyme 1; 1:1000;

Rabbit; cat. no. ab223481; Abcam).

• Anti-SMOX (Spermine Oxidase; 1:1000; Rabbit; cat. no.

ab213631; Abcam).

• Anti-SMS (Spermine Synthase; 1:1000; Rabbit; cat. no.

ab241496; Abcam).

• Anti-SRM (Spermidine Synthase; 1:1000; Rabbit; cat. no.

ab156879; Abcam).

• Anti-b-actin (Beta Actin; 1:3000; Rabbit; cat. no.

AF7018; Affinity).

• Goat Anti-Rabbit IgG (H+L) HRP (1:3000; cat. no.

S0001; Affinity).
2.14 Immunohistochemistry

Paraffin-embedded tumor tissue sections were deparaffinized,

rehydrated, and incubated overnight at 4°C with primary antibodies

against OAZ1, SMOX, SRM, and SMS. The sections were then

incubated with the corresponding anti-rabbit/mouse secondary

antibodies (Zhongshan, China) at 37°C for 2 hours. Sections were

treated with ABC-peroxidase and diaminobenzidine (DAB)

(Zhongshan, China), counterstained with hematoxylin, and

visualized using light microscopy.
2.15 Statistical analysis

The data were analyzed by R software (version 4.3.1, https://

www.r-project.org/). R packages (ESTIMATE, ggplot2, GSVA,

limma, survminer, and survival) were applied for data analysis

and graph plotting. The median value of risk scores was treated as

the cutoff value for the two subgroups. The qRT-PCR results were

analyzed by GraphPad Prism (version 10.1.2). Student’s T-test was
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employed to compare the statistical differences between the two

groups. The Kaplan– Meier method was performed for prognosis

among groups. Multivariate COX analysis was used to screen

prognostic related genes. The Pearson test was used for

correlation analysis. A P value < 0.05 was considered statistically

significant (*, p < 0.05; **, p < 0.01; ***, p < 0.001), and the false

detection rate (FDR) q < 0.05 was used for multiple

testing correction.
3 Result

3.1 Multiomics analysis of polyamine
metabolism-related genes in Breast caner

The study was conducted according to the summary flowchart

(Figure 1). A total of 17 polyamine metabolism-related genes

(PMRGs) were identified from the literature. In the TCGA-BRCA

cohort, 16 of these genes exhibited statistically significant

differences in expression. Most polyamine metabolism genes

(ATP13A2, AZIN1, AZIN2, OAZ1, OAZ2, OAZ3, AOC1, PAOX,

SAT1, SMOX, SRM, SMS, and AGMAT) were highly expressed in

BC In contrast, AMD1, ODC1, SAT2, and ARG1 showed lower

expression in cancer tissues (Figure 2A).
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We further analyzed the expression levels of PMRGs at the

single-cell level using the GSE161529 dataset. After quality control,

32,168 cells were annotated, including B cells, CD4Tconv, CD8T,

endothelial, epithelial, fibroblasts, monocytes/macrophages (Mono/

Macro), NK cells, pericytes, and plasma cells (Figure 2B). PMRGs

were expressed explicitly in BC cells. In PMRGs, OAZ1 and SAT1

are highly expressed across all cell types, especially in malignant

cells and immune cells (Figures 2C, D). SMS and AMD1 are mainly

expressed in malignant cells, epithelial cells and immune cells

(CD8T, Mono/Macro). SRM is mainly expressed on epithelial

cells, endothelial cells and fibroblasts, and is also expressed to a

certain extent in immune cells. However, ARG1 and AOC1 are

almost undetectable in the TME. These findings indicate that

PMRGs play an important roles in BC and are closely linked to

immunity (Supplementary Figures S1, S2).

To explore potential interactions among PMRGs, we performed

a correlation analysis and constructed a protein-protein interaction

(PPI) network (Figure 2E). ATP13A2 is a late endolysosomal

transporter and is involved in polyamine transport (8), but it did

not directly interact with other proteins in our PPI network.

ATP13A2 islinked to genes in the related network, indicating that

intermediate proteins maybe involved in tumorigenesis. This result

is consistent with that of Tang in oral squamous cell carcinoma

(29). The regulatory network provided a comprehensive view of the
frontiersin.or
FIGURE 1

Flowchart of identifying a polyamine-related signature and four novel prognostic biomarkers in breast cancer.
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interconnections among the 17 PMRGs and their prognostic

significance in BC. The network diagram (Figure 2F) illustrated

the relationships among 12 survival-related genes, comprising 8 risk

factors and 4 favorable factors. AZIN2 exhibited the highest number

of negative correlations (blue lines), while ODC1 and SRM

displayed the most positive correlations (pink lines), indicating

their central regulatory roles within the PMRG network.

Copy number variation (CNV) analysis revealed frequent alterations

of PMRGs in BC patients. Amplifications were most significant for

OAZ3 and AZIN1, located on chromosomes 1 and 8, respectively. In

contrast, ATP13A2 and SRM exhibited the most extensive copy number

deletions, both located on chromosome 1 (Figures 2G, H).
Frontiers in Oncology 06
3.2 12 polyamine metabolism-related
genes were used for consistent clustering
of breast cancer molecular subsets

To better understand the role of PMRGs in BC we performed

consensus clustering on 12 prognostic PMRGs using the

“ConsensusClusterPlus” R package. As shown in Figure 3A, when

k=2, the cohort was effectively divided into two distinct subtypes.

Principal component analysis (PCA) revealed significant differences

between the two subtypes (Figure 3B).

Overall survival analysis revealed significant prognostic

differences between the two subtypes (P<0.001) (Figure 3C). The
FIGURE 2

Multi-omics analysis of PMRGs in breast cancer (A) Expression levels of PMRGs in the TCGA-BRCA cohort. (B) UMAP plot of single cells in
GSE161529 data set. (C, D) Distribution and expression patterns of OAZ1 and SAT1. (E) PPI network map showed the interaction of the 17 polyamine
regulators. (F) Interaction of the polyamine regulators. Size of each cell represents the survival effect of each gene. Red represents a positive
correlation, whereas blue indicates a negative correlation. (G) Copy number variations (CNVs) and of 17 PMRGs in TCGA-BRCA. (H) Chromosome
region and alteration of PMRGs. **, p < 0.01; ***, p < 0.001.
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PMRGs-A subtype demonstrated a significant survival advantage,

while PMRGs-B exhibited poorer prognosis. Expression patterns of

PMRGs in the two subgroups were visualized using boxplots

(Figure 3D), showing that most PMRGs, such as SMS, SMOX,

and SAT1, were highly expressed in PMRGs-B. Only ATP13A2,

PAOX, and SAT2 displayed low expression, suggesting their

potential as therapeutic targets.
Frontiers in Oncology 07
3.3 Immune cell infiltration and pathways
of two PMRG subtype clusters

A heatmap of PMRG expression and corresponding

clinicopathological features for the two subtypes is shown in

Figure 4A. To investigate immune cell infiltration differences

between the subtypes, we used ssGSEA to visualize and compare 23
FIGURE 3

Identification and biological characteristics of PMRG expression cluster. (A) Consensus matrix for k = 2 was obtained by applying consensus
clustering. (B) PCA (C) Kaplan–Meier curves of survival differences between the two PMRGs expression clusters. (D) PMRGs expression in two
subtype clusters. ***, p < 0.001.
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immune-infiltrating cell subtypes (Figure 4B). Significant differences

were observed in immune cell infiltration between the two groups. In

the high-risk PMRGs-B subgroup, there was a marked increase in

immune cell infiltration, including activated B cells, activated CD4+ T

cells, activated CD8+ T cells, activated dendritic cells, regulatory T

cells, follicular helper cells, and type 1/17/2 helper T cells.

To explore the functional differences between the clusters,

GSVA was applied to analyze KEGG pathway enrichment

(Figure 4C). The PMRGs-B cluster, which exhibited poor

prognosis, was enriched in pathways associated with the cell

cycle, P53 signaling, and the pentose phosphate pathway— all of

which are closely related to tumor development. GSEA enrichment

analysis further confirmed that the high-risk PMRGs-B subtype was

primarily enriched in autoimmune thyroid disease pathway

(Figure 4D). There were significant differences in risk scores

between the two PMRGs subtypes (Figure 4E), and alluvial maps
Frontiers in Oncology 08
(Figure 4F) showed changes in polyamine metabolism-related

subtypes, risk scores, and life status.

These findings indicate that the two polyamine modification

patterns display distinct immune infiltration characteristics and

functional enrichment profiles, with PMRGs-B linked to poor

prognosis and immune dysregulation.
3.4 Construction and validation of a well-
performing prognostic signal related to
polyamine metabolism

Univariate Cox regression analysis in the METABRIC cohort

(Figure 5A) identified 12 PMRGs significantly correlated with

survival (P<0.05). Of these, AGMAT, AMD1, ATP13A2, OAZ1,

ODC1, SAT1, SMOX, SRM, and SMS were risk factors (HR > 1,
FIGURE 4

Biological characteristics of PMRG expression cluster. (A) Heatmap of PMRGs expression and corresponding clinicopathological features. (B) Immune
infiltration patterns in two subtype clusters. (C) GSVA analysis focused on the differential enrichment of KEGG pathways between the two clusters.
(D) GSEA enrichment analysis of PMRGs-B. (E) Risk scores of the two clusters. (F) Alluvial map of polyamine metabolic subtypes and living conditions.
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P<0.05), whereas AZIN2, ATP13A2, PAOX, and SAT2 were

favorable factors (HR < 1, P<0.05) for patient prognosis. To

assess the clinical relevance of polyamine metabolism-related

genes (PMRGs), we developed and validated a prognostic model

using the independent cohort GSE86166. A multivariate Cox

regression analysis was conducted to evaluate the effectiveness of

the risk score model in predicting BC patient prognosis. Based on

the median risk value, patients were divided into high- and low-risk

groups. The final model consisted of six PMRGs, of which OAZ1,

SMOX, SRM, and SMS were significantly correlated with overall

survival (OS) and identified as risk factors (HR > 1, P<0.05)

(Figure 5B).
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Kaplan-Meier survival curves demonstrated that high-risk

groups had significantly poorer outcomes in both the METABRIC

training cohort and the GSE86166 validation cohort (Figures 5C,

D). Time-dependent ROC curve analysis for OS at 1, 3, and 5

years showed strong predictive performance for the model

(Figures 5E, F).

To account for clinicopathological factors, the PMRG-based

risk score was integrated with clinical data to construct a nomogram

(Figure 6A). The calibration plot confirmed the nomogram’s

predictive accuracy (Figure 6B). DCA further demonstrated that

the nomogram provides substantial benefits for predicting short-

and long-term survival in BC patients (Figure 6C). These results
FIGURE 5

Polyamine-related risk signature construction and validation (A) The forest plot shows 12 PMRGs via the univariate Cox regression analysis. (B) The
multivariate Cox regression analyses of polyamines metabolism-associated gene signatures for exploring the independent prognostic factors in BC.
HR more than 1 indicates the risky gene, and HR less than 1 indicates the protective gene. (C, D) K-M curve of survival difference and predictive
accuracy of PMRGs in the training group. (E, F) K–M curve of survival difference and predictive accuracy of PMRGs in the testing group.
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highlight that the PMRG-based nomogram is a reliable and effective

tool for predicting BC patient prognosis.
3.5 Identification of independent
prognostic factors

Using univariate and multivariate Cox regression analyses,

OAZ1, SMOX, SRM, and SMS were identified as independent

prognostic factors. We further investigated the expression levels

of these four genes and their diagnostic and prognostic relevance in

BC tissues.

The expression levels of OAZ1, SMOX, SRM, and SMS

were significantly elevated in cancer tissues compared to normal

tissues (Supplementary Figures S3A–D), as confirmed by

qRT-PCR (Figures 7A–D), Western blot (Figures 7E, F), and

immunohistochemistry (Figure 8). Survival analysis revealed that

patients with high expression of these four genes had a significantly

poorer prognosis (Figures 7G–J).

These findings establish OAZ1, SMOX, SRM, and SMS as

potential biomarkers and independent prognostic factors in BC

providing critical insights for future clinical applications.
3.6 Gene set enrichment analysis and
immune activity of different risk scores

The immune microenvironment plays a crucial role in tumor

progression and response to immunotherapy. We used ssGSEA to

analyze the expression of 22 immune-infiltrating cell types in

association with risk scores. BC samples were ranked from low to
Frontiers in Oncology 10
high-risk scores, showing the proportion of different immune cells

across the risk spectrum (Figure 9A). Macrophage M0 composition

accounted for the largest proportion of immune cells in the high-

risk group (Figure 9B), suggesting that macrophages M0 may

contribute significantly to the poor prognosis of BC patients.

Further investigation of the regulatory relationships between

immune cells (Figure 9C) revealed a significant negative correlation

(cor = -0.42) between macrophages M0 and CD8+ T cells. The

nine-gene signatures used to construct the PMRG-based model

showed distinct expression patterns in high- and low-risk

populations (Figure 9D) and were significantly associated with

various immune cell infiltrations (Figure 9E).

We next analyzed the tumor microenvironment (TME) of BC

patients in the high- and low-risk groups. By estimating expression-

based scores, we obtained the stromal score, immune score, and

ESTIMATE score for both groups (Figure 9F). The tumor mutation

burden (TMB) was significantly higher in the high-risk group

compared to the low-risk group, indicating that higher risk scores

correlate with higher TMB.

Chemotherapy remains a cornerstone of cancer treatment. Using

the “oncoPredict” R package, we explored potential differences in

chemotherapy sensitivity between the high- and low-risk groups.

High-risk patients exhibited greater sensitivity to common

chemotherapy drugs, such as Cisplatin and Cyclophosphamide

(Figures 10A, B). Additionally, small molecule drugs targeting PARP

inhibitors (e.g., Talazoparib) and PI3K inhibitors (e.g., Alpelisib) were

found to be more effective in high-risk patients (Figures 10C, D).

These findings suggest that BC patients in the high-risk group not

only exhibit distinct immune microenvironment characteristics but also

show promising sensitivity to chemotherapy and targeted therapies,

offering potential clinical benefits for treatment optimization.
FIGURE 6

Construction of the nomogram predicting patients’ survival in BC. (A) Nomogram plot based on PMRG score and clinicopathological factors.
(B) Calibration plot for the validation of the nomogram. (C) DCA curves of the nomogram for three-year OS in BC patients.
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4 Discussion

Breast cancer is a heterogeneous and highly aggressive disease,

ranking among the leading causes of global morbidity and mortality

(11) and representing a significant disease burden for women

worldwide (37). Polyamines (PAs) play a critical role in the

proliferation of breast cancer cells (4). Although intracellular PA

concentrations are tightly regulated, dysregulation frequently

occurs in breast cancer cells, making polyamine metabolism (PM)

a potential target for BC intervention. PM is closely associated with

the tumor microenvironment (TME) and is involved in anti-tumor

immunity (38, 39), with intricate crosstalk between PM and the

TME. However, the role of PM in the BC TME remains

underexplored (23). Therefore, this study investigated the clinical

significance of polyamine metabolism-related genes (PMRGs)

in BC.

In this study, we analyzed PMRG expressions in BC at

transcriptome and single-cell levels. Most PMRGs were

overexpressed in BC samples, and a majority (12/17) were

associated with survival. Given the heterogeneity of BC, patients

were stratified based on the expression of 17 PMRGs using
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consensus clustering. Two distinct PMRG expression subtypes

were identified, showing significant differences in prognosis and

biological pathways. Patients with high-risk scores have the worse

OS related to poor survival prognosis and high TMB than those

with low risk scores and inhibitory TME status. These reveal that

the risk score can offer an innovative approach to assessing the TME

status and prognosis of breast cancer.

Our analysis revealed that the PMRG expression cluster B subtype

had a poorer prognosis and was significantly enriched in tumor- and

immune-related pathways. These included the cell cycle, natural killer

cell-mediated cytotoxicity, T cell receptor signaling pathway,

chemokine signaling pathway, P53 signaling pathway, and the

pentose phosphate pathway (PPP). The P53 signaling pathway plays

a pivotal role in regulating breast cancer progression. For example,

activation of P53 by Salt-inducible kinase 1 (SIK1) promotes oxidative

phosphorylation, thereby inhibiting aerobic glycolysis and suppressing

cell proliferation in breast cancer (40). Conversely, inhibition of the P53

signaling pathway contributes to breast cancer progression by

increasing cell proliferation, migration, and invasion (41).The

pentose phosphate pathway (PPP) also plays an essential role in

breast cancer metabolism, contributing to oxidative stress regulation,
FIGURE 7

Validation of independent prognostic genes (OAZ1, SMOX, SRM, and SMS). (A–D) qRT‐PCR assay. (E, F) Western blot assay. (G–J) Kaplan-Meier plot
depicting the predictive role of the independent genes expression for patients’ survival. **, p < 0.01; ***, p < 0.001; ****, p < 0.0001.
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nucleotide synthesis, and maintenance of the REDOX state (41, 42). It

has been implicated in various cancer cell processes, including

proliferation, apoptosis, drug resistance, invasiveness, metastasis, and

senescence (43–47). By maintaining a high proliferative state, the PPP

supports cancer cell viability (48, 49).

We developed a risk score model established by six genes

(OAZ1, SMOX, SRM, SMS, ATP13A2, and PAOX) from the

METABRIC and GEO database via multivariate COX correlation

analysis, predicting the different prognosis of the high- and low-

risk patients. Survival analysis indicates that this risk model can

effectively distinguish high-risk and low-risk patients. To improve

the accuracy of model prediction, this study combined prognostic

risk scores with clinical characteristics to construct the nomogram

for OS prediction. Through analysis of ROC curves and DCA, we

found that Nomogram had a better predictive ability to predict BC

prognosis than other indicators. We observed a significant positive
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correlation between risk scores and chemotherapy, as well as

ER_IHC. This finding enhances the prediction accuracy and

clinical significance of the risk model.

The occurrence and metastasis of tumors are closely related to the

tumor microenvironment (TME) (50). In breast cancer TME, tumor-

associatedmacrophages (TAMs) play a crucial role, constitutingmore

than 50% of the tumor volume (51). TAMs are typically activated

within tumors, where they exert tumor-promoting (52, 53) and

immunosuppressive effects (54), ultimately leading to poor

prognosis and chemotherapy resistance (55, 56).

Given the established relationship between polyamines and

immunity, we analyzed immune cell infiltration in high- and low-

risk groups using ssGSEA, CIBERSORT, and ESTIMATE

algorithms. Immune cell infiltration was elevated in the high-risk

group, particularly in macrophages M0, M1, T cells CD4 memory

activated, and T cells follicular helper (Tfh) cells. Monocytes
FIGURE 8

Immunohistochemical analysis showed the expression of four independent factors in para-carcinoma tissues and breast cancer tissue (magnification
200x). (A–C) OAZ1. (D–F) SMOX. (G–H) SRM. (J–L) SMS. **, p < 0.01.
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differentiate into three macrophage subtypes: non-activated M0

macrophages, pro-inflammatory M1 macrophages, and anti-

inflammatory M2 macrophages. M1 macrophages release potent

pro-inflammatory cytokines, such as TNF-a, IL-1, IL-6, IL-12, and
iNOS, contributing to chronic inflammation and fibrous capsule

formation. In contrast, M2 macrophages promote anti-

inflammatory responses, tissue repair, and growth through the

release of factors like IL-4, IL-10, and TGF-b (57–59).

Numerous previous studies have shown that M2 macrophages

promote proliferation of breast cancer cells (54), renal tubular cells

(60), colon cancer cells (61). Tfh cells provide essential help to B

cells for effective antibody-mediated immune responses. In various

solid organ tumor types of non-lymphocytic origin, their presence

frequently coincides with a better prognosis. Existing studies

confirm that Tfh cells is a key to the success of the immune

checkpoint blockade (ICB) determinants and predictors (62).
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Additionally, the high-risk group demonstrated a relatively

favorable immunotherapy response based on the TIDE score. These

results suggest that PMRG signatures may serve as predictors of

immunotherapy responses. Given the dependency of tumor cells on

polyamines and the critical physiological rolesofpolyamines invarious

immune cell types, targeting polyamine metabolic pathways may

enhance immunotherapy efficacy (23, 24, 29, 63).

This study first developed and validated the important

biological function of PMRG signatures in determining the

prognosis of BC patients. More importantly, candidate genes

OAZ1, SMOX, SRM, and SMS were identified as independent

prognostic factors. We further validated their expression levels in

BC cells and explored their prognostic value using survival analysis.

OAZ1 is a key member of the ornithine decarboxylase enzyme

family involved in polyamine metabolism (64). OAZ1 exhibits tumor

inhibitory activity by affecting cell proliferation, apoptosis, and
FIGURE 9

The immune microenvironment of BC tissues at different risk scores. (A) The relative proportion of infiltrating immune cells with different risk score.
(B) Immune cell component between high-risk group and low-risk group. (C) Correlation between immune cells. (D) Heatmap showing the
expression patterns of nine hub PMRGs. (E) Correlation between immune cells and nine hub PMRGs. (F) Estimate score of the expression profile in
high-risk group and low risk group. *, p < 0.05; ***, p < 0.001.
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differentiation in oral cancer cell lines, leukemia, and non-small cell lung

cancer (65–67). However, its role in breast cancer remains

poorly understood.

SMOX (Spermine Oxidase) plays a major role in the catabolism of

mammalian polyamines by oxidizing spermine to spermidine,

producing reactive oxygen species (ROS) in the process (68). ROS

induced by oxidative stress can lead to epithelial cell apoptosis but also

cause DNA damage, thereby increasing the risk of tumorigenesis (69,

70). High SMOX expression has been implicated in gastric cancer (71),

hepatocellular carcinoma (72), and colorectal cancer (73). SMOX is also

associated with drug responses and cellular reactions to stress stimuli.

SRM (Spermidine Synthase) converts putrescine to spermidine in

the polyamine biosynthesis pathway. SRM is overexpressed in prostate

cancer and clear cell renal cell carcinoma (ccRCC), serving as a reliable

biomarker and therapeutic target (74, 75). Overexpression of SRMmay

increase bladder cancer resistance to pirarubicin, while SRM

knockdown improves chemotherapy efficacy (64). SRM also regulates

the immune microenvironment, as its knockdown inhibits fibroblast

proliferation (76). Recent studies have shown that targeting SRM can

enhance the sensitivity of FGFR-mutant bladder cancer cells to

erdafitinib treatment (77).

SMS (Spermine Synthase) is the only enzyme responsible for

spermine (SPM) synthesis in mammalian cells (15). As the final step

in the polyamine biosynthesis pathway, SMS catalyzes the transfer

of aminopropyl from decarboxylated S-adenosylmethionine

(dcSAM) to spermidine (SPD) to produce spermine (78).

Mutations in SMS cause Snyder-Robinson Syndrome (SRS), a rare

X-linked recessive disorder characterized by intellectual disability,

developmental delays, skeletal abnormalities, and seizures (78–80).
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Research on SMS in cancers is limited; however, existing studies

indicate that SMS overexpression promotes colon and pancreatic

cancer progression (81, 82). Targeting SMS with inhibitors reduces

polyamine levels, thereby suppressing tumor cell proliferation (83).

In summary, this study, for the first time, developed and validated

the critical biological function of polyamine metabolic gene markers in

predicting BC patient prognosis. The nomogram based on this model

offers a valuable tool for clinicians to develop personalized treatment

plans for BC patients in clinical practice. Importantly, candidate genes

OAZ1, SMOX, SRM, and SMS were identified as independent

prognostic factors. Future research into the molecular mechanisms

underlying these markers, along with prospective randomized clinical

trials, will have significant clinical implications and provide a roadmap

for precision medicine in breast cancer.
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SUPPLEMENTARY FIGURE 1-2

Expression of SAT2, AZIN1, SMS, OAZ2, SRM, AMD1, ODC1, ATP13A2, SMOX,

AOC1, OAZ3, AGMAT, ARG1, PAOX, AZIN2 in single cell data set GSE161529.

SUPPLEMENTARY FIGURE 3

The expression of independent factors was upregulated in breast cancer

tissues in TCGA dataset. (A) OAZ1, (B) SMOX, (C) SRM, and (D) SMS.
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