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Background: Gallbladder cancer (GBC) frequently exhibits non-specific early

symptoms, delaying diagnosis. This study (i) assessed whether routine blood

biomarkers can distinguish early T stages via machine learning and (ii) compared

the T-stage discrimination performance of a large language model (DeepSeek-

R1) when supplied with (a) radiology-report text alone versus (b) radiology-report

text plus blood-biomarker values.

Methods: We retrospectively analyzed 232 pathologically confirmed GBC

patients treated at Lishui Central Hospital between 2023 and 2024 (T1, n = 51;

T2, n = 181). Seven blood variables—neutrophil-to-lymphocyte ratio (NLR),

monocyte-to-lymphocyte ratio (MLR), platelet-tolymphocyte ratio (PLR),

carcino-embryonic antigen (CEA), carbohydrate antigen 19-9 (CA19-9),

carbohydrate antigen 125 (CA125), and alpha-fetoprotein (AFP)—were used to

train Random forest, Support Vector Machine (SVC), XGBoost, and LightGBM

models. Synthetic Minority Over-sampling Technique (SMOTE) was applied only

to the training folds in one setting and omitted in another. Model performance

was evaluated on an independent test set (N = 47) by the area under the receiver-

operating-characteristic curve (AUROC, 95% CI by 1 000-sample bootstrap

confidence interval, CI); cross-validation (CV) accuracy served as a

supplementary metric. DeepSeek-R1 was prompted in a zero-shot, chain-of-

thought manner to classify T1 versus T2 using (a) the radiology report alone or (b)

the report plus the patient’s biomarker profile.

Results: Biomarker-based machine-learning models yielded uniformly poor T-

stage discrimination. Without SMOTE, individual models such as XGBoost

achieved an AUROC of 0.508 on the independent test set, while recall for the

T1 class remained low (e.g., 14.3% for somemodels), indicating performance near

random chance. Applying SMOTE to the training data produced statistically

significant gains in cross-validation (CV) accuracy for several models (e.g.,

XGBoost CV Acc. 0.71 → 0.80, p = 0.005; LGBM CV Acc. [No-SMOTE] →

[SMOTE], p = 0.004). However, these improvements did not translate to better
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discrimination on the independent test set; for instance, XGBoost’s AUROC

decreased from 0.508 to 0.473 after SMOTE application. Overall, the

biomarker models failed to provide clinically meaningful T-stage differentiation.

DeepSeek-R1 analyzing radiology text alone reached 89.6% accuracy on the full

232-patient cohort dataset, and consistently flagged T2 cases on phrases such as

“gallbladder wall thickening.” Supplying biomarker values did not change

accuracy (89.6%)

Conclusions: The evaluated blood biomarkers did not independently aid early T-

stage discrimination, and SMOTE offered no meaningful performance gain.

Conversely, a radiologytext-driven large language model delivered high

accuracy with interpretable rationale, highlighting its potential to guide surgical

strategy in GBC. Prospective multi-center studies with larger cohorts are

warranted to confirm these findings.
KEYWORDS

gallbladder cancer, GBC, machine learning, large language model, DeepSeek-R1,
staging, biomarker, radiology report
1 Introduction

Gallbladder cancer (GBC) is the most common malignancy of

the biliary tract, accounting for 80–95% of biliary neoplasms

worldwide (1, 2). Its overall prognosis is dismal: in advanced

disease the 5-year survival rate is under 5% (3, 4). This grim

outlook is driven chiefly by the difficulty of early diagnosis. Early-

stage GBC is almost asymptomatic, and its clinical manifestations

are easily mistaken for benign gallbladder disorders. Although

modern imaging techniques—ultrasonography, computed

tomography (CT), and magnetic resonance imaging (MRI)—are

widely used, the radiologic appearance of malignant lesions often

mimics benign conditions such as xanthogranulomatous

cholecystitis (XGC) (2, 5). Radiologists therefore resort to

ambiguous wording in their reports, making a definitive imaging

diagnosis elusive. Consequently, many patients are first recognized

intra-operatively or post-operatively, and at presentation are

frequently at an unresectable stage. In fact, curative surgery

performed at an early stage remains the only intervention that

offers a meaningful survival benefit (3). The extent of this surgery,

however, is critically dependent on the pathological T-stage, which

dictates the depth of tumor invasion. According to established

clinical guidelines, treatment for early-stage GBC ranges from

simple cholecystectomy for T1a tumors to more extensive

procedures for deeper invasion. Specifically, the distinction

between T1 and T2 stages is pivotal for surgical planning. While

a simple cholecystectomy may suffice for some T1 tumors, T2

disease, which involves invasion into the perimuscular connective

tissue, often necessitates an extended cholecystectomy including

hepatectomy to improve survival outcomes (6). Inaccurate pre-

operative staging can therefore lead to either undertreatment,
02
increasing the risk of recurrence, or overtreatment, exposing

patients to unnecessary surgical morbidity. Developing tools that

enable earlier and more accurate pre-operative T-stage

discrimination is thus critical to improving outcomes for patients

with GBC.

Artificial-intelligence (AI) techniques have shown considerable

promise in medicine, particularly in oncologic imaging. Machine-

learning and deep-learning models are routinely employed to

enhance the sensitivity and specificity of image interpretation (7).

For example, a convolutional neural network trained on CT scans

achieved an AUC of roughly 0.81 for distinguishing malignant from

benign gallbladder lesions (4). Predictive models that couple

radiomics with machine learning have also been applied to the

pre-operative assessment of GBC—for instance, in predicting

lymph-node metastasis—with reported AUCs of 0.82–0.85 (8).

Most prior studies, however, focus exclusively on structured

imaging metrics and quantitative data, overlooking the equally

valuable unstructured information contained in radiology-report

text. The technical language and “Impression” sections of such

reports embed rich experiential judgments and subtle clues that

may signal early malignancy, yet conventional ML pipelines that

require structured inputs cannot exploit this resource.

Recent advances in large language models (LLMs) offer a new

avenue for mining unstructured clinical text. BioGPT, for instance,

achieved 78.2% accuracy on PubMedQA, demonstrating LLM

potential in medical question answering (9), while Med-Gemini

reached 91.2% accuracy, opening the door to LLM-supported

imaging diagnosis (10). LLMs can extract disease cues from

radiology reports and, in some tasks, rival or surpass human

interpretation. In a pancreatic-cancer study, GPT-4 attained

roughly 75% accuracy in identifying disease presence from
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reports, approaching the performance of clinical oncologists (11).

Similarly, for automatic tumor staging, GPT-4 achieved 52–87%

accuracy in assigning TNM stage for lung cancer (12). Yet, in the

domain of early GBC diagnosis, there is a paucity of work that (i)

quantifies the stand-alone performance of LLMs on radiology-

report text, (ii) benchmarks this against traditional biomarker-

based machine-learning models, and (iii) explores any

incremental value that structured biomarker data may confer

when combined with an LLM.

The present study addresses these gaps by independently

evaluating structured biomarker-based machine learning models

and an LLM that analyses unstructured radiology-report text for

computational T-stage discrimination in GBC. We trained Random

forest, XGBoost, LightGBM, and other algorithms on routine blood

biomarkers to assess their staging capability, and separately

employed the open-source LLM DeepSeek-R1 to parse radiology

reports, infer lesion characteristics, malignancy likelihood, and T

stage. DeepSeek-R1 employs a mixture-of-experts architecture and

exhibits strong reasoning capabilities, preliminary results show

excellent performance on medical tasks, matching the level

achieved across multiple benchmarks by ChatGPT-o1-12-27, one

of the strongest publicly released models to date (13, 14). We

compared the qualitative linguistic cues extracted by the LLM with

the quantitative features analyzed by the machine-learning models,

and we investigated whether combining the two information

sources could enhance the sensitivity and accuracy of early GBC

diagnosis. Finally, we analyzed feature importance within the

biomarker models to gauge the relative contribution of each

marker. By demonstrating automatic stage inference from

unstructured radiology text, our approach offers a new

perspective for early GBC diagnosis and provides a reference

point for future AI-assisted clinical decision systems.
2 Data collection

2.1 Study design and ethical approval

This retrospective study enrolled patients who underwent

imaging for suspected gallbladder lesions at a single center (Lishui

Central Hospital) between June 2023 and June 2024. Among the

initially screened patients, 235 were finally diagnosed with

gallbladder cancer (GBC) on the basis of cholecystectomy

specimens or biopsy pathology. Because the primary aim was to

improve early detection and staging of GBC, cases at advanced

stages (T3 and T4)—which together accounted for<5% of the

dataset and were too sparse for statistically meaningful analysis—

were excluded. Consequently, 232 patients (T1, 51; T2, 181)

constituted the final analysis cohort. Final staging was assigned

according to post-operative findings.

The study protocol was approved by the Institutional Review

Board (IRB) of Lishui Central Hospital (approval no. LCH-2025-

056-01). Given its retrospective design, the IRB waived the

requirement for written informed consent. All procedures
Frontiers in Oncology 03
complied with local regulations and institutional requirements.

Under applicable national laws and institutional policies, neither

written consent from participants nor from their legal guardians/

relatives was required.

During data collection and handling, every radiology report was

manually reviewed and stripped of direct identifiers—patient name,

date of birth, study date, and medical-record number—before use.

Only this anonymized dataset was analyzed by a locally deployed

instance of DeepSeek-R1; no data were transmitted to external

servers. The study fully conformed to relevant privacy regulations

and to the ethical principles of the Declaration of Helsinki, ensuring

confidentiality and data security throughout.
2.2 Data collection and variables

The key data fields used in this study are summarized in Table 1.

Collected variables comprised: the full text of pre-operative imaging

reports (CT, MRI, and MRCP), radiological impressions, post-

operative pathological diagnoses, patient demographics (age and

sex), and a panel of seven blood biomarkers (CEA, CA19-9, CA125,

AFP, NLR, MLR, PLR).

The selection of these biomarkers was guided by established

literature demonstrating their clinical relevance in GBC. For

instance, tumor markers such as CEA and CA19–9 are routinely

used in clinical practice for monitoring GBC, although their

diagnostic specificity can be limited (15). Similarly, AFP has been

reported in rare cases of AFP-producing GBC (16). More recently,

systemic inflammatory markers, including the neutrophil-to-

lymphocyte ratio (NLR), platelet to-lymphocyte ratio (PLR), and

monocyte-to-lymphocyte ratio (MLR), have been identified as

strong predictors of overall survival. A comprehensive meta-

analysis by Velasco et al. confirmed that elevated levels of these

inflammatory indices are consistently associated with worse

survival outcomes in GBC patients (17). Given this body of

evidence suggesting their collective prognostic and diagnostic

potential, we included all seven markers to test the hypothesis of

whether their combined signal could effectively discriminate early

T-stages.

Pathological T, N, and M categories and overall stage were

assigned according to the 8th edition of the American Joint

Committee on Cancer (AJCC) staging manual and served as

supervised-learning labels. During data cleaning, T3 and T4 cases

were excluded from model training because the study aimed to

discriminate early stages (T1 and T2) and mid-/late-stage data were

too sparse for meaningful analysis. To ensure analytical reliability

and model stability, any record missing critical discriminative

variables—such as T stage or CA19-9—was removed.

Consequently, only the curated T1 and T2 samples were used for

machine-learning modeling and large-language-model inference.

Radiology reports exhibited minor format variations by date and

author; however, given the robust natural-language capabilities of

DeepSeek-R1, the original CT report text was supplied to the model

without manual re-formatting.
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3 Experiments

3.1 Machine learning predictive model
construction

We focused particularly on cases for which both integrable

imaging examinations (CT, MRI) and blood test data were available.

Our primary objective was to build a classifier that distinguishes T1

from T2 cancer—an important distinction for early versus more

advanced local disease—and to explore whether these features could

help predict the progression of GBC. Detailed steps are

outlined below.

3.1.1 Feature extraction
We first loaded a spreadsheet containing demographic and

clinical data for the 235 patients with pathologically confirmed

GBC. Using Python’s pandas library, we removed extraneous

whitespace in the column names and standardized them into

English labels (e.g. Gender, CT_Images, Imaging_Diagnosis).

Next, we extracted the T stage (T1, T2) from the final pathology

reports with a custom text-parsing function. Cases reporting

unusual notations (e.g. “T1a” or “T2b”) were simplified to integer

values (1, 2) to align with the study’s focus on T1 and T2 stages.
Frontiers in Oncology 04
Initially, the dataset comprised 235 patients with the following

T-stage distribution: T1 (51), T2 (181), T3 (1), and T0/Tis (2).

Consistent with earlier pre-processing, T3 and T4 cases were

excluded because of their extreme scarcity (< 5% of the dataset,

with only one T3 case identified) and because the clinical objective

was early-stage detection. Likewise, the rare T0 or Tis cases were

coded as 0 but excluded from model training. The final dataset

therefore contained 232 patients (T1: 51, T2: 181).

Continuous variables (e.g. NLR, PLR, CA19-9, CEA) stored as

strings were converted to numeric form by extracting the terminal

numerical value in each cell, ensuring accurate representation of

biomarker levels. For instance, CA19–9 values such as “The

patient’s CA19-9 (< 37) value was 39.28” were parsed to 39.28 U/

mL, yielding a mean of 104.12 U/mL (SD 625.99). CEA, CA125, and

AFP were handled analogously, with means of 2.80 ng/mL (SD

2.62), 16.95 U/mL (SD 18.37), and 4.97 ng/mL (SD 21.20),

respectively, reflecting the heterogeneous biomarker profiles of

GBC patients.

Rows missing critical discriminative variables (e.g. T stage or

CA19-9) were earmarked for exclusion; however, inspection of the

235 original cases revealed no such omissions, so no rows were

dropped for missing key data. Data inconsistencies—such as

repeated numeric entries (e.g. “35, 37” appearing in a single

CA19–9 cell)—were resolved by retaining the last valid value,

ensuring consistency across the dataset.

Ultimately, seven blood-based biomarkers—NLR, MLR, PLR,

CEA, CA19-9, CA125, and AFP—were selected as features for

machine-learning training. To improve model performance and

stabilize distributions, each numerical feature was log-transformed

via log(1+x) before being supplied to the learning algorithms.

Figure 1 shows the post-exclusion T-stage distribution (T1 = 51

[22%], T2 = 181 [78%]). Figure 2 plots the log-transformed

biomarker histograms, where the transformation suppresses the

strong right skew and stabilizes variance, allowing the models to

detect the subtler differences that separate T1 from T2—an essential

prerequisite for timely surgical decision-making.
3.1.2 Model training and evaluation
After data cleaning, we built binary classification models to

distinguish between T1 and T2 gallbladder cancer (GBC) samples.

This distinction is critical for differentiating early-stage from more

locally advanced GBC, directly impacting surgical planning and

patient prognosis. As previously noted, T3 and T4 stage samples

were excluded from this analysis due to their scarcity (less than 5%

of the dataset), aligning our research focus with the clinical need for

timely diagnosis of early-stage GBC.

In this study, to assess the effectiveness of addressing class

imbalance, we trained and evaluated models under two distinct

scenarios: one with the application of the Synthetic Minority Over-

sampling Technique (SMOTE) (18), and one without. When

SMOTE was applied, to prevent data leakage and ensure an

objective evaluation of model performance, it was embedded

within a scikit-learn Pipeline (SMOTE → StandardScaler →

Classifier). This ensured that SMOTE was applied only to the

training folds during the cross-validation process. Consequently,
TABLE 1 Summary of main data fields.

Field name Description

Preop CT Imaging Full text describing CT scan results

Imaging Diagnosis Radiologist’s opinion (e.g., “suspected cancer”)

Preop MRCP Desc. Detailed description of MRCP

MRCP Diagnosis Final radiologist’s opinion from MRCP

Preop MRI Desc. MRI findings (T1/T2, contrast, etc.)

Preop MRI Diag. Final radiologist’s evaluation of MRI

Postop Path Desc. Histopathologic examination (gold standard to confirm
malignancy, infiltration, etc.)

Age Patient age at time of surgery/diagnosis

Sex Gender (M/F)

CEA (0–5) Tumor marker; flagged if above 5 ng/mL

CA19-9 (<37) Tumor marker CA19-9

CA125 (<35) Tumor marker CA125

AFP (0–8.78) Tumor marker AFP

NLR Ratio of neutrophils to lymphocytes
(inflammatory index)

MLR Ratio of monocytes to lymphocytes

PLR Ratio of platelets to lymphocytes

T T stage (T1/T2/T3/T4, AJCC)

N Lymph node metastasis (N0/N1, etc.)

M Distant metastasis (M0/M1)

Stage Overall Stage (I/II/III/IV, AJCC)
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FIGURE 1

Stage distribution and biomarker histograms. Distribution of pathological T stages (T1 = 51 vs T2 = 181) in the analyzed cohort (n=232).
FIGURE 2

Log-transformed distributions of key biomarker variables. To mitigate the significant right-skewness present in the original data, all numerical
features were log-transformed (log(1+x)), improving their distributional properties for model training.
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within each training split, the minority class (T1) was oversampled

to achieve a balanced T1:T2 ratio of 1:1, while all validation folds

remained strictly untouched, preserving their original data

distribution for a robust assessment of generalization

performance. This approach was intended to mitigate potential

model bias toward the majority class (T2) and improve the

identification capability for the clinically crucial minority class

(T1), as correct identification of T2 stage typically necessitates

extended resection, whereas T1 stage can often be managed with

simple cholecystectomy.

All numerical input features (blood-based biomarkers) were

standardized before model training using StandardScaler, which

scales the data to have a mean of 0 and a standard deviation of 1.

This step was crucial for ensuring fair performance comparisons,

particularly for distance-based models like Support Vector

Machine (SVC), where unscaled features could otherwise skew

the results.

We trained and evaluated four primary machine learning

models under each of the two scenarios (with and without

SMOTE application): Random Forest (RandomForestClassifier),

XGBoost (XGBClassifier), LightGBM (LGBMClassifier), and

Support Vector Machine (SVC). Random Forest was selected for

its robustness to noisy data and its ability to effectively handle non-

linear relationships, which can be prevalent in biomarker data such

as CA19–9 and NLR. XGBoost and LightGBMwere chosen for their

powerful gradient boosting frameworks, which are known to excel

in handling imbalanced medical datasets and often provide high

predictive accuracy through iterative optimization. SVC was

included to explore a non-tree-based approach, leveraging its

strengths in high-dimensional spaces, which is relevant given the

diverse set of biomarker features in GBC.

For the Random Forest model, to further address class

imbalance, it was configured with random-state=42 and the class-

weight=‘balanced’ option. Hyperparameter tuning was performed

using RandomizedSearchCV with 5 iterations over combinations of

n-estimators (50, 100, 200), max-depth (None, 5, 10, 20), and min-

samples-split (2, 5, 10) to select the best parameters for optimizing

performance. The SVC model utilized the rbf kernel function with

C=1.0 and gamma=‘scale’, and the probability=True option was

enabled for probability estimates, with random-state=42 set for

reproducibility. The XGBoost model was configured with use-label-

encoder=False, eval-metric=‘logloss’, and random-state=42.

LightGBM used random-state=42 as a fixed parameter to

maintain consistency.

The performance of each model under each scenario (with/

without SMOTE) was initially assessed on the training data using

5-fold cross-validation to calculate mean accuracy and standard

deviation, providing an evaluation of model stability. Subsequently,

the final performance of each model was evaluated on a separately

held-out independent test set using various metrics (e.g., AUC,

accuracy, precision, recall, F1-score). The detailed comparative

results of model performance, including statistical significance

tests for the differences observed with and without SMOTE

application, are presented in the following ‘Results’ section.
Frontiers in Oncology 06
3.2 Constructing the DeepSeek dataset and
rationale for using unstructured text

To evaluate the large language model (LLM) approach, we

created a text-based dataset for DeepSeek-R1. Each patient’s

radiology report was combined with relevant blood test indicators

(CA19-9, CEA, etc.) and assembled into a single textual input, as

shown in the example below.

The narrative-form radiology reports were used in their original,

unstructured format without any pre-processing, such as terminology

standardization or manual keyword extraction. This approach was a

deliberate methodological choice. The primary objective of this study

arm was to assess the LLM’s capability to interpret real-world clinical

documentation, which is inherently variable and non-standardized.

By providing the raw text, we aimed to test whether an advanced

LLM like DeepSeek-R1 could harness this complex, unstructured

information directly, a key advantage over traditionalMLmodels that

require structured, pre-defined inputs. The reports were authored

and cross-verified by three board certified radiologists specializing in

GBC, ensuring a high level of clinical quality and consistency in

diagnostic assessment despite stylistic variations.

“user_input”: {

“Preoperative CT”:

“The density of liver parenchyma is uniform, the

intrahepatic bile duct is not dilated, the gallbladder is

slightly enlarged, the wall is thickened, several stones

are seen at the bottom of the gallbladder, the size is about

13.4mm, and the common bile duct is not dilated. The

pancreas is sparse, with a few exudative shadows around

the pancreas. The spleen is normal in size and uniform in

density. There are several small round low-density shadows

without enhancement in both kidneys, the largest of which is

about 20.17mm, located in the left kidney, and no

abnormalities are found in the bilateral adrenal glands.

No lymphadenopathy is found beside the retroperitoneal

aorta. There are no obvious abnormalities in the stomach

wall. The distribution of the intestinal tract is normal,

and there is no obvious thickening or edema in the

intestinal wall. The surrounding mesenteric structure is

clear, the bladder is full, the wall is uniform, and no

positive stone shadows are seen in the cavity. There are no

obvious abnormalities in the uterus and appendages. There

are no obvious enlarged lymph nodes in the pelvic cavity.

There are no obvious abnormalities in the appendix.

There are multiple calcifications in the arterial wall.”,

“CEA”: 1.51,

“CA19-9”: 39.28,

“CA125”: 17.07,

“AFP”: 1.99,

“NLR”: 3.454545454545454,

“MLR”: 0.36363636363636365,

“PLR”: 99.54545454545453

}
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LLM Prompt Design: DeepSeek R1 was prompted with the

combined textual and numerical input derived from each patient’s

data. We employed and compared two primary prompting strategies

to elicit TNM classification, overall stage, and explanatory reasoning:

1. Zero-shot Prompting: In this approach, the model was given

direct instructions without any preceding examples. A typical zero-

shot prompt was:

“You are an AI radiology assistant. Please read the

following radiology report and blood test results for a

gallbladder imaging study, then answer:

1. TNM classification: (detailed explanation for each

stage)

2. Stage: (partition and rationale)

Final diagnosis: T[#] N[#] M[#], Stage [Roman numeral].”

This prompt relied on the model’s inherent understanding and

its ability to follow complex instructions to generate the

desired output.

2. Few-shot Prompting (with Chain-of-Thought style example):

To guide the model’s reasoning process and output format more

explicitly, we also utilized a few-shot prompting strategy. This

involved providing the same initial instruction as the zero-shot

prompt, followed by a single, illustrative example demonstrating the

desired step-by-step reasoning and a complete, well-structured

answer. The prompt, including the example, was as follows:

“You are an AI radiology assistant. Please read the

following radiology report and blood test results for a

gallbladder imaging study, then answer:

1. TNM classification: (detailed explanation for each

stage)

2. Stage: (partition and rationale)

3. Final diagnosis: T[#] N[#] M[#], Stage [Roman numeral].”

example1:

1. TNM Classification:

T (Primary Tumor): T2

Explanation: The report describes “gallbladder is slightly

enlarged, the wall is thickened”. Significant wall

thickening is a hallmark of T2 disease in gallbladder

cancer staging.

T2 indicates the tumor invades the perimuscular connective

tissue.

N (Regional Lymph Nodes): N0

Explanation: The report explicitly states

“No lymphadenopathy is found beside the retroperitoneal

aorta” and

“There are no obvious enlarged lymph nodes in the pelvic

cavity.”

M (Distant Metastasis): M0
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Explanation: The report describes “several small round

low-density shadows without enhancement in both kidneys”

consistent with benign simple cysts (common finding).

2. Stage: Stage II

Partition: T2, N0, M0.

Rationale: According to the AJCC 8th Edition staging system

for gallbladder cancer:

T2N0M0 corresponds to Stage II.

3. Final Diagnosis:

T2 N0 M0, Stage II

By instructing the model to justify its answers (e.g., “detailed

explanation for each stage” and “rationale” for the overall stage)

under both prompting strategies, we aimed to assess not only its

classification accuracy but also the plausibility and clinical relevance

of its reasoning process.

Model and Inference Configuration: For all experiments, we

utilized a locally deployed instance of the original DeepSeek-R1

671B model to ensure data privacy and security. DeepSeek-R1 is an

open-source LLM that employs a Mixture-of-Experts (MoE)

architecture, which contributes to its strong reasoning capabilities

on complex tasks (13, 19). No task-specific fine-tuning was

performed on any domain-specific GBC data for this study.

Instead, we relied entirely on the model’s zero-shot and few-shot

inference capabilities. The maximum token limit for the model’s

output was set to 2,000 tokens, and all other inference parameters,

such as temperature and top-p, were kept at their default values to

ensure reproducibility. This setup allowed us to evaluate the model’s

out-of-the-box performance in parsing and interpreting the

combined unstructured medical text and structured biomarker data.
4 Results

This section first presents the performance of blood–

biomarker–based machine-learning (ML) models for classifying

T1 versus T2 gallbladder cancer (GBC), comparing results with

and without the Synthetic Minority Over-sampling Technique

(SMOTE). It then reports the performance of the large-language

model (LLM) DeepSeek-R1, which analyses radiology reports.
4.1 Performance of blood-biomarker ML
models

Seven biomarkers (NLR, MLR, PLR, CEA, CA19-9, CA125 and

AFP) from 232 patients (T1 = 51, T2 = 181) were log-transformed,

then split into a training set (185 patients; T1 = 41, T2 = 144) and an

independent test set (47 patients; T1 = 10, T2 = 37).
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Four classifiers—Random Forest, SVC, XGBoost and LightGBM—

were trained on the imbalanced data. Five-fold cross-validation (CV)

results are given in Table 2. Random Forest achieved the highest mean

CV accuracy (76.76 ± 3.67%), whereas SVC was the lowest (54.59 ±

6.92%). ANOVA showed significant differences amongmodels, F(4,20)

= 8.11,p< 0.001; post-hocHolm-corrected tests confirmed that Random

Forest significantly outperformed SVC. The confusion matrices for

these baseline models are shown in Figure 3.

On the independent test set (Table 3) all models performed

poorly: AUCs clustered near random (0.38−0.54). Random Forest

failed to identify any T1 cases (recall = 0%); XGBoost identified one

(recall = 10%).

Applying SMOTE inside each CV fold (1:1 oversampling of T1)

significantly raised CV accuracy for SVC, XGBoost and LightGBM

(Table 2); Random Forest improved but not significantly. The

resulting confusion matrices, ROC curves, and a detailed

statistical comparison of the AUROCs are presented in Figures 4,

5, and Table 4, respectively.

AUROC = AUROCSMOTE –AUROCNo−SMOTE;  none significant at a

= 0:05:
4.2 Correlation analysis among blood-
based biomarkers

To evaluate multicollinearity and inter-relationships among the

seven continuous biomarkers used in the ML models—neutrophil–

to–lymphocyte ratio (NLR), monocyte–to–lymphocyte ratio (MLR),

platelet–to–lymphocyte ratio (PLR), carcinoembryonic antigen
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(CEA), carbohydrate antigen 19-9 (CA199), cancer antigen 125

(CA125) and alpha-fetoprotein (AFP)—Pearson correlation

coefficients were computed and visualized as a hierarchically

clustered heatmap (Figure 6).

The analysis exposed several notable patterns. Most striking was

the strong positive correlation between NLR and MLR (r = 0.84).

PLR correlated moderately with both NLR (r = 0.56) and MLR (r =

0.57), indicating that these inflammatory indices capture

overlapping aspects of the systemic inflammatory response and

may contain redundant information.

By contrast, CA125 and CA19–9 were essentially uncorrelated

(r = −0.00). CA125 also showed weak correlations with the

inflammatory ratios—NLR, MLR and PLR (r = 0.07, 0.17 and

0.20, respectively). A weak positive correlation was seen between

CEA and CA19-9 (r = 0.40), whereas correlations between these

tumor markers and AFP, or between the tumor markers and

inflammatory indices, were generally negligible. Such low inter-

marker correlations suggest that these biomarkers may represent

independent biological pathways and could, in principle, provide

complementary information for predictive models.

Nevertheless, as demonstrated in Sections 4.1, these statistical

relationships did not translate into clinically useful discrimination

of T1 versus T2 GBC: all trained models performed poorly. Thus,

pairwise correlation structure alone is insufficient for this

classification task. Future work will require more advanced

feature engineering or modeling strategies capable of exploiting

higher-order relationships among biomarkers.
4.3 Exploratory analysis of XGBoost feature
attributions (SHAP values)

Although the biomarker–based MLmodels performed poorly at

distinguishing T1 from T2 GBC, we carried out an exploratory

feature–attribution analysis to elucidate which variables each model

attempted to rely on. SHAP values were computed for the XGBoost

classifier trained with and without SMOTE. Figures 7, 8 rank

features by their mean absolute SHAP value across all test-

set samples.

For the SMOTE-trained model (Figure 8, test AUC = 0.473)

platelet–to–lymphocyte ratio (PLR) exhibited the largest mean
TABLE 2 Five-fold CV accuracy paired t-test (SMOTE vs. No-SMOTE) on
CV accuracy.

Model No SMOTE SMOTE P-value

Random Forest 76.76 ± 3.67 83.67 ± 6.76 0.061

SVC 54.59 ± 6.92 67.69 ± 2.59 0.007

XGBoost 70.27 ± 7.83 82.24 ± 7.68 0.005

LightGBM 66.49 ± 7.37 78.78 ± 6.08 0.004
FIGURE 3

Confusion matrices for the four evaluated classifiers—(a) Support Vector Classifier (SVC), (b) LightGBM, (c) XGBoost, and (d) Random Forest—on the
held-out test set for gallbladder-cancer T-stage prediction (T1 vs. T2). models give the corresponding baseline models trained on the original data.
Cell values indicate the number of test cases per true-/predicted-label pair.
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absolute impact, followed by monocyte–to–lymphocyte ratio

(MLR) and CA125. Neutrophil–to–lymphocyte ratio (NLR)—

often prominent in gain-based importance metrics—was less

influential than PLR and MLR, while CEA contributed least.

In the non-SMOTE model (Figure 7, test AUC = 0.508) the top

three features were again PLR, MLR and NLR; CA19–9 and CA125

had intermediate influence.

These rankings are biologically coherent: elevated PLR andMLR—

and, to a lesser extent, NLR—capture platelet- and monocyte-driven

inflammatory signaling that accompanies deeper muscular invasion

(T2), whereas increases in CA19–9 and CA125 reflect biliary stasis or

serosal irritation that become more pronounced once the tumor

breaches the lamina propria. CEA, lacking such stage-specific

behavior, accordingly shows the least contribution Wang et al. (20).

4.4 Illustrative model reasoning from
DeepSeek-R1

The DeepSeek-R1 was evaluated for its ability to classify

T-stage, N-stage, M-stage, and overall stage for gallbladder

cancer (GBC) using only the radiology report text combined

with relevant laboratory data, as detailed in Section 3. We
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primarily assessed its performance using a zero-shot prompting

strategy, and also explored a few-shot prompting approach that

included a chain-of-thought (CoT) style example. For the T

category, DeepSeek-R1 achieved an accuracy of 89.66% on the

test set, which had a skewed T1/T2 distribution (T1: 51, T2: 181).

The model demonstrated a high recall for the T1 stage (0.896, see

Table 5), indicating its effectiveness in identifying T1 cases based

on textual cues. Despite the skew, the model’s ability to extract

nuanced textual cues, such as “gallbladder wall thickening” or “no

lymph node enlargement,” underscores the value of unstructured

radiology data. By leveraging these detailed descriptors,

DeepSeek-R1 achieved more accurate GBC staging than what

might be obtained from structured biomarker data alone,

offering a powerful tool for clinicians to refine preoperative

staging and tailor surgical strategies, such as extended resections

for T2 cases, ultimately improving patient outcomes in a disease

where early intervention is critical.

Although the ultimate output from DeepSeek-R1 is presented

in a concise format, the model’s internal reasoning can be

conceptualized in several steps. Below, we describe how DeepSeek-

R1 parses key CT findings, lab data, and staging criteria before

arriving at its final TNM classification.
FIGURE 4

Confusion matrices for the four evaluated classifiers—(a) Support Vector Classifier (SVC), (b) LightGBM, (c) XGBoost, and (d) Random Forest—on the
held-out test set for gallbladder-cancer T-stage prediction (T1 vs. T2). models trained with class-imbalance correction using SMOTE Cell values
indicate the number of test cases per true-/predicted-label pair.
TABLE 3 Independent test-set performance of biomarker-only models for distinguishing T1 vs. T2 gallbladder cancer (n = 47).

Model SMOTE
AUROC AP

F1 (T1) Recall (T1)
Point 95% CI Point 95% CI

Random Forest – 0.493 0.30-0.67 0.822 0.69-0.93 0.00 0.00

SVC – 0.380 0.21-0.56 0.787 0.64-0.91 0.36 0.50

XGBoost – 0.509 0.34-0.68 0.850 0.72-0.94 0.09 0.10

LightGBM – 0.538 0.34-0.73 0.839 0.70-0.94 0.26 0.30

Random Forest ✓ 0.543 0.34-0.72 0.844 0.72-0.94 0.20 0.20

SVC ✓ 0.593 0.43-0.76 0.883 0.78-0.95 0.29 0.40

XGBoost ✓ 0.474 0.25-0.69 0.791 0.64-0.92 0.19 0.20

LightGBM ✓ 0.507 0.27-0.74 0.790 0.65-0.93 0.43 0.50
AUROC and average precision (AP) are reported with 95% confidence intervals; the last two columns report F1-score and recall for the minority class (T1).
Bold values indicate the highest performance achieved for the primary evaluation metrics (AUROC and AP).
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4.4.1 Reasoning overview
Fron
• Gallbladder Wall Thickening and Stones. DeepSeek R1

notes that the CT report mentions “the gallbladder is

slightly enlarged” with a “thickened wall” and stones at

the gallbladder’s base. It recognizes that wall thickening

could be consis tent with mal ignancy i f other

indicators align.

• No Liver or Adjacent Organ Invasion. The report states no

obvious infiltration into adjacent organs, thereby ruling out

T3 or T4 classification. This is reflected in the model’s

moderate to high recal l for T=1 (T2 in some

pathological contexts).

• Lymph Node Assessment. No suspicious lymphadenopathy

is observed, suggesting N0. Notably, DeepSeek R1 achieved

100% accuracy in predicting N status based on the

radiology narrative describing “no enlarged lymph nodes.”

• Distant Metastasis Consideration. The model finds no

textual evidence of metastatic lesions in distant organs,

concluding M0. Similarly, M classification accuracy was

100%, as no indications of metastases were described in any

of the test reports.

• Laboratory Tumor Markers. Mildly elevated CA19-9 (e.g.,

39.28U/mL) is noted, but other markers remain below

threshold, making advanced disease less likely. While

these markers help guide the model’s inferences, their
tiers in Oncology 10
primary value is in supporting or refuting extensive

disease spread.

• Integrating Clinical Data. DeepSeek R1 infers likely T2 stage

(perimuscular connective tissue invasion, no serosal

breach), N0, M0, corresponding to Stage II. Although

some Stage II samples were misclassified (leading to a

Stage accuracy of 94.40%), the model generally aligned

well with ground truth pathology.
4.4.2 Final output from DeepSeek-R1
Below is a typical structured output from the model,

demonstrating how it justifies each TNM element and arrives at

the final Stage classification:

1. TNM Classification:

- T (Tumor): T2

Explanation: “The gallbladder wall is thickened”, suggesting

tumor invasion into perimuscular connective tissue without

evidence of serosal penetration or liver involvement.

- N (Nodes): N0

Explanation: No lymphadenopathy observed in the retroperitoneum

or pelvic regions, indicating no regional lymph node metastasis.

- M (Metastasis): M0

Explanation: No distant metastases detected in other organs or

nonregional lymph nodes.

2. Staging:

- Stage IIA (T2N0M0)

Judgment Criteria: The tumor invades the perimuscular

connective tissue but remains confined to the gallbladder, with no

nodal or distant spread.

3. Final diagnosis: T2N0M0, Stage II

In this example, the LLM’s textual explanation correlates

imaging findings with standard TNM definitions, effectively

reproducing reasoning akin to clinical decision making. Despite

mild elevation of CA19-9, the absence of overt metastatic evidence

or liver invasion leads to a Stage II determination. Indeed,
FIGURE 5

ROC curves for the four classifiers on the test set, comparing models trained with and without SMOTE.
TABLE 4 DeLong comparison of test-set AUROC (SMOTE vs.
No-SMOTE).

Model DAUROC z p

Random Forest +0.051 -0.83 0.408

SVC +0.216 -1.35 0.176

XGBoost -0.035 -0.31 0.754

LightGBM -0.030 -0.38 0.701
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DeepSeek R1 achieved an overall Stage classification accuracy of

94.40%, while achieving perfect scores (100%) for both N and M

classification. For T, it exhibited an accuracy of 89.66%. While the

dataset had a skewed distribution toward T2 cases, the model

effectively utilized textual information to achieve this level of

accuracy. These results underscore the value of unstructured

radiology data, and how an LLM can harness such data to

achieve more accurate GBC staging than what might be

obtained from structured biomarker data alone.
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5 Discussion

This study evaluated the performance of two independent AI

approaches for pre-operative T-stage discrimination in pathologically

confirmed gallbladder cancer (GBC). The first approach trained

several machine-learning (ML) models—including Random Forest

and XGBoost—on seven blood-based biomarkers (NLR, MLR, PLR,

CEA, CA19-9, CA125, AFP). Across the independent test set, these

models achieved only modest discrimination, with maximum AUCs
FIGURE 7

Mean absolute SHAP values for the XGBoost model trained without SMOTE. Features are ordered by average impact on the magnitude of
predictions.
FIGURE 6

Pearson correlation heatmap of the seven blood-based biomarkers (hierarchically clustered). Numeric coefficients are shown in each cell; color
intensity indicates the magnitude and direction of correlation.
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of roughly 0.55 (no SMOTE) to 0.60 (SMOTE-applied SVC). These

results suggest an intrinsic limitation of the chosen biomarker panel

in reliably detecting the subtle differences between T1 and T2 GBC.

This finding aligns with previous research, which has also indicated

that while such biomarkers may hold prognostic value, their utility

for precise pre-operative staging, particularly in distinguishing early

stages, is limited (17, 21).

Although SMOTE significantly increased cross-validation (CV)

accuracy (e.g., XGBoost, p = 0.005), it failed to improve—and

sometimes reduced—test-set performance (XGBoost AUC 0.508

→ 0.473). This apparent contradiction can be explained by the

mechanics of oversampling. Techniques like SMOTE can improve

the classification decision boundary, thus boosting threshold-

dependent metrics like accuracy.

However, by generating synthetic minority samples, they can

also distort the original probability distribution and the rank-

ordering of instances, which negatively impacts rank-based

metrics like AUROC (22). This phenomenon has been reported

to be common in small, imbalanced datasets, and the characteristics

of our cohort likely contributed to this outcome.
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By contrast, the second approach—text analysis of radiology

reports using the open-source LLM DeepSeek-R1—yielded highly

encouraging results. With zero-shot prompting alone, the model

achieved 89.6% accuracy for T-stage and 100% accuracy for both N-

and M-stage classification. This demonstrates that narrative cues

such as “gallbladder wall thickening” or “no enlarged lymph nodes”

embed decisive information for staging and that an LLM can exploit

these cues without explicit feature engineering.

Interestingly, a few-shot prompt containing a Chain-of-

Thought (CoT) example decreased T-stage accuracy to 84.05%.

This aligns with prior work showing that CoT or few-shot

examples do not always improve—and can even degrade—LLM

performance on complex medical tasks (23, 24). Confirmation-

bias phenomena reported by Turpin et al. (25) may have

contributed (25). Hence, direct zero-shot querying may

outperform CoT in certain domains, underscoring the need for

systematic prompt-design research. In the few-shot+CoT

configuration, the model produced 195 correct predictions out

of the 232 test cases; among the 37 errors, 17 involved an over-

staging of true T1 lesions to T2, whereas the remaining 20 were

erroneously labeled as the non-existent “T3” category. In contrast,

under zero-shot prompting the model misclassified 24 cases: four

true T1 lesions were upgraded to T2, and the other 20 were

likewise assigned to T3.

Clinically, LLM-based report analysis could assist surgeons in

refining pre-operative plans (e.g., deciding on extended resection for

T2 lesions). Our findings parallel those of Chen et al. (11), who

demonstrated LLM utility for pancreatic-cancer reports (11).

Nevertheless, LLM performance inevitably depends on the

radiologist’s descriptive quality and terminology. Future systems must

progress from text-only interpretation to direct analysis of raw imaging

(CT, MRI) so that AI can bypass or supplement human subjectivity.

This study analyzed the two AI pipelines separately, multimodal

fusion of structured biomarkers, unstructured text, and imaging

features was beyond scope. Developing such integrative models will

likely be pivotal for further gains in GBC diagnosis.
TABLE 5 DeepSeek R1 classification metrics on the full cohort dataset.

Staging
category

Accuracy
(Zero-shot)

Accuracy
(Few-shot
+ CoT)

Key
observations

T-stage 89.66% 84.05% Fewshot+CoT:
biased toward T2

N-stage 100% 100% Correctly identified
all cases as N0

M-stage 100% 100% Correctly identified
all cases as
M0

Overall Stage 94.40% 85.78% Fewshot+CoT
biased toward
Stage II
FIGURE 8

Mean absolute SHAP values for the XGBoost model trained with SMOTE. Feature ordering follows average impact on predicted probabilities.
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5.1 Limitations

This study has several limitations that should be acknowledged.
Fron
1. Single-center, retrospective cohort and generalizability: All

232 cases were drawn from a single hospital (Lishui Central

Hospital), which limits the external validity and

generalizability of our findings. The performance of our

models, particularly the LLM, may not translate directly to

other institutions with different reporting styles or patient

populations. Multi-center prospective studies are required

to confirm our results.

2. Class imbalance and its impact on model performance: Our

dataset exhibited a significant class imbalance between T1

(n=51) and T2 (n=181) cases, and advanced stages (T3/T4)

were too rare for meaningful analysis. This imbalance severely

hindered theMLmodels’ ability to predict theminority class, a

challenge that even a technique like SMOTE could not

overcome, as evidenced by the poor test-set performance.

3. Limited discriminative power of the selected biomarker

panel: The seven-marker panel, while based on established

prognostic factors, produced AUCs below 0.60. This

confirms that these systemic markers, despite their value

in predicting overall survival, lack the specificity required to

distinguish the subtle local invasion differences between

early T-stages. Future work should explore more extensive

or novel biomarker panels.

4. LLM dependence on report quality and prompt

engineering: The high accuracy of DeepSeek-R1 is

contingent on the quality and detail of the radiologists’

narrative reports. Performance may vary significantly with

different terminology, levels of descriptive detail, or report

structures. Furthermore, as our results showed a

performance drop with few-shot prompting, the model’s

output is also sensitive to prompt design, highlighting the

need for systematic prompt engineering research.

5. No direct image analysis: This study relied solely on textual

reports and did not incorporate direct analysis of raw

imaging data (e.g., CT/MRI scans). A truly multimodal

AI system that integrates visual features from images with

textual and biomarker data would likely be more robust and

represents a critical direction for future research.
Addressing these limitations will require multi-center prospective

data, enhanced biomarker panels, prompt optimization, and truly

multimodal AI that unifies image analysis and natural-

language reasoning.
6 Conclusion

This proof-of-concept study compared two artificial-intelligence

pipelines for pre-operative T-stage assessment in gallbladder cancer

(GBC): (i) a machine-learning (ML) model trained on seven routine
tiers in Oncology 13
blood biomarkers, and (ii) the open-source large language model

(LLM) DeepSeek-R1 applied directly to radiology-report text. In an

independent test cohort of 47 patients (T1 = 10, T2 = 37) the

biomarker-based ML models achieved area-under-the-curve (AUC)

values below 0.60, confirming limited clinical utility. By contrast,

DeepSeek-R1, without any task-specific fine-tuning, reached a T-

stage accuracy of 89.6% and classified N- and M-stage with 100%

accuracy, demonstrating that linguistic cues in narrative reports

encode rich staging information.

These findings suggest that automated LLM analysis could

become a valuable decision-support tool—particularly for

borderline lesions where the need for extended resection hinges

on reliable T2 detection. Nevertheless, the present approach

remains constrained by (i) its single-center, retrospective design,

(ii) dependence on the radiologist’s terminology and reporting style,

and (iii) the absence of direct image interpretation by the LLM.

Future work should therefore pursue multi-center prospective

validation, integrate raw CT/MRI analysis with textual and

biomarker inputs in a truly multimodal architecture, and address

regulatory pathways for clinical deployment. Such next-generation

systems have the potential to improve both diagnostic accuracy and

surgical planning precision in GBC.
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