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Transcriptomic analysis on
pancreatic adenocarcinoma
patients uncovers KRAS-mediated
PPAR pathway alteration
Giuseppe Defazio1†‡, Federico Scolari 1‡, Sara Fancelli 2,
Simone Polvani1, Daniele Lavacchi2, Lucia Picariello1,
Alessandro Tubita3, Michaela Luconi1, Lorenzo Antonuzzo2,3,
Andrea Galli 1§ and Serena Pillozzi1*§

1Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence,
Florence, Italy, 2Clinical Oncology Unit, Careggi University Hospital, Florence, Italy, 3Department of
Experimental and Clinical Medicine, University of Florence, Florence, Italy
The incidence and mortality of pancreatic adenocarcinoma (PC) are expected to

increase in the coming years, with survival rates remaining poor due to limited

treatment options. KRAS mutations, present in over 70% of PC cases, drive

aggressive tumor behavior through metabolic reprogramming and immune

evasion; however, clinically effective inhibitors for the most common

mutations are still lacking. In this study, we analyzed RNA sequencing data

from TCGA datasets, comparing tumor versus normal pancreatic tissues and

stratifying samples based on KRASmutation status. Our findings reveal significant

dysregulation of the peroxisome proliferator-activated receptor (PPAR) signaling

pathway in PC, particularly in the context of KRASmutations. These findings were

validated through RT-qPCR in an independent cohort of primary samples. Key

genes, includingCD36, FABP4, PLIN1, PLIN4, SCD5, and ACSLs, were consistently

downregulated in tumor tissues, with further reductions observed in KRAS-

mutated samples. Overall, this study highlights the critical role of PPAR

pathway disruption in KRAS-mutated PC, which should be further addressed to

improve current treatment strategies.
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1 Introduction

In the next 20 years the incidence of pancreatic adenocarcinoma

(PC) is set to double especially in developing countries, and

mortality estimates more than doubling (1). The range of

available treatment options is still restricted to polychemotherapy,

which is frequently poorly tolerated due to the rapid deterioration

in patients’ clinical conditions. Consequently, the survival rate in

advanced PC remains poor, with a median survival time of less than

one year (1).

According to the International Cancer Genome Consortium

(ICGC) data portal project, substitutions in Kirsten rat sarcoma

virus gene (KRAS) occur in 78% of PC, and of them 70% are single-

base missense substitutions on codon 12, with G12D (40%), G12V

(31%), and G12R (19%) being the three most common mutations

(2). Retrospective analyses have shown non-univocal prognoses

among KRASmutations although G12D and G12R seem to have the

worst (3–5). Moreover, except for G12C hotspot mutations that

account roughly 1% of cases (6), there are no clinically successful

inhibitors for the most common mutations. Multi-selective RAS

inhibitors (e.g. RAS[ON] inhibitors) are currently under

investigation in clinical trials (NCT05379985, NCT04678648).

Different combinations of drugs involved in downstream pathway

inhibition, such as SOS and SHP2 inhibitors, are able to reduce

adaptive escape mechanisms via MAPK in KRAS mutant or

amplified cancer cells in gastric cancer cell lines in vitro and in

vivo. Moreover, KRAS mutations have been shown to promote

immune escape in pancreatic cancer cells by suppressing both the

number and activity of T cells, through specific immune-evading

mechanisms associated with individual KRAS variants. Several

experiences highlighted that, in addition to KRAS mutations,

other factors, like changes in the tumor microenvironment

(TME) supported by chronic inflammation, insulin resistance, a

fatty diet, or factors associated with obesity, may increase KRAS

activation and metabolic reprogramming (7). This reprogramming

is fundamental in PC progression, involving several metabolic

pathways, mainly glucose, glutamine, and fatty acid ones (8). At

last, KRAS mutations also impact lipid metabolism. They can

upregulate proteins such as FGL1, which alter lipid metabolism

and enhance the proliferation of PC cells (9, 10). A high-fat diet has

been shown to exacerbate the effects of KRAS mutations, further

promoting the metabolic reprogramming of PC (11). KRAS

mutations also affect other metabolic pathways, including the

synthesis and utilization of acetyl coenzyme A and branched-

chain amino acids. These alterations contribute to the aggressive

nature of PC by supporting cellular proliferation and survival under

nutrient-deprived conditions (8). Moreover, oncogenic KRAS

reduces pancreatic FGF21 expression, a metabolic regulator that

prevents obesity, partially through downregulating peroxisome

proliferator-activated receptor (PPAR)G (12).

Despite its rarity, KRASwild-type (WT) PC represents a distinct

molecular subtype with unique features. Retrospective analyses

have shown no difference in Overall Survival (OS) between

KRAS-WT and KRAS mutant PCs, regardless of the

chemotherapy regimen used (4, 13). Recent evidence has
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demonstrated a distinct genomic profile in KRAS-WT PCs,

identifying specific subgroups; these include forms with extrinsic

MAPK pathway activation (e.g. BRAF mutation), those with

microsatellite instability (MSI)/defective DNA mismatch repair

(dMMR), and PCs with kinase fusion genes (14–16). The recent

study by Singhi et al. showed that MAPK signaling is activated in

approximately one-third of KRAS-WT PCs (17). In this group,

BRAFmutations were the most common, however V600 mutations

account for about 20% of the total limiting the possible use of target

therapies to few cases. Additional mechanisms involved in MAPK

activation have been identified, including gene mutations or

amplifications in the GNAS, EGFR, ERBB2, MET, ERBB3, and

FGFR2 genes (18). MSI/dMMR PCs have a prevalence of 0.1 to

7% and exhibit a lower frequency of KRAS mutations than

conventional PCs. MSI/dMMR PCs are more commonly observed

in specific histotypes, including medullary carcinomas, mucinous/

colloid variants, and IPMN-derived carcinomas (19). Additionally,

approximately 8% of genetic alterations in all KRAS-WT PCs were

identified as fusions of specific kinases, including those in FGFR2,

RAF, ALK, RET,MET, NTRK1, and FGFR3. In patients with KRAS-

WT PC and specific kinase fusions, targeted therapies such as

afatinib for NRG1 fusion, crizotinib for MET fusion, and

erdafitinib for FGFR2 fusion have been observed to elicit durable

responses (15, 20).

In view of the considerable number of mechanisms involved in

the development and progression of PC that are primarily driven by

KRAS, we aimed to examine the transcriptomic distinctions

between KRAS-mutated and KRAS-WT PCs using both a

comprehensive transcriptomic approach on public datasets and

quantitative real-time reverse transcription PCR (RT-qPCR)

analysis on an independent cohort of primary PC.

2 Materials and methods

2.1 PC datasets

The RNA seqencing data used in the present manuscript were

provided by The Cancer Genome Atlas (TGCA) as raw read counts

obtained by the alignment of RNAseq reads against the Human

reference genome (GRCh38) to obtain gene expression profiles. The

data provider aligned RNAseq reads against reference using STAR

(21) to infer raw read counts for mRNAs. To facilitate

harmonization across samples, all RNA-Seq reads were treated as

unstranded during analyses (22). The sample data and metadata

were retrieved by using the Application Programming Interface

(API) of Genomic Data Commons Data Portal (GDC, accessed on

17/11/2022) wrapped in a Python 3 in-house developed script

(https://github.com/gdefazio/TCGA_pancreas). This allowed the

selection of freely available datasets with “Pancreas” as primary

site and labeled as “Primary Tumor” or “Solid Tissue Normal’’ (i.e.

the tumor-adjacent normal tissue). Gene expression profiles for 367

tumor vs 72 adjacent normal tissue samples were locally collected.

Furthermore, in order to investigate the difference in transcriptome

profiles among KRAS mutated and KRAS-WT tumors the Whole

Exome Sequencing (WES) data from GDC API were retrieved.
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2.2 Unpaired, Paired and KRAS-related
group analysis

Expression profile analyses were performed comparing either

all the 367 tumor samples with all the 72 adjacent normal tissue

samples (unpaired analysis) or in a subset of 42 patients comparing

each tumor with its adjacent normal tissue samples (paired

analysis). In the paired analysis, KRAS mutated versus WT tumor

samples were also compared.
2.3 Identification of differentially expressed
genes

A noise reduction strategy was implemented for gene

expression data by eliminating genes with a read count ≤10 in

more than half of the total samples.

The differential expression analysis was performed by using

DESeq2 (v 1.34.0) R package (23). DESeq2 allows to indicate terms

of comparison in the experimental design formula. In order to take

into the account batch effect of data from different TCGA centres

also this label was included in the experimental design formula as

suggested in (24). For pairwise comparison only, patients’ case

identifier was included in the experimental design formula and

batch effect was not with the aim to avoid the “Model matrix not full

rank” error (i.e. linear combination of terms) explained in (24).

P-values were adjusted with the Bonferroni method to avoid

false-positive results and the 50 most up and down regulated genes

with adjusted p-values ≤ 0.05 were taken as differentially expressed.

For DEGs heatmap graphical representation, before the z-score

normalization, the batch effect was reduced by using the

removeBatchEffect function in the limma (v 3.50.3) R package

(25) on gene counts. This was performed only for the analyses in

which batch effect was included in the experimental design formula.
2.4 KEGG enrichment analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

analysis was performed on the lists of up- and down-regulated

DEGs using ClusterProfiler (v. 4.2.2) R package (26). Benjamini-

Hochberg adjusted p-value was computed and only significantly

enriched pathways with more than 10 genes were selected.
2.5 Patients and biopsy processing

Surgical specimens were collected from 18 patients with

pathologically confirmed PC who underwent surgical resection

for operable disease and referred to the Clinical Oncology Unit,

Careggi University Hospital, Florence (Italy). The recruitment

period was from 23.03.2023 to 09.01.2024. All participants gave

written informed consent before enrollment. Patients were excluded
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if they had metastatic or locally advanced inoperable disease or if

they were under 18 years old.
2.6 Cell lines, drugs and viability assays

KRAS-WT, KRAS-p.G12C and KRAS-p.G12D PC cell lines

(BxPC3, MiaPaca-2 and Panc-1 respectively) were obtained from the

American Tissue Type Collection and cultured as previously reported

(27). MiaPaca-2 and Panc-1 were maintained in Dulbecco’s Modified

Eagle’s Medium (DMEM) with 10% foetal bovine serum (FBS), 2 mM

glutamine, 50 U/mL penicillin and 50mg/mL streptomycin (Euroclone,

Milan, Italy) at 37°C and 5% CO2. The presence of mycoplasma was

periodically tested by PCR. Cell viability was measured using

Prestoblue™ Cell Viability reagent (Invitrogen, Waltham, MA, USA)

according to the manufacturer’s protocol. The optical density (OD) was

measured using a 560nm excitation filter and 590nm emission filter

using the BioTek Synergy™ H1 hybrid multi-mode microplate reader

(Agilent, CA, USA). The PPARG inhibitor used in this work was

GW9662. The KRAS inhibitor used was Sotorasib. Cells were treated

with these agents at the corresponding IC50 concentration (13nM for

Sotorasib, 9µM for GW9662, both determined at 72h) alone or in

combination for 48 hours. Sotorasib andGW9662were purchased from

MedChemExpress (Monmouth Junction, NJ, USA).
2.7 RNA extraction and RT-qPCR

A total of 18 tumor samples of enrolled patients and 13

pancreas tissue samples from healthy donors were used for the

analysis of a panel of genes, namely CD36, FABP4, PPARA, PPARD,

PPARG, PLIN1, PLIN4, SCD5 and ACSL4. Total RNA was extracted

from FF cryosections using the Qiagen RNeasy FFPE extraction.

BxPC3, MiaPaca-2 and Panc-1 cell lines were also used for the

analysis of the above genes. Total RNA was extracted from cells

using TRIzol reagent (Life Technologies, MI, Italy).

The RNA quantity and purity were evaluated using a Nanodrop

spectrophotometer. All mRNAs were retro-transcribed using the

Reverse Transcriptase kit 2 (EXPERTEAM, VE, ITALY); RT-qPCR

analysis was performed on ABI7000 (Applied Biosystem, Foster

City, CA, USA) using QuantiNova SYBR Green PCR Kit (Qiagen,

MI, Italy). The primers used were:

GAPDH (QuantiTect Primer Assay QT00079247, Qiagen);

YWHAZ (QuantiTect Primer Assay QT00087962, Qiagen); CD36

(QuantiTect Primer Assay QT01974008, Qiagen); FABP4 forward

(5 ’-ACGAGAGGATGATAAACTGGTGG-3 ’) reverse (5 ’-

GCGAACTTCAGTCCAGGTCAAC-3’); PPARA forward (5’-

TCGGCGAGGATAGTTCTGGAAG-3 ’ ) r e v e r s e ( 5 ’ -

GACCACAGGATAAGTCACCGAG.-3’); PPARD forward 5’-

GGCTTCCACTACGGTGTTCATG-3 ’ ) r e v e r s e ( 5 ’ -

CTGGCACTTGTTGCGGTTCTTC-3’); PPARG (QuantiTect Primer

As s a y QT00029941 , Q i a g en ) ; PL IN1 f o rwa rd ( 5 ’ -

GCGGAATTTGCTGCCAACACTC-3’) reverse (5’-AGACTTCT
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GGGCTTGCTGGTGT-3’); PLIN4 forward (5’-GATGGCAGAGA

ACGGTGTGAAG-3’) reverse (5’-CAGGCATAGGTATTGGC

AACTGC-3’); SCD5 forward (5’-GAGGAATGTCGTCCTGA

TGAGC-3’) reverse (5’- GCCAGGAGGAAGCAGAAGTAGG-3’);

ACSL4 forward (5’- GCTATCTCCTCAGACACACCGA -3’) reverse

(5’-AGGTGCTCCAACTCTGCCAGTA-3’). Each primer was used at

200nM concentration (400nM finale for pairs). Cycle conditions were

as follows: initial activation/denaturation 95°C 1’; 40 cycles of: 95°C 15”,

60°C for 1’; standard melting cycle for Applied ABI 7000.

The relative quantification was performed using GAPDH and

YWHAZ as housekeeping genes. DCt values in tumor and healthy

tissue samples were compared with a Wilcoxon rank-sum test.
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2.8 Ethics and regulatory considerations

The present study was approved by the Regional Ethics

Committee for Clinical Trials of the Tuscany Region (Firenze,

Italy; no. 23753_BIO). All informed consent documents were in

compliance with the International Conference on Harmonization

(ICH) guideline on good clinical practice (GCP). The study

protocol was performed in accordance with the principles of the

Declaration of Helsinki and in compliance with GCP and the

applicable laws and regulations. Each patient was identified by a

code instead of the patient’s name in order to protect the patient’s

identity when reporting study-related data.
FIGURE 1

DEGs in tumor vs normal tissue unpaired analysis. (A) Heatmaps representing z-score transformed counts for the most 50 up- (right sided) and
down- (left sided) regulated genes in the PC (n=367) vs normal tissue (n=72) unpaired comparison. (B) Volcano plot reporting only the differentially
expressed genes related to the PPAR Signaling Pathway in the PC (n=367) vs normal tissue (n=72) unpaired comparison.
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3 Results

3.1 Tumor versus normal pancreatic tissue
unpaired analysis

Gene expression data of 367 primary tumors of PC and 72

normal tissue samples were retrieved from 4 different TCGA

projects (Supplementary Table S1). A total of 21,412 DEGs

including 6,727 up- and 14,685 down-expressed were identified

by tumor versus normal tissue comparison. Of these, 55% were
Frontiers in Oncology 05
protein coding, 26% were lncRNA and 9% were processed

pseudogenes. KEGG pathways over-representation analysis

(ORA) was performed both on the up- and down-regulated

genes, resulting in60 and 66 enriched pathways, respectively

(Supplementary Table S2). The 50 most up- and down-regulated

genes are reported in Figure 1A. One of the most significantly over-

represented pathways in the down-regulated list was PPAR

signaling pathway (p.adjusted < 0.001). Figure 1B shows a

Volcano plot indicating the specific DEGs related to the PPAR

signaling pathway in the tumor vs normal samples.
FIGURE 2

DEGs in paired tumor vs normal tissue analysis. (A) Heatmaps representing z-score transformed counts for the most 50 up- (left sided) and down-
(right sided) regulated genes in the PC (n=42) vs normal (n=42) paired comparison. (B) Volcano plot reporting only the differentially expressed genes
related to the PPAR Signaling Pathway in the paired PC (n=42) vs normal (n=42) comparison.
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3.2 Tumor versus normal pancreatic tissues
paired analysis

From the unpaired set, gene expression data of 84 samples (42

tumor and 42 adjacent normal tissue samples) belonging to 42 PC

patients were selected. The paired comparison between tumor and

adjacent normal tissue samples identified a statistically significant

difference in the expression of 15,660 DEGs (6,608 up- and 9,052
Frontiers in Oncology 06
down-regulated). Out of these, 63% were protein coding, 22% were

lncRNA and 8% were processed pseudogenes. A heatmap representing

the 50 most up- and down-regulated genes is reported in Figure 2A.

KEGG pathway ORA revealed 64 enriched pathways for the

upregulated genes and 35 for the downregulated genes

(Supplementary Table S3), notably including PPAR signaling

pathway (p=0.007). A Volcano plot showing the PPAR-related DEGs

differentially expressed in the paired analysis is reported in Figure 2B.
FIGURE 3

Expression levels of PPAR-related genes in primary samples. RT-qPCR analysis of a panel of PPAR-related genes (CD36, FABP4, PPARA, PPARD,
PPARG, PLIN1, PLIN4, SCD5, ACSL4) in an independent cohort of 19 PC samples vs 13 healthy tissue samples. Relative expression is reported as 2^
(-ddCT). P-values have been computed by comparison with a Welch’s t-test.
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To further investigate the role of the PPAR pathway in PC,

differences in the expression of the individual genes related to this

pathway were evaluated. Results showed that some of the most

relevant pathway’s regulators and effectors (CD36, FABP4, PLIN1,

PLIN4, SCD5 and ACSL6) showed significantly lower expression in

tumor tissue samples (p.adjusted < 0.01, data not shown).

Conversely, PPARD and PPARG showed significantly higher

expression in tumor tissue samples, however, only PPARG

exceeded the threshold of LogFC>1.
3.3 RT-qPCR validation in an independent
PC cohort

The differential expression signature identified by the

bioinformatic analysis was validated by RT-qPCR analysis in an

independent cohort of pancreatic tissue samples (19 primary

tumors and 13 normal pancreatic tissue samples) obtained from

32 patients enrolled and operated at Careggi University Hospital.

The comparative analysis was focused on the expression of a panel

of genes related to the PPAR pathway, lipid metabolism and

adipocyte differentiation, namely CD36, FABP4, PPARD, PLIN1,

SCD5 and ACSL4. Most of the genes showed expression patterns

similar to those observed in the TCGA cohort analysis. Specifically,

CD36, FABP4, PLIN1, SCD5 and ACSL4 were significantly
Frontiers in Oncology 07
downregulated in tumor samples (p < 0.05). Results are reported

in Figure 3. A schematic representation of the PPAR pathway, with

a particular focus on the genes considered in this analysis, is

presented in Figure 4.
3.4 KRAS mutated versus WT PC analysis

Since KRASmutation is considered a main oncogenic driver in the

vast majority of PCs, we evaluated if the deregulation of the PPAR

pathway could be associated with a specific KRAS mutation profile:

Therefore, gene expression data of 6 KRAS-WT versus 36 KRAS-

mutated tumor samples from the TCGA dataset were compared. The

distribution of the hotspot mutations in the dataset was: n=16 p.G12D,

n=10 p.G12V, n=7 p.G12R, n=2 p.Q61H and n=1 p.G12C. The

number of DEGs between KRAS-mutated and KRAS-WT samples

was 808: 388 genes were up- and 420 were down-regulated in the

KRAS-mutated samples. Of these genes, 78% were protein coding, 13%

were lncRNA and 3%were processed pseudogenes. Heatmaps showing

the 50 most up- and down-regulated genes in KRAS-mutated samples

are depicted in Figure 5A. KEGG pathway ORA showed one over-

expressed pathway for the up-regulated genes and 5 pathways for the

down-regulated genes (Supplementary Table S4). The PPAR signaling

pathway was significantly over-represented in the down-regulated

genes list (p=0.046).
FIGURE 4

Disruption of PPAR signaling pathway. (A) Schematic representation of the role of a panel of PPAR-related genes in the PPAR signaling pathway
(adapted from KEGG pathway hsa03320 – “PPAR signaling pathway – Homo sapiens”). (B) Focus on the relative expression of PPAR-related genes in
an independent cohort of 19 PC samples vs 13 healthy pancreatic tissue samples. Downward arrows represent downregulation in tumor samples,
horizontal lines represent no difference in tumor vs healthy tissue samples. PPRE: PPAR Response Element.
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Focusing on the PPAR signaling pathway related genes, 6

under-expressed genes were identified in KRAS-mutated versus

KRAS-WT samples, namely ACSL6, CD36, FABP4, PLIN1, PLIN4

and SCD5 (p < 0.5). Results are shown in Figure 5B.
3.5 PPAR signature in PC cell line models

In order to confirm the results obtained from the KRAS-WT vs

mutant analysis of PC, RT-qPCR analysis was performed on KRAS-

WT, KRAS-p.G12C and KRAS-p.G12D PC cell lines. The influence

of KRAS mutations on lipid metabolism and adipocyte

differentiation was evaluated by analyzing the expression of PPAR

pathway downstream effectors PLIN1, PLIN4 and SCL5. A

statistically significant downregulation of PLIN4 and SCD5 was
Frontiers in Oncology 08
evident in KRAS-mutated vs WT cell lines (p=0.027), while PLIN1

showed no differences among all cell lines (Figure 6).
3.6 PPAR inhibitor in combination with
KRAS p.G12C inhibitor reduces PC cell
viability in vitro

To investigate the potential interaction between KRAS and

PPAR signaling in PC, we evaluated the effect on cell viability in

KRAS p.G12C and KRAS p.G12D mutated PC cell lines treated in

vitro with the KRAS inhibitor Sotorasib alone or combined with the

PPAR inhibitor GW9662. The results reported in Supplementary

Figure S1 show that cell viability was significantly reduced in the

KRAS p.G12C mutated PC cell line after 48 hours of Sotorasib
FIGURE 5

DEGs in tumor vs normal tissue unpaired analysis. (A) heatmaps representing z-score transformed counts for the most 50 up- (left sided) and down-
(right sided) regulated genes between the KRAS-mutated (n=36) vs KRAS-WT (n=6) PC samples. (B) Expression levels of ACSL6, CD36, FABP4, PLIN1,
PLIN4 and SCD5 in KRAS-mutated vs KRAS-WT pancreatic cancer samples measured as log10-scaled normalized counts. The KRAS mutated group
is stratified according to the 5 different KRAS mutations. The p-values and log 2-Fold Changes (L2FC) refer to the KRAS mutated vs WT comparison.
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treatment (p=0.026) and to a greater extent when Sotorasib was

combined with GW9662 (p=0.020). A similar inhibitor effect was

observed in the KRAS p.G12D mutated PC cell line only after the

combined treatment with Sotorasib and GW9662 (p=0.01).
4 Discussion

PC is considered one of the deadliest malignancies worldwide,

with limited therapeutic options and a poor prognosis. The addition

of novel agents, including immune-checkpoint inhibitors or

stroma-targeting drugs, to standard chemotherapy provided

disappointing results. Understanding the PC molecular

mechanisms and pathogenesis is critical for developing new and

more effective treatments.

In our study, over 120 KEGG pathways were found to be

differentially expressed in tumor vs healthy tissue samples from a

TCGA PC cohort. The subsequent analysis focused on the PPAR

signaling pathway, which was significantly deregulated in both

unpaired and paired analysis of the TCGA dataset. These findings

have also been validated with RT-qPCR analysis in an independent

cohort of primary PC samples, further suggesting the disruption of

this signaling pathway in PC. Specifically, we observed a significant

down-regulation of some of the most relevant genes in the PPAR

pathway (CD36, FABP4, PLIN1, PLIN4, SCD5 and ACSL4) in tumor

tissue samples. A significant down-regulation of CD36, FABP4,

PLIN1, SCD5 and ACSL4 in tumor samples has also been validated

by RT-qPCR. These genes are involved in several mechanisms such

as fatty acid transport, fatty acid metabolism and lipid droplet

formation. Focusing on specific PPAR pathway receptors, we

observed PPARG and PPARD upregulation in PC tumor tissue

samples in the TCGA cohort. PPAR signaling dysregulation has

been previously reported in various cancer types, including PC (28,

29). Several studies have provided insights into the role of specific
Frontiers in Oncology 09
PPAR genes in the context of metabolic reprogramming and tumor

progression, but a consensus is still not defined. PPAR signaling

pathway over-expression has been recently observed in metastatic

vs primary PC samples of three different public datasets (30).

Additionally, PPARD activation driven by metabolic stress and

signals from tumor-associated macrophages (TAMs) has been

shown to increase epithelial-mesenchymal transition (EMT) and

enhance cancer cell invasiveness in in vitro and in vivomodels (31);

furthermore, PPARD activation by GOT2 regulation in in vitro

models has been linked to tumor progression and immune

suppression (10). Conversely, PPARD activation has been

correlated with the reduction of cell invasion and metastasis

related genes in PC cell lines (32). Our findings are in line with a

tumor-related role of PPAR genes, but the overall downregulation

of the PPAR downstream pathways in tumor samples may reflect a

more intricate signaling mechanism. Our analyses were conducted

on bulk tumor RNA, therefore the observed alterations may

represent a composite effect across multiple cell types, including

cancer cells and surrounding stromal or immune cells.

The dichotomy between PPAR receptor over-expression and

the downregulation of downstream signaling in PC cells may be

attributed to an altered availability of PPAR endogenous ligands.

This alteration could result from the downregulation of FABP4 and

CD36, both of which play critical roles in lipid uptake in PC cells.

The GTPase KRAS is activated in over 80% of PC and is a driver

of tumorigenesis and metabolic reprogramming (33). KRAS

mutations are known to drive PC tumorigenesis through various

signaling pathways (8, 14). Recent findings obtained both in vitro

and in vivo show that PPARD has a pivotal role in promoting the

tumorigenesis of KRAS-mutated pancreatic lesions by increasing

the recruitment of pancreatic macrophages and myeloid-derived

suppressor cells (MDSCs), thus promoting an immunosuppressive

TME (34). Conversely, the activation of PPARD leads to the

development of a tumor suppressive TME by inhibiting Th2/M2
FIGURE 6

Expression levels of PPAR-related genes in PC cell lines. Expression of the PPAR-related genes of interest (PLIN1, PLIN4, SCD5) was assessed by RT-
qPCR in a set of KRAS mutated and KRAS WT PC cell lines. Relative expression is reported as dCT against control genes. Statistical significance
expressed by P value has been tested with Kruskall-Wallis’s test.
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differentiation (35). Furthermore, KRAS mutations have been

associated with the downregulation of PPARA and PPARG (12),

reinforcing the interaction between these pathways.

Our study revealed a significant correlation between KRAS

mutations and the downregulation of the PPAR signaling

pathway. Specifically, a panel of PPAR-related genes (CD36,

FABP4, PLIN1, PLIN4, SCD5, and ACSL4) were significantly

under-expressed in KRAS-mutated samples compared to WT

samples. In our in vitro experiments, we further validated the

influence of KRAS mutations on PPAR signaling. RT-qPCR

experiments conducted on KRAS WT, KRAS p.G12C, and KRAS

p.G12D cell lines confirmed a significant downregulation of PLIN4

and SCD5 in KRAS-mutated cell lines.

KRAS has been thought to promote a shift to aerobic glycolysis

and anabolic glucose metabolism (36). However, our understanding

of KRAS-driven metabolic reprogramming has evolved to include

alterations in scavenging pathways, amino acid metabolism, and

lipid metabolism (37). Our findings align with previous research

indicating that KRAS mutations modulate metabolic pathways,

including lipid metabolism, to support the energetic and

biosynthetic demands of rapidly proliferating cancer cells (38).

The deregulation of the PPAR pathway in the context of KRAS

mutations presents potential therapeutic opportunities. A recent study

explored the Hippo-FAM60A-PPAR axis as a key regulator of

ferroptosis and a therapeutic target in KRAS-mutated PPAR cell lines

(39). PPAR agonists such as thiazolidinediones (TZDs) have been

explored for their anti-tumor effects in various cancer types (40, 41);

however, the clinical use for PC treatment did not yield successful

results in clinical trials (42), maybe due to drug regimen which has been

optimized for type-2 diabetes indication or to alternative nongenomic

mechanisms described for this multifunctional receptor (43).

In conclusion, our study provides evidence for the significant

deregulation of the PPAR signaling pathway in PC, particularly in

the context of KRAS mutations, in both a public cohort and an

independent cohort of primary tumor samples. The consistent

down-regulation of key PPAR-related genes involved in lipid

metabolism underscores potential metabolic vulnerabilities in

KRAS-mutated PC, which could be exploited to develop more

effective treatment strategies.
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