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Transcriptomic analysis on
pancreatic adenocarcinoma
patients uncovers KRAS-mediated
PPAR pathway alteration
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Alessandro Tubita®, Michaela Luconi?, Lorenzo Antonuzzo?®>,
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‘Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence,
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Experimental and Clinical Medicine, University of Florence, Florence, Italy

The incidence and mortality of pancreatic adenocarcinoma (PC) are expected to
increase in the coming years, with survival rates remaining poor due to limited
treatment options. KRAS mutations, present in over 70% of PC cases, drive
aggressive tumor behavior through metabolic reprogramming and immune
evasion; however, clinically effective inhibitors for the most common
mutations are still lacking. In this study, we analyzed RNA sequencing data
from TCGA datasets, comparing tumor versus normal pancreatic tissues and
stratifying samples based on KRAS mutation status. Our findings reveal significant
dysregulation of the peroxisome proliferator-activated receptor (PPAR) signaling
pathway in PC, particularly in the context of KRAS mutations. These findings were
validated through RT-gPCR in an independent cohort of primary samples. Key
genes, including CD36, FABP4, PLIN1, PLIN4, SCD5, and ACSLs, were consistently
downregulated in tumor tissues, with further reductions observed in KRAS-
mutated samples. Overall, this study highlights the critical role of PPAR
pathway disruption in KRAS-mutated PC, which should be further addressed to
improve current treatment strategies.
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1 Introduction

In the next 20 years the incidence of pancreatic adenocarcinoma
(PC) is set to double especially in developing countries, and
mortality estimates more than doubling (1). The range of
available treatment options is still restricted to polychemotherapy,
which is frequently poorly tolerated due to the rapid deterioration
in patients’ clinical conditions. Consequently, the survival rate in
advanced PC remains poor, with a median survival time of less than
one year (1).

According to the International Cancer Genome Consortium
(ICGC) data portal project, substitutions in Kirsten rat sarcoma
virus gene (KRAS) occur in 78% of PC, and of them 70% are single-
base missense substitutions on codon 12, with G12D (40%), G12V
(31%), and G12R (19%) being the three most common mutations
(2). Retrospective analyses have shown non-univocal prognoses
among KRAS mutations although G12D and G12R seem to have the
worst (3-5). Moreover, except for G12C hotspot mutations that
account roughly 1% of cases (6), there are no clinically successful
inhibitors for the most common mutations. Multi-selective RAS
inhibitors (e.g. RAS[ON] inhibitors) are currently under
investigation in clinical trials (NCT05379985, NCT04678648).
Different combinations of drugs involved in downstream pathway
inhibition, such as SOS and SHP2 inhibitors, are able to reduce
adaptive escape mechanisms via MAPK in KRAS mutant or
amplified cancer cells in gastric cancer cell lines in vitro and in
vivo. Moreover, KRAS mutations have been shown to promote
immune escape in pancreatic cancer cells by suppressing both the
number and activity of T cells, through specific immune-evading
mechanisms associated with individual KRAS variants. Several
experiences highlighted that, in addition to KRAS mutations,
other factors, like changes in the tumor microenvironment
(TME) supported by chronic inflammation, insulin resistance, a
fatty diet, or factors associated with obesity, may increase KRAS
activation and metabolic reprogramming (7). This reprogramming
is fundamental in PC progression, involving several metabolic
pathways, mainly glucose, glutamine, and fatty acid ones (8). At
last, KRAS mutations also impact lipid metabolism. They can
upregulate proteins such as FGL1, which alter lipid metabolism
and enhance the proliferation of PC cells (9, 10). A high-fat diet has
been shown to exacerbate the effects of KRAS mutations, further
promoting the metabolic reprogramming of PC (11). KRAS
mutations also affect other metabolic pathways, including the
synthesis and utilization of acetyl coenzyme A and branched-
chain amino acids. These alterations contribute to the aggressive
nature of PC by supporting cellular proliferation and survival under
nutrient-deprived conditions (8). Moreover, oncogenic KRAS
reduces pancreatic FGF21 expression, a metabolic regulator that
prevents obesity, partially through downregulating peroxisome
proliferator-activated receptor (PPAR)G (12).

Despite its rarity, KRAS wild-type (WT) PC represents a distinct
molecular subtype with unique features. Retrospective analyses
have shown no difference in Overall Survival (OS) between
KRAS-WT and KRAS mutant PCs, regardless of the
chemotherapy regimen used (4, 13). Recent evidence has
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demonstrated a distinct genomic profile in KRAS-WT PCs,
identifying specific subgroups; these include forms with extrinsic
MAPK pathway activation (e.g. BRAF mutation), those with
microsatellite instability (MSI)/defective DNA mismatch repair
(dMMR), and PCs with kinase fusion genes (14-16). The recent
study by Singhi et al. showed that MAPK signaling is activated in
approximately one-third of KRAS-WT PCs (17). In this group,
BRAF mutations were the most common, however V600 mutations
account for about 20% of the total limiting the possible use of target
therapies to few cases. Additional mechanisms involved in MAPK
activation have been identified, including gene mutations or
amplifications in the GNAS, EGFR, ERBB2, MET, ERBB3, and
FGFR2 genes (18). MSI/dMMR PCs have a prevalence of 0.1 to
7% and exhibit a lower frequency of KRAS mutations than
conventional PCs. MSI/dMMR PCs are more commonly observed
in specific histotypes, including medullary carcinomas, mucinous/
colloid variants, and IPMN-derived carcinomas (19). Additionally,
approximately 8% of genetic alterations in all KRAS-WT PCs were
identified as fusions of specific kinases, including those in FGFR2,
RAF, ALK, RET, MET, NTRK1, and FGFR3. In patients with KRAS-
WT PC and specific kinase fusions, targeted therapies such as
afatinib for NRGI fusion, crizotinib for MET fusion, and
erdafitinib for FGFR2 fusion have been observed to elicit durable
responses (15, 20).

In view of the considerable number of mechanisms involved in
the development and progression of PC that are primarily driven by
KRAS, we aimed to examine the transcriptomic distinctions
between KRAS-mutated and KRAS-WT PCs using both a
comprehensive transcriptomic approach on public datasets and
quantitative real-time reverse transcription PCR (RT-qPCR)
analysis on an independent cohort of primary PC.

2 Materials and methods

2.1 PC datasets

The RNA seqencing data used in the present manuscript were
provided by The Cancer Genome Atlas (TGCA) as raw read counts
obtained by the alignment of RNAseq reads against the Human
reference genome (GRCh38) to obtain gene expression profiles. The
data provider aligned RNAseq reads against reference using STAR
(21) to infer raw read counts for mRNAs. To facilitate
harmonization across samples, all RNA-Seq reads were treated as
unstranded during analyses (22). The sample data and metadata
were retrieved by using the Application Programming Interface
(API) of Genomic Data Commons Data Portal (GDC, accessed on
17/11/2022) wrapped in a Python 3 in-house developed script
(https://github.com/gdefazio/TCGA_pancreas). This allowed the
selection of freely available datasets with “Pancreas” as primary
site and labeled as “Primary Tumor” or “Solid Tissue Normal” (i.e.
the tumor-adjacent normal tissue). Gene expression profiles for 367
tumor vs 72 adjacent normal tissue samples were locally collected.
Furthermore, in order to investigate the difference in transcriptome
profiles among KRAS mutated and KRAS-WT tumors the Whole
Exome Sequencing (WES) data from GDC API were retrieved.
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2.2 Unpaired, Paired and KRAS-related
group analysis

Expression profile analyses were performed comparing either
all the 367 tumor samples with all the 72 adjacent normal tissue
samples (unpaired analysis) or in a subset of 42 patients comparing
each tumor with its adjacent normal tissue samples (paired
analysis). In the paired analysis, KRAS mutated versus WT tumor
samples were also compared.

2.3 Identification of differentially expressed
genes

A noise reduction strategy was implemented for gene
expression data by eliminating genes with a read count <10 in
more than half of the total samples.

The differential expression analysis was performed by using
DESeq2 (v 1.34.0) R package (23). DESeq2 allows to indicate terms
of comparison in the experimental design formula. In order to take
into the account batch effect of data from different TCGA centres
also this label was included in the experimental design formula as
suggested in (24). For pairwise comparison only, patients’ case
identifier was included in the experimental design formula and
batch effect was not with the aim to avoid the “Model matrix not full
rank” error (i.e. linear combination of terms) explained in (24).

P-values were adjusted with the Bonferroni method to avoid
false-positive results and the 50 most up and down regulated genes
with adjusted p-values < 0.05 were taken as differentially expressed.

For DEGs heatmap graphical representation, before the z-score
normalization, the batch effect was reduced by using the
removeBatchEffect function in the limma (v 3.50.3) R package
(25) on gene counts. This was performed only for the analyses in
which batch effect was included in the experimental design formula.

2.4 KEGG enrichment analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis was performed on the lists of up- and down-regulated
DEGs using ClusterProfiler (v. 4.2.2) R package (26). Benjamini-
Hochberg adjusted p-value was computed and only significantly
enriched pathways with more than 10 genes were selected.

2.5 Patients and biopsy processing

Surgical specimens were collected from 18 patients with
pathologically confirmed PC who underwent surgical resection
for operable disease and referred to the Clinical Oncology Unit,
Careggi University Hospital, Florence (Italy). The recruitment
period was from 23.03.2023 to 09.01.2024. All participants gave
written informed consent before enrollment. Patients were excluded
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if they had metastatic or locally advanced inoperable disease or if
they were under 18 years old.

2.6 Cell lines, drugs and viability assays

KRAS-WT, KRAS-p.G12C and KRAS-p.G12D PC cell lines
(BxPC3, MiaPaca-2 and Panc-1 respectively) were obtained from the
American Tissue Type Collection and cultured as previously reported
(27). MiaPaca-2 and Panc-1 were maintained in Dulbecco’s Modified
Eagle’s Medium (DMEM) with 10% foetal bovine serum (FBS), 2 mM
glutamine, 50 U/mL penicillin and 50 mg/mL streptomycin (Euroclone,
Milan, Italy) at 37°C and 5% CO2. The presence of mycoplasma was
periodically tested by PCR. Cell viability was measured using
Prestoblue™ ™" Cell Viability reagent (Invitrogen, Waltham, MA, USA)
according to the manufacturer’s protocol. The optical density (OD) was
measured using a 560nm excitation filter and 590nm emission filter
using the BioTek SynergyTM H1 hybrid multi-mode microplate reader
(Agilent, CA, USA). The PPARG inhibitor used in this work was
GW9662. The KRAS inhibitor used was Sotorasib. Cells were treated
with these agents at the corresponding IC50 concentration (13nM for
Sotorasib, 9uM for GW9662, both determined at 72h) alone or in
combination for 48 hours. Sotorasib and GW9662 were purchased from
MedChemExpress (Monmouth Junction, NJ, USA).

2.7 RNA extraction and RT-gPCR

A total of 18 tumor samples of enrolled patients and 13
pancreas tissue samples from healthy donors were used for the
analysis of a panel of genes, namely CD36, FABP4, PPARA, PPARD,
PPARG, PLIN1, PLIN4, SCD5 and ACSL4. Total RNA was extracted
from FF cryosections using the Qiagen RNeasy FFPE extraction.

BxPC3, MiaPaca-2 and Panc-1 cell lines were also used for the
analysis of the above genes. Total RNA was extracted from cells
using TRIzol reagent (Life Technologies, MI, Italy).

The RNA quantity and purity were evaluated using a Nanodrop
spectrophotometer. All mRNAs were retro-transcribed using the
Reverse Transcriptase kit 2 (EXPERTEAM, VE, ITALY); RT-qPCR
analysis was performed on ABI7000 (Applied Biosystem, Foster
City, CA, USA) using QuantiNova SYBR Green PCR Kit (Qiagen,
ML, Italy). The primers used were:

GAPDH (QuantiTect Primer Assay QT00079247, Qiagen);
YWHAZ (QuantiTect Primer Assay QT00087962, Qiagen); CD36
(QuantiTect Primer Assay QT01974008, Qiagen); FABP4 forward
(5’-ACGAGAGGATGATAAACTGGTGG-3") reverse (5-
GCGAACTTCAGTCCAGGTCAAC-3’); PPARA forward (5'-
TCGGCGAGGATAGTTCTGGAAG-3’) reverse (5°-
GACCACAGGATAAGTCACCGAG.-3’); PPARD forward 5’-
GGCTTCCACTACGGTGTTCATG-3’) reverse (5°-
CTGGCACTTGTTGCGGTTCTTC-3’); PPARG (QuantiTect Primer
Assay QT00029941, Qiagen); PLINI forward (5’-
GCGGAATTTGCTGCCAACACTC-3’) reverse (5-AGACTTCT
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GGGCTTGCTGGTGT-3); PLIN4 forward (5-GATGGCAGAGA
ACGGTGTGAAG-3’) reverse (5-CAGGCATAGGTATTGGC
AACTGC-3); SCD5 forward (5-GAGGAATGTCGTCCTGA
TGAGC-3’) reverse (5- GCCAGGAGGAAGCAGAAGTAGG-3);
ACSL4 forward (5- GCTATCTCCTCAGACACACCGA -3’) reverse
(5-AGGTGCTCCAACTCTGCCAGTA-3’). Each primer was used at
200nM concentration (400nM finale for pairs). Cycle conditions were
as follows: initial activation/denaturation 95°C 1’; 40 cycles of: 95°C 157,
60°C for 1’; standard melting cycle for Applied ABI 7000.

The relative quantification was performed using GAPDH and
YWHAZ as housekeeping genes. ACt values in tumor and healthy
tissue samples were compared with a Wilcoxon rank-sum test.

10.3389/fonc.2025.1613773

2.8 Ethics and regulatory considerations

The present study was approved by the Regional Ethics
Committee for Clinical Trials of the Tuscany Region (Firenze,
Italy; no. 23753_BIO). All informed consent documents were in
compliance with the International Conference on Harmonization
(ICH) guideline on good clinical practice (GCP). The study
protocol was performed in accordance with the principles of the
Declaration of Helsinki and in compliance with GCP and the
applicable laws and regulations. Each patient was identified by a
code instead of the patient’s name in order to protect the patient’s
identity when reporting study-related data.
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FIGURE 1

DEGs in tumor vs normal tissue unpaired analysis. (A) Heatmaps representing z-score transformed counts for the most 50 up- (right sided) and
down- (left sided) regulated genes in the PC (n=367) vs normal tissue (n=72) unpaired comparison. (B) Volcano plot reporting only the differentially
expressed genes related to the PPAR Signaling Pathway in the PC (n=367) vs normal tissue (n=72) unpaired comparison.

0
log2FoldChange

Frontiers in Oncology

frontiersin.org


https://doi.org/10.3389/fonc.2025.1613773
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Defazio et al.

3 Results

3.1 Tumor versus normal pancreatic tissue
unpaired analysis

Gene expression data of 367 primary tumors of PC and 72
normal tissue samples were retrieved from 4 different TCGA
projects (Supplementary Table S1). A total of 21,412 DEGs
including 6,727 up- and 14,685 down-expressed were identified
by tumor versus normal tissue comparison. Of these, 55% were

10.3389/fonc.2025.1613773

protein coding, 26% were IncRNA and 9% were processed
pseudogenes. KEGG pathways over-representation analysis
(ORA) was performed both on the up- and down-regulated
genes, resulting in60 and 66 enriched pathways, respectively
(Supplementary Table S2). The 50 most up- and down-regulated
genes are reported in Figure 1A. One of the most significantly over-
represented pathways in the down-regulated list was PPAR
signaling pathway (p.adjusted < 0.001). Figure 1B shows a
Volcano plot indicating the specific DEGs related to the PPAR
signaling pathway in the tumor vs normal samples.
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DEGs in paired tumor vs normal tissue analysis. (A) Heatmaps representing z-score transformed counts for the most 50 up- (left sided) and down-
(right sided) regulated genes in the PC (n=42) vs normal (n=42) paired comparison. (B) Volcano plot reporting only the differentially expressed genes

related to the PPAR Signaling Pathway in the paired PC (n=42) vs normal (n=
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FIGURE 3

Expression levels of PPAR-related genes in primary samples. RT-gPCR analysis of a panel of PPAR-related genes (CD36, FABP4, PPARA, PPARD,
PPARG, PLIN1, PLIN4, SCD5, ACSL4) in an independent cohort of 19 PC samples vs 13 healthy tissue samples. Relative expression is reported as 2/
(-ddCT). P-values have been computed by comparison with a Welch's t-test.

3.2 Tumor versus normal pancreatic tissues
paired analysis

From the unpaired set, gene expression data of 84 samples (42
tumor and 42 adjacent normal tissue samples) belonging to 42 PC
patients were selected. The paired comparison between tumor and
adjacent normal tissue samples identified a statistically significant
difference in the expression of 15,660 DEGs (6,608 up- and 9,052
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down-regulated). Out of these, 63% were protein coding, 22% were
IncRNA and 8% were processed pseudogenes. A heatmap representing
the 50 most up- and down-regulated genes is reported in Figure 2A.
KEGG pathway ORA revealed 64 enriched pathways for the
upregulated genes and 35 for the downregulated genes
(Supplementary Table S3), notably including PPAR signaling
pathway (p=0.007). A Volcano plot showing the PPAR-related DEGs
differentially expressed in the paired analysis is reported in Figure 2B.
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To further investigate the role of the PPAR pathway in PC,
differences in the expression of the individual genes related to this
pathway were evaluated. Results showed that some of the most
relevant pathway’s regulators and effectors (CD36, FABP4, PLINI,
PLIN4, SCD5 and ACSL6) showed significantly lower expression in
tumor tissue samples (p.adjusted < 0.01, data not shown).
Conversely, PPARD and PPARG showed significantly higher
expression in tumor tissue samples, however, only PPARG
exceeded the threshold of LogFC>1.

3.3 RT-gPCR validation in an independent
PC cohort

The differential expression signature identified by the
bioinformatic analysis was validated by RT-qPCR analysis in an
independent cohort of pancreatic tissue samples (19 primary
tumors and 13 normal pancreatic tissue samples) obtained from
32 patients enrolled and operated at Careggi University Hospital.
The comparative analysis was focused on the expression of a panel
of genes related to the PPAR pathway, lipid metabolism and
adipocyte differentiation, namely CD36, FABP4, PPARD, PLINI,
SCD5 and ACSL4. Most of the genes showed expression patterns
similar to those observed in the TCGA cohort analysis. Specifically,
CD36, FABP4, PLINI, SCD5 and ACSL4 were significantly
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downregulated in tumor samples (p < 0.05). Results are reported
in Figure 3. A schematic representation of the PPAR pathway, with
a particular focus on the genes considered in this analysis, is
presented in Figure 4.

3.4 KRAS mutated versus WT PC analysis

Since KRAS mutation is considered a main oncogenic driver in the
vast majority of PCs, we evaluated if the deregulation of the PPAR
pathway could be associated with a specific KRAS mutation profile:
Therefore, gene expression data of 6 KRAS-WT versus 36 KRAS-
mutated tumor samples from the TCGA dataset were compared. The
distribution of the hotspot mutations in the dataset was: n=16 p.G12D,
n=10 p.GI12V, n=7 p.GI2R, n=2 p.Q61H and n=1 p.GI12C. The
number of DEGs between KRAS-mutated and KRAS-WT samples
was 808: 388 genes were up- and 420 were down-regulated in the
KRAS-mutated samples. Of these genes, 78% were protein coding, 13%
were IncRNA and 3% were processed pseudogenes. Heatmaps showing
the 50 most up- and down-regulated genes in KRAS-mutated samples
are depicted in Figure 5A. KEGG pathway ORA showed one over-
expressed pathway for the up-regulated genes and 5 pathways for the
down-regulated genes (Supplementary Table S4). The PPAR signaling
pathway was significantly over-represented in the down-regulated
genes list (p=0.046).

B Primary samples
RT-qgPCR
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Disruption of PPAR signaling pathway. (A) Schematic representation of the role of a panel of PPAR-related genes in the PPAR signaling pathway
(adapted from KEGG pathway hsa03320 — “PPAR signaling pathway — Homo sapiens”). (B) Focus on the relative expression of PPAR-related genes in
an independent cohort of 19 PC samples vs 13 healthy pancreatic tissue samples. Downward arrows represent downregulation in tumor samples,
horizontal lines represent no difference in tumor vs healthy tissue samples. PPRE: PPAR Response Element.
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FIGURE 5

DEGs in tumor vs normal tissue unpaired analysis. (A) heatmaps representing z-score transformed counts for the most 50 up- (left sided) and down-
(right sided) regulated genes between the KRAS-mutated (n=36) vs KRAS-WT (n=6) PC samples. (B) Expression levels of ACSL6, CD36, FABP4, PLIN1,

PLIN4 and SCD5 in KRAS-mutated vs KRAS-WT pancreatic cancer samples

measured as logl0-scaled normalized counts. The KRAS mutated group

is stratified according to the 5 different KRAS mutations. The p-values and log 2-Fold Changes (L2FC) refer to the KRAS mutated vs WT comparison.

Focusing on the PPAR signaling pathway related genes, 6
under-expressed genes were identified in KRAS-mutated versus
KRAS-WT samples, namely ACSL6, CD36, FABP4, PLINI1, PLIN4
and SCD5 (p < 0.5). Results are shown in Figure 5B.

3.5 PPAR signature in PC cell line models

In order to confirm the results obtained from the KRAS-WT vs
mutant analysis of PC, RT-qPCR analysis was performed on KRAS-
WT, KRAS-p.G12C and KRAS-p.G12D PC cell lines. The influence
of KRAS mutations on lipid metabolism and adipocyte
differentiation was evaluated by analyzing the expression of PPAR
pathway downstream effectors PLINI1, PLIN4 and SCL5. A
statistically significant downregulation of PLIN4 and SCD5 was
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evident in KRAS-mutated vs WT cell lines (p=0.027), while PLINI
showed no differences among all cell lines (Figure 6).

3.6 PPAR inhibitor in combination with
KRAS p.G12C inhibitor reduces PC cell
viability in vitro

To investigate the potential interaction between KRAS and
PPAR signaling in PC, we evaluated the effect on cell viability in
KRAS p.G12C and KRAS p.G12D mutated PC cell lines treated in
vitro with the KRAS inhibitor Sotorasib alone or combined with the
PPAR inhibitor GW9662. The results reported in Supplementary
Figure S1 show that cell viability was significantly reduced in the
KRAS p.G12C mutated PC cell line after 48 hours of Sotorasib
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Expression levels of PPAR-related genes in PC cell lines. Expression of the PPAR-related genes of interest (PLIN1, PLIN4, SCD5) was assessed by RT-
gPCR in a set of KRAS mutated and KRAS WT PC cell lines. Relative expression is reported as dCT against control genes. Statistical significance

expressed by P value has been tested with Kruskall-Wallis's test.

treatment (p=0.026) and to a greater extent when Sotorasib was
combined with GW9662 (p=0.020). A similar inhibitor effect was
observed in the KRAS p.G12D mutated PC cell line only after the
combined treatment with Sotorasib and GW9662 (p=0.01).

4 Discussion

PC is considered one of the deadliest malignancies worldwide,
with limited therapeutic options and a poor prognosis. The addition
of novel agents, including immune-checkpoint inhibitors or
stroma-targeting drugs, to standard chemotherapy provided
disappointing results. Understanding the PC molecular
mechanisms and pathogenesis is critical for developing new and
more effective treatments.

In our study, over 120 KEGG pathways were found to be
differentially expressed in tumor vs healthy tissue samples from a
TCGA PC cohort. The subsequent analysis focused on the PPAR
signaling pathway, which was significantly deregulated in both
unpaired and paired analysis of the TCGA dataset. These findings
have also been validated with RT-qPCR analysis in an independent
cohort of primary PC samples, further suggesting the disruption of
this signaling pathway in PC. Specifically, we observed a significant
down-regulation of some of the most relevant genes in the PPAR
pathway (CD36, FABP4, PLIN1, PLIN4, SCD5 and ACSL4) in tumor
tissue samples. A significant down-regulation of CD36, FABP4,
PLIN1, SCD5 and ACSL4 in tumor samples has also been validated
by RT-qPCR. These genes are involved in several mechanisms such
as fatty acid transport, fatty acid metabolism and lipid droplet
formation. Focusing on specific PPAR pathway receptors, we
observed PPARG and PPARD upregulation in PC tumor tissue
samples in the TCGA cohort. PPAR signaling dysregulation has
been previously reported in various cancer types, including PC (28,
29). Several studies have provided insights into the role of specific
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PPAR genes in the context of metabolic reprogramming and tumor
progression, but a consensus is still not defined. PPAR signaling
pathway over-expression has been recently observed in metastatic
vs primary PC samples of three different public datasets (30).
Additionally, PPARD activation driven by metabolic stress and
signals from tumor-associated macrophages (TAMs) has been
shown to increase epithelial-mesenchymal transition (EMT) and
enhance cancer cell invasiveness in in vitro and in vivo models (31);
furthermore, PPARD activation by GOT2 regulation in in vitro
models has been linked to tumor progression and immune
suppression (10). Conversely, PPARD activation has been
correlated with the reduction of cell invasion and metastasis
related genes in PC cell lines (32). Our findings are in line with a
tumor-related role of PPAR genes, but the overall downregulation
of the PPAR downstream pathways in tumor samples may reflect a
more intricate signaling mechanism. Our analyses were conducted
on bulk tumor RNA, therefore the observed alterations may
represent a composite effect across multiple cell types, including
cancer cells and surrounding stromal or immune cells.

The dichotomy between PPAR receptor over-expression and
the downregulation of downstream signaling in PC cells may be
attributed to an altered availability of PPAR endogenous ligands.
This alteration could result from the downregulation of FABP4 and
CD36, both of which play critical roles in lipid uptake in PC cells.

The GTPase KRAS is activated in over 80% of PC and is a driver
of tumorigenesis and metabolic reprogramming (33). KRAS
mutations are known to drive PC tumorigenesis through various
signaling pathways (8, 14). Recent findings obtained both in vitro
and in vivo show that PPARD has a pivotal role in promoting the
tumorigenesis of KRAS-mutated pancreatic lesions by increasing
the recruitment of pancreatic macrophages and myeloid-derived
suppressor cells (MDSCs), thus promoting an immunosuppressive
TME (34). Conversely, the activation of PPARD leads to the
development of a tumor suppressive TME by inhibiting Th2/M2
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differentiation (35). Furthermore, KRAS mutations have been
associated with the downregulation of PPARA and PPARG (12),
reinforcing the interaction between these pathways.

Our study revealed a significant correlation between KRAS
mutations and the downregulation of the PPAR signaling
pathway. Specifically, a panel of PPAR-related genes (CD36,
FABP4, PLIN1, PLIN4, SCD5, and ACSL4) were significantly
under-expressed in KRAS-mutated samples compared to WT
samples. In our in vitro experiments, we further validated the
influence of KRAS mutations on PPAR signaling. RT-qPCR
experiments conducted on KRAS WT, KRAS p.G12C, and KRAS
p.G12D cell lines confirmed a significant downregulation of PLIN4
and SCD5 in KRAS-mutated cell lines.

KRAS has been thought to promote a shift to aerobic glycolysis
and anabolic glucose metabolism (36). However, our understanding
of KRAS-driven metabolic reprogramming has evolved to include
alterations in scavenging pathways, amino acid metabolism, and
lipid metabolism (37). Our findings align with previous research
indicating that KRAS mutations modulate metabolic pathways,
including lipid metabolism, to support the energetic and
biosynthetic demands of rapidly proliferating cancer cells (38).

The deregulation of the PPAR pathway in the context of KRAS
mutations presents potential therapeutic opportunities. A recent study
explored the Hippo-FAM60A-PPAR axis as a key regulator of
ferroptosis and a therapeutic target in KRAS-mutated PPAR cell lines
(39). PPAR agonists such as thiazolidinediones (TZDs) have been
explored for their anti-tumor effects in various cancer types (40, 41);
however, the clinical use for PC treatment did not yield successtul
results in clinical trials (42), maybe due to drug regimen which has been
optimized for type-2 diabetes indication or to alternative nongenomic
mechanisms described for this multifunctional receptor (43).

In conclusion, our study provides evidence for the significant
deregulation of the PPAR signaling pathway in PC, particularly in
the context of KRAS mutations, in both a public cohort and an
independent cohort of primary tumor samples. The consistent
down-regulation of key PPAR-related genes involved in lipid
metabolism underscores potential metabolic vulnerabilities in
KRAS-mutated PC, which could be exploited to develop more
effective treatment strategies.
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