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Background: Distinguishing benign from malignant biliary strictures remains 
challenging. Large Language Models (LLMs) show promise in enhancing 
diagnostic accuracy. This study aimed to evaluate the performances of ten 
LLMs in the differential diagnosis of benign and malignant biliary strictures. 

Methods: Consecutive patients with biliary strictures undergoing endoscopic 
retrograde cholangiopancreatography (ERCP) at Xijing Hospital between January 
and December 2024 were retrospectively analyzed. Ten LLMs were 
systematically prompted with standardized clinical, laboratory, and imaging 
data. Performance was compared against tumor markers (CA19-9, CEA), a new 
multivariable clinical model, and ten independent pancreaticobiliary exoerienced 
physicians. Subgroup analyses assessed hilar (n=29) versus non-hilar strictures. 
Gold-standard diagnosis relied on histopathology and ≥3-month follow-up. 

Results: Among the 159 included patients (83 benign, 76 malignant), four LLMs 
(Kimi, Deepseek-R1, Claude-3.5S, Llama-3.1), the clinical model (AUC:0.83), and 
six physicians achieved >80% accuracy. Kimi demonstrated superior accuracy 
(87%), significantly outperforming 70% of physicians (7/10, p<0.01). Three other 
LLMs (Deepseek-R1:83%, Claude-3.5S:82%, Llama-3.1:81%) and the clinical 
model performed comparably to physicians (78-84%, p>0.05), collectively 
surpassing tumor markers (CA19–9 accuracy:66%, CEA:71%). Physicians 
demonstrated higher accuracy for hilar strictures (87% vs. 79% for non-hilar, 
p<0.001). LLMs showed similar performance across stricture locations (hilar:64­
95%; non-hilar:62-88%, p>0.05). For hilar strictures, 7/10 physicians achieved 
significantly higher accuracy (87-90%) than 8/10 LLMs (64-84%, p<0.05). 
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Conclusions: Using clinical, lab, and imaging data, some LLMs achieved 
diagnostic accuracy comparable to or exceeding clinical models and 
experienced physicians for differentiating benign versus malignant strictures. 
However, for hilar strictures, LLM performance was inferior to over half of 
the physicians. 
KEYWORDS 

large  language  model,  biliary  stricture,  cholangiocarcinoma,  prediction  
model, diagnosis 
Introduction 

Biliary strictures, characterized by abnormal bile duct 
narrowing, can significantly obstruct bile flow. An estimated 54­
87% of biliary strictures are malignant (1–5), arising from local or 
metastatic cancers. Benign biliary strictures have heterogeneous 
etiologies including surgical bile duct injury, chronic pancreatitis, or 
chronic cholangiopathies (e.g., primary sclerosing cholangitis) (6). 
Benign and malignant strictures differ significantly in management 
and prognosis. Benign strictures are typically managed by 
endoscopic dilation, stenting, or surgery (7–9), while malignant 
strictures require aggressive approaches including surgical 
resection, palliative drainage, and systemic therapy (10–12). Thus, 
accurately distinguishing between them is crucial for guiding 
treatment and prognostic assessment. 

Characteristics of biliary strictures are typically assessed via 
brushing cytology, forceps biopsy, or cholangioscopic biopsy during 
endoscopic retrograde cholangiopancreatography (ERCP) (13). 
Brush cytology and forceps biopsy demonstrate diagnostic 
accuracies of 15–80% (14, 15), while cholangioscopic biopsy 
achieves 70–87% (13, 16). Endoscopic ultrasound-guided (EUS) 
fine needle aspiration (FNA) or fine needle biopsy (FNB) shows 
favorable accuracy, particularly for extrinsic mass-related strictures 
(1). Advanced techniques like intraductal ultrasonography (IDUS) 
(17), probe-based confocal laser endomicroscopy (pCLE) (18), and 
optical coherence tomography (OCT) (19), offer enhanced 
precision but are limited by invasiveness, cost, and availability. 

Significant differences also exist in common clinical parameters 
between benign and malignant strictures, including age of onset, 
duration of liver function abnormalities, previous surgeries, and 
tumor markers. These noninvasive, accessible parameters facilitate 
convenient prediction. Wang et al. used CA50, CA19-9, and AFP to 
achieve an AUC of 0.879 (95% CI: 0.841–0.917) (20), while Zhang 
et al. combined MRI with inflammatory markers for an AUC of 
0.802 (95% CI: 0.719–0.870) (18). Though promising, these models 
require further validation. 

LLMs including Deepseek-R1, GPT-4T, Claude-3.5S, and 
Llama-3.1 show potential in improving diagnostic accuracy across 
02 
medicine (21–24). Trained on vast medical data, LLMs may assist 
preliminary diagnosis by reducing interpretational variability. 
However, their utility for differentiating biliary strictures—a 
specialized, less common condition—remains unknown. We 
hypothesize that LLMs leveraging common clinical data 
(manifestations, blood tests, imaging) could aid this differentiation. 

In  this  study,  we  aimed  to  evaluate  the  diagnostic  
performance of ten distinct LLMs for diagnosing benign versus 
malignant biliary strictures, comparing performance against 
tumor markers, a novel clinical model, and ten experienced 
pancreaticobiliary specialists. 
Methods 

Study design 

This retrospective study evaluated the diagnostic performance 
of ten distinct large language models (LLMs) in differentiating 
between benign and malignant biliary strictures. The study 
protocol was approved by the Ethics Committee of Xijing 
Hospital. The written informed consent was obtained from all the 
patients or their next of kin. 
Patients 

Consecutive patients aged ≥18 years admitted to Xijing Hospital 
for biliary stricture evaluation between January and December 2024 
were eligible. Inclusion criteria required a definitive etiological 
diagnosis confirmed by pathological examination and regular 
follow-up exceeding 3 months. Patients with incomplete medical 
records were excluded. Malignancy diagnosis relied on pathological 
results obtained via endoscopic retrograde cholangiopancreatography 
(ERCP), percutaneous transhepatic cholangiographic drainage 
(PTCD), endoscopic ultrasound (EUS), biopsy, or surgery. Benign 
strictures required confirmation by benign pathology and absence of 
progression over ≥3 months.  
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Data collection 

Demographic, clinical, imaging, and pathological data were 
extracted from electronic medical records. An independent 
physician standardized data inputs for ten LLMs, ensuring 
unbiased differentiation. Case data was structured uniformly, 
excluding diagnostic conclusions, and included clinical 
presentation, history, imaging reports (CT, MRI, MRCP), and lab 
results (complete blood count, liver and renal function tests, lipids, 
coagulation, tumor/inflammatory markers). Any indications of 
benignancy or malignancy from the reports were removed. A 
flowchart of the overall study design is shown in Figure 1, 
illustrating the process from patient selection to diagnostic 
performance evaluation. 
 

 

Large language models for differential 
diagnosis of biliary strictures 

Ten LLMs were selected for evaluation for reproducibility, 
including 1) mainstream commercial models with proven medical 
reasoning capabilities in prior studies (GPT-4T, GPT-4o, Gemini­

1.5 pro, Claude-3.5S), 2) models developed by Chinese companies 
to align with the Chinese-language clinical data (Kimi, ERNIE-4, 
Qwen-2, GLM-4); 3) open-source models (Deepseek-R1, Llama­

3.1) (25, 26). To ensure consistency and reproducibility, a 
structured query approach was used. A case-specific prompt

simulated consultation with an experienced pancreaticobiliary 
specialist: “Supposing you are an experienced physician 
specializing in pancreaticobiliary diseases, when encountering a 
case with biliary stricture, please provide a tentative judgment 
indicating whether the cause of the stricture is more likely to be 
malignant or benign.” (Detailed prompt provided in Supplementary 
Method S1). For each LLM, a new conversation session was 
initiated to eliminate contextual carryover. Probabilistic LLM 
outputs (e.g., “likely benign,” “possibly malignant”) were

converted into binary outcomes (benign/malignant) using 
predefined rules. Responses indicating malignancy (e.g., “likely 
malignant,” “probably malignant,” “suggestive of malignancy”) 
were classified as “malignant.” Responses indicating benignancy 
(e.g., “likely benign,” “probably benign,” “suggestive of a benign 
process”) were classified as “benign.” Explicit statements (“benign”/ 
”malignant”) were directly categorized. 

All queries employed identical deterministic parameters: 
temperature=0.0 (output consistency), max tokens=10240, and 
consistent system prompts. Queries were executed in January 
2025 using contemporaneous model versions. The evaluated 
LLMs included: Deepseek-R1, GPT-4T, GPT-4o, Claude-3.5S, 
Gemini-1.5 Pro, Kimi, Llama-3.1 405B, ERNIE-4.0-Turbo-8K, 
Qwen-2-72B, and ChatGLM-4-9B (details in Supplementary 
Table S1). Chain-of-thought (CoT) outputs were extracted for 
reasoning pattern analysis. Cases were categorized by diagnostic 
accuracy (correct/incorrect), and reasoning traces were 
independently assessed by two gastroenterologists using 
predefined clinical logic criteria (Supplementary Table S3). 
Frontiers in Oncology 03 
Development of a clinical prediction model 

A multivariable logistic regression model incorporating key 
demographic, clinical, laboratory, and imaging parameters was 
developed. The modeling process initiated with univariable 
screening to identify candidate variables (p < 0.10), followed by 
multivariable regression analysis. Variables were retained 
multivariable models based on statistical significance (p < 0.05) or 
established clinical relevance for variables approaching significance. 
Collinearity was assessed using variance inflation factors (VIF) and 
Spearman correlation coefficients (|r| > 0.6), with clinical importance 
determining variable selection when collinearity was detected. 
Bidirectional stepwise selection (forward/backward) using Akaike 
(AIC) and Bayesian (BIC) information criteria optimized the model. 
Final model selection prioritized minimized AIC/BIC and maximized 
predictive performance, with internal validation implemented through 
bootstrapping (1,000 resamples). CA19–9 and CEA were separately 
assessed as independent diagnostic markers. 
Experienced physicians’ evaluation 

Ten experienced pancreaticobiliary specialists (each with ≥10 
years of clinical practice) independently evaluated comprehensive 
clinical summaries identical to those processed by the LLMs. All 
diagnostic predictions regarding benign or malignant status were 
made without intercommunication among physicians to ensure 
independent assessment. 
Outcome 

The primary outcome was diagnostic accuracy that was calculated as 
the average of sensitivity and specificity to account for class imbalance 
(range: 0-1, higher  values superior).  For LLMs, the highest accuracy from 
duplicate assessments was selected. Secondary performance metrics 
included sensitivity (proportion of true positives correctly identified), 
specificity (proportion of true negatives correctly identified), positive 
predictive value (PPV, proportion of positive predictions that were 
correct), negative predictive value (NPV, proportion of negative 
predictions that were correct), and F1-score (harmonic mean of 
precision and sensitivity providing balanced assessment). 
Statistical analysis 

Continuous variables are presented as mean ± standard deviation 
(normally distributed) or median [interquartile range] (non-normal 
distributions), while categorical variables are expressed as proportions 
(%) with odds ratios (OR) and 95% confidence intervals (CI) for 
association analyses. McNemar and DeLong tests were used to 
compare performance metrics between models. Confidence intervals 
for accuracy, sensitivity, and specificity were calculated using the 
Clopper-Pearson method, with proportion differences reported in 
pairwise comparisons. Subgroup analysis evaluated LLM diagnostic 
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performance by stricture location (hilar vs. non-hilar). Internal 
concordance of LLMs was assessed through weighted Cohen’s 
kappa (k) with 95% CI based on duplicate assessments, interpreted 
as: k ≤ 0.20 (slight concordance), 0.21-0.40 (fair), 0.41-0.60 
(moderate), 0.61-0.80 (substantial), and 0.81-1.00 (almost perfect). 
Pairwise comparisons of classification accuracy employed McNemar’s 
test with Holm-Bonferroni correction for multiple comparisons 
(family-wise a = 0.05;  significance threshold: adjusted p < 0.05). All 
statistical tests were two-sided. Statistical analyses were conducted 
using R version 4.3.1. 
Results 

Patient demographics and clinical 
characteristics 

During the study period, 270 patients were diagnosed with biliary 
stricture, of whom 111 were excluded according to inclusion/exclusion 
criteria, resulting in a final cohort of 159 patients (83 benign, 76 
malignant). Baseline demographic and clinical characteristics are 
summarized in Table 1. Compared with benign stricture patients, 
those with malignant lesions were older (65.13 vs. 57.19 years), 
exhibited higher bilirubin (149.14 vs. 78.15 mmol/L, p < 0.001) and 
CA19–9 levels (2888.33 vs. 246.32 U/mL, p = 0.003), a higher 
proportion of lymph node enlargement (47.4% vs. 19.3%, p < 
0.001), and more frequent hilar strictures (26.3% vs. 10.8%, p = 0.020). 
Clinical data-driven diagnostic model 
performance 

A stepwise multivariable logistic regression was employed to 
develop the diagnostic model, with the final model retaining age, 
CA19-9, CEA, disease  duration <1 month, C-reactive protein (CRP), 
surgical history, and lymph node enlargement (Table 2). 
Supplementary Figure S1 illustrates the impact of hyperparameter l 
on model accuracy under L2 regularization, with the optimal l value 
of 149.3 determined via 10-fold cross-validation to maximize test-set 
accuracy. The model achieved an AUC of 0.83 (95% CI: 0.70–0.96), 
accuracy of 0.83, sensitivity of 0.83, and specificity of 0.82 (Table 3, 
Figure 2), outperforming tumor markers alone. CA19–9 showed  an  
AUC of 0.77 (95% CI: 0.69–0.84), accuracy of 0.66, specificity of 0.93, 
and sensitivity of 0.39; CEA yielded an AUC of 0.66 (95% CI: 0.58– 
0.75), accuracy of 0.71, specificity of 0.59, and sensitivity of 0.83. 
Internal validation via bootstrapping (1000 iterations) confirmed 
consistent AUC of 0.83 (Supplementary Figure S2). 
Comparative diagnostic performance of 
LLMs, tumor markers, clinical model, and 
physicians 

Four LLMs (40%), one clinical model, and six physicians (60%) 
achieved accuracies ≥80%. Kimi demonstrated the highest accuracy 
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(87%), significantly outperforming 70% of physicians (7/10, p < 
0.01) (Table 3, Figure 3, Supplementary Table S2). Top-performing 
LLMs including Deepseek-R1 (0.83), Claude-3.5S (0.82), Llama-3.1 
(0.81), and GPT-4T (0.79) showed comparable accuracy to 
physicians (0.78–0.84, p > 0.05), while physicians outperformed 
lower-performing LLMs (GPT-4o, Gemini-1.5-pro). Eighty percent 
of LLMs exceeded CEA (0.66) and CA19-9 (0.71) in accuracy, with 
the clinical model (0.83) competing with top LLMs. 

CA19–9 exhibited the highest sensitivity (0.93) across 23 
predictive groups, significant in 18 groups (p: 0–0.044). GPT-4T, 
GPT-4o, and Gemini-1.5-pro showed the highest specificity (0.99), 
significant in 14 groups (p: 0–0.048). Kimi led in F1-score (0.87, 
significant in 12 groups), GPT-4T in PPV (0.98, 13 groups), and 
EP1 in NPV (0.85, 12 groups). Top LLMs dominated four metrics 
(accuracy, specificity, F1-score, PPV), while tumor markers and 
physicians excelled in sensitivity and NPV, respectively. 

Analysis of 360 incorrect diagnoses revealed that over 80% 
resulted from LLMs over-relying on single data sources 
(Supplementary Table S6). Representative examples: Claude 3.5 
misdiagnosed a benign stricture as malignant solely based on 
elevated CA19-9, while GPT-4T correctly integrated bilirubin 
trends, imaging, and histology (Supplementary Material). 

Analysis of the misdiagnoses revealed >80% originated from 
LLMs over-relying on single data sources (Supplementary Table 
S3). For instance, Claude 3.5 misdiagnosed a benign stricture as 
malignant based solely on elevated CA19-9, whereas GPT-4T 
integrated bilirubin trends, imaging, and histology for correct 
diagnosis (Supplementary Document). 
Subgroup analysis by stricture location 

Performance metrics for hilar (n=29, 9 benign/20 malignant) 
and non-hilar subgroups are detailed in Figure 4 and  
Supplementary Table S4. Given the limited sample size of hilar 
strictures (n=29, including 9 benign and 20 malignant cases), the 
subgroup analysis should be interpreted with caution due to 
potential overfitting risks. Despite this limitation, we observed 
that in Physicians showed higher accuracy in hilar versus non­
hilar strictures (0.87 vs. 0.79, p < 0.001), while LLMs had 
comparable accuracy in both subgroups (hilar: 0.64-0.95; non­
hilar: 0.62-0.88, p > 0.05). In the hilar subgroup, Deepseek-R1 
showed highest hilar accuracy (0.95, 95% CI:0.77-0.99), followed by 
Kimi (0.87) and Claude-3.5S (0.84). Notably in this exploratory 
analysis, 7/10 physicians achieved superior accuracy over 8/10 
LLMs (87-90% vs. 64-84%, p<0.05). In the non-hilar subgroup, 
LLMs showed competitive/exceeding accuracy. Given the small 
sample size, these findings should be interpreted as preliminary 
and require validation in larger cohorts. 
LLM diagnostic concordance assessment 

Deepseek-R1, GPT-4T, GPT-4o, Llama-3.1, Gemini-1.5-pro, 
and Claude-3.5S showed near-perfect internal concordance 
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TABLE 1 Patient demographics, clinical characteristics, and diagnostic markers. 

Variables Overall (n=159) Benign (n=83) Malignant (n=76) P value 

Age (year) 60.99 (14.03) 57.19 (16.22) 65.13 (9.70) <0.001 

Male, n (%) 66 (41.5) 35 (42.2) 31 (40.8) 0.988 

BMI (kg/m2) 20.91 (3.43) 21.55 (3.20) 20.17 (3.58) 0.075 

Prior surgical history *, n (%) 85 (53.5) 51 (61.4) 34 (44.7) 0.051 

Disease duration < 1month †, n (%) 135 (61.4) 69 (57.0) 66 (66.7) 0.005 

Traditional tumor markers 

CA125 (U/ml) 48.36 (131.48) 26.23 (51.27) 72.53 (180.03) 0.026 

CA19-9 (U/ml) 1435.23 (6681.62) 246.32 (1854.95) 2888.33 (9574.67) 0.003 

CEA (ng/ml) 15.00 (77.00) 3.22 (3.21) 29.40 (113.39) 0.012 

AFP (ng/ml) 5.72 (17.88) 5.04 (15.03) 6.47 (20.62) 0.616 

Whole blood tests 

White blood cell (cell/mL) 6570 (3050) 6410 (2420) 6740 (3620) 0.491 

Hemoglobin (g/dL) 12.20 (2.05) 12.75 (1.90) 11.67 (2.06) 0.002 

Platelet count (× 103/mL) 214.06 (79.79) 206.84 (76.57) 221.94 (82.95) 0.235 

Liver/renal function tests 

Total bilirubin (mmol/L) 112.52 (119.36) 78.15 (105.85) 149.14 (122.78) <0.001 

Albumin (g/dL) 3.78 (0.68) 3.94 (0.66) 3.61 (0.66) 0.002 

Creatinine (mg/dL) 0.85 (0.18) 0.84 (0.18) 0.85 (0.17) 0.668 

Sodium (mEq/L) 141.96 (2.83) 141.92 (2.84) 142.00 (2.84) 0.858 

Coagulation profiles 

International normalized ratio 1.09 (0.16) 1.10 (0.18) 1.09 (0.14) 0.605 

Lipid profiles 

Total cholesterol (mg/dL) 169.50 (41.70) 171.81 (44.79) 167.18 (37.84) 0.477 

Triglyceride (mg/dL) 111.50 (86.73) 110.62 (73.45) 112.39 (100.00) 0.859 

Inflammatory markers 

CRP (mg/dL) 2.02 (3.18) 2.21 (3.48) 1.81 (2.83) 0.431 

IL6 (pg/ml) 33.43 (363.27) 3.20 (2.72) 66.45 (525.24) 0.274 

PCT (ng/ml) 1.14 (4.06) 0.60 (1.79) 1.73 (5.53) 0.08 

Immune abnormalities‡, n (%) 26 (16.4) 11 (13.3) 15 (19.7) 0.174 

Lymph node enlargement, n (%) 52 (32.7) 16 (19.3) 36 (47.4) <0.001 

Biliary stricture sites, n (%) 0.020 

Hilar 29 (18.2) 9 (10.8) 20 (26.3) 

Non-hilar 130 (81.8) 74 (89.2) 56 (73.7) 
F
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Data are mean (standard deviation) or numbers (percentages) unless otherwise specified. BMI, Body Mass Index; CA19-9, Carbohydrate Antigen 199; CEA, Carcinoembryonic Antigen; AFP,
 
Alpha-Fetoprotein; CA125, Carbohydrate Antigen 125; CRP, C-Reactive Protein; IL6, Interleukin6; PCT, Procalcitonin.
 
*Surgical history was defined as a history of liver transplantation and biliary surgery.
 
†Disease duration < 1 month was defined as a period less than one month from the onset of symptoms. 
‡Immune abnormalities were defined as the presence of IgG4 subclass abnormalities, autoimmune diseases, or abnormalities detected in a series of autoantibody tests. 
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(k=0.81-0.97). Kimi, ERNIE-4, and GLM-4 demonstrated 
substantial concordance, while Qwen-2 showed fair concordance. 
When compared to true values, no model reached almost perfect 
concordance: Deepseek-R1, Llama-3.1, Claude-3.5S, and Kimi 
showed substantial concordance; ERNIE-4, GLM-4, Qwen-2 
moderate; Gemini-1.5 pro and GPT-4o fair (Supplementary Table 
S6, Supplementary Figure S3). 
Frontiers in Oncology 06
Discussion 

The differentiation between benign and malignant biliary 
strictures remains clinically challenging. Current endoscopic 
techniques show limited sensitivity: ERCP-based brushing/biopsy 
(0.45-0.67) (27–29) and cholangioscopy biopsy (0.43-0.74) (2, 30) 
often prove inadequate. Our study demonstrates that select large 
TABLE 2 Selection of variables based on univariate and multivariate logistic regression analysis. 

Variables Univariate Logistic Regression Multivariate Logistic Regression 

OR (95%CI) P OR (95%CI) P 

Age > 55 (year) 4.53 (2.09, 9.8) <0.001 4.68 (1.65, 14.51) § 0.005 

Male 1.06 (0.56, 1.99) 0.86 

Prior Surgical history * 0.51 (0.27, 0.96) 0.04 0.74 (0.27, 1.99) §1 0.549 

Disease duration < 1mouth † 2.79 (1.4, 5.57) <0.001 3.48 (1.32, 9.79) § 0.014 

Traditional tumor markers 

CA125 > 20 (U/ml) 3.79 (1.95, 7.35) <0.001 1.74 (0.64, 4.81) 0.278 

CA19-9 > 30(U/ml) 6.98 (3.33, 14.64) <0.001 5.20 (1.81, 16.16) § 0.003 

CEA > 5 (ng/ml) 8.37 (3.24, 21.63) <0.001 4.99 (1.58, 18.14) § 0.009 

AFP > 4 (ng/ml) 0.44 (0.23, 0.87) 0.02 1.32 (0.48, 3.73) 0.596 

Whole blood tests 

White blood cell > 6000 (cell/mL) 0.52 (0.28, 0.99) 0.05 0.53 (0.21, 1.32) 0.179 

Hemoglobin > 12.5 (g/dL) 0.50 (0.26, 0.96) 0.04 0.71 (0.30, 2.23) 0.487 

Platelet count > 250 (× 103/mL) 1.51 (0.79, 2.90) 0.21 

Liver/renal function tests 

Total bilirubin > 2 (mg/dL) 5.14 (2.55, 10.39) <0.001 

Albumin > 4 (g/dL) 0.38 (0.20, 0.75) <0.001 0.53 (0.18, 1.49) 0.23 

Creatinine > 0.75 (mg/dL) 1.67 (0.82, 3.40) 0.15 

Sodium > 140 (mEq/L) 1.51 (0.80, 2.85) 0.21 

Coagulation profiles 

International normalized ratio > 1 2.04 (0.94, 4.47) 0.07 

Inflammatory markers 

CRP > 0.6 (mg/dL) 0.42 (0.21, 0.82) 0.01 0.23 (0.08, 0.63) 0.006 

IL6 > 1 (pg/ml) 2.52 (1.07, 5.92) 0.03 2.72 (0.81, 9.81) 0.112 

PCT > 0.1 (ng/ml) 1.77 (0.94, 3.33) 0.08 

Immune abnormal ‡ 1.61 (0.69, 3.76) 0.27 

Lymph node enlargement 3.77 (1.86, 7.64) <0.001 2.90 (0.97, 9.16) § 0.06 

Biliary stricture sites: Hilar 0.34 (0.14, 0.80) 0.01 0.50 (0.13, 1.77) 0.29 
 

CA19-9, Carbohydrate Antigen 199; CEA, Carcinoembryonic Antigen; AFP, Alpha-Fetoprotein; CA125, Carbohydrate Antigen 125; CRP, C-Reactive Protein; IL6, Interleukin6; PCT,
 
Procalcitonin; OR, odds ratio; CI, Confidence Interval; NA, Not Applicable.
 
*Surgical history was defined as a history of liver transplantation and biliary tract surgery.
 
†Disease duration was defined as a period less than one month from the onset of symptoms.
 
‡Immune abnormal was defined as the presence of immunoglobulin subclass 4 abnormalities, or having an autoimmune disease, or abnormalities in a series of autoantibody tests.
 
§Variables included in the clinical model.
 
§1Variables included based on clinical relevance despite borderline univariate p-values (p<0.05).
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language models (LLMs) achieve diagnostic accuracy rivaling or 
exceeding human expertise. Kimi attained the highest accuracy 
(87%), significantly outperforming 70% of experienced physicians 
(7/10, p<0.01). Three additional LLMs (Deepseek-R1:83%, Claude­
3.5S:82%, Llama-3.1:81%) and our clinical prediction model (83%) 
performed comparably to physicians (78-84%, p>0.05). Collectively, 
80% of LLMs surpassed conventional tumor markers (CA19–9 
accuracy:66%; CEA:71%). 

Notably, this is the first study to demonstrate that select large 
language models (LLMs) match or exceed the accuracy of a clinical 
Frontiers in Oncology 07 
model and experienced physicians. These findings suggest LLMs 
could serve as accessible, real-time diagnostic aids, particularly in 
resource-constrained settings where specialist expertise is limited. 
The variation among LLM performance reveals clinically 
meaningful insights. While GPT-4o and Gemini-1.5-Pro lead 
general benchmarking tasks (31), these models underperformed 
in our specific diagnostic application (accuracies 0.66 and 0.62 
respectively). These underperforming models exhibited extreme 
specificity (0.99) and PPV (0.95-0.97) but critically low sensitivity 
(0.25-0.34), likely reflecting excessive safety prioritization during 
TABLE 3 Performance metrics of LLMs, EPs, clinical model and tumor markers. 

Predictors Acc, (95%CI) Sens Spec F1 PPV NPV AUC, (95%CI) 

LLMs 

GPT-4T 0.79 (0.71, 0.84) 0.59 (0.51, 0.64) 0.99 (0.92, 1.00) 0.74 0.98 0.69 – 

GPT-4o 0.66 (0.57, 0.72) 0.34 (0.30, 0.39) 0.99 (0.92, 1.00) 0.50 0.97 0.58 – 

Claude-3.5S 0.82 (0.74, 0.87) 0.71 (0.65, 0.76) 0.92 (0.88, 0.97) 0.80 0.91 0.74 – 

Gemini-1.5 pro 0.62 (0.52, 0.68) 0.25 (0.19, 0.30) 0.99 (0.92, 1.00) 0.40 0.95 0.55 – 

Kimi 0.87 (0.81, 0.92) 0.83 (0.77, 0.89) 0.91 (0.85, 0.96) 0.87 0.91 0.83 – 

ERNIE-4 0.79 (0.71, 0.85) 0.66 (0.61, 0.72) 0.92 (0.88, 0.95) 0.76 0.90 0.71 – 

Llama-3.1 0.81 (0.73, 0.86) 0.65 (0.60, 0.72) 0.97 (0.91, 0.99) 0.78 0.96 0.72 – 

Qwen-2 0.76 (0.68, 0.82) 0.65 (0.60, 0.71) 0.87 (0.82, 0.92) 0.73 0.84 0.69 – 

GLM-4 0.77 (0.69, 0.83) 0.69 (0.62, 0.75) 0.86 (0.82, 0.90) 0.75 0.84 0.71 – 

Deepseek-R1 0.83 (0.76, 0.89) 0.81 (0.77, 0.86) 0.86 (0.81, 0.91) 0.83 0.86 0.80 – 

Experienced Physicians 

EP1 0.84 (0.78, 0.90) 0.87 (0.82, 0.91) 0.82 (0.77, 0.88) 0.85 0.84 0.85 – 

EP2 0.80 (0.73, 0.86) 0.80 (0.73, 0.85) 0.80 (0.75, 0.86) 0.80 0.81 0.78 – 

EP3 0.79 (0.71, 0.84) 0.64 (0.59, 0.71) 0.93 (0.85, 0.96) 0.75 0.91 0.70 – 

EP4 0.81 (0.74, 0.87) 0.84 (0.79, 0.88) 0.78 (0.72, 0.85) 0.82 0.80 0.82 – 

EP5 0.81 (0.74, 0.87) 0.81 (0.77, 0.87) 0.82 (0.76, 0.88) 0.82 0.83 0.79 – 

EP6 0.80 (0.73, 0.86) 0.76 (0.70, 0.82) 0.84 (0.79, 0.88) 0.80 0.84 0.76 – 

EP7 0.79 (0.71, 0.85) 0.70 (0.65, 0.76) 0.88 (0.82, 0.93) 0.77 0.87 0.73 – 

EP8 0.80 (0.72, 0.85) 0.66 (0.61, 0.72) 0.93 (0.88, 0.96) 0.77 0.92 0.72 – 

EP9 0.78 (0.70, 0.84) 0.71 (0.66, 0.78) 0.84 (0.79, 0.89) 0.77 0.83 0.73 – 

EP10 0.79 (0.72, 0.85) 0.77 (0.71, 0.83) 0.82 (0.78, 0.89) 0.80 0.82 0.77 – 

Clinical Model 

Clinical Model 0.83 (0.69, 0.92) 0.83 (0.77, 0.88) 0.82 (0.76, 0.89) 0.83 0.83 0.82 0.83, (0.70, 0.96) 

Tumor markers 

CA19-9 0.66 (0.59, 0.75) 0.93 (0.88, 0.97) 0.39 (0.35, 0.44) 0.75 0.63 0.83 0.77, (0.69, 0.84) 

CEA 0.71 (0.63, 0.77) 0.59 (0.55, 0.64) 0.83 (0.78, 0.59) 0.68 0.79 0.65 0.66, (0.58, 0.75) 

P * 0.016 0.201 0.769 0.678 1.000 0.769 0.387 

P † <0.001 0.013 0.646 0.029 0.009 0.646 0.031 
CA19-9, Carbohydrate Antigen 199; CEA, Carcinoembryonic Antigen; AUC, Area Under the Curve; Acc, Accuracy; Sens, Sensitivity; Spec, Specificity; F1, F1 score; PPV, Positive Predictive 
Value; NPV, Negative Predictive Value; CI, Confidence Interval; EP, Experienced Physician. 
*p value of Logistic Prediction Model versus CA19-9. 
†p value of Logistic Prediction Model versus CEA. 
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training protocols. This pattern necessitates caution when using 
such models for biliary stricture assessment. Conversely, Kimi’s 
superior performance (87%) highlights how task-specific 
optimization can yield exceptional diagnostic capability 
irrespective of general benchmarking performance. 

Our subgroup analysis revealed physicians outperformed LLMs in 
the evaluation of hilar strictures (n=29), with 7/10 physicians achieving 
Frontiers in Oncology 08
significantly higher accuracy than 8/10 LLMs (87-90% vs. 64-84%, 
p<0.05). This finding aligns with established clinical knowledge that 
>90% of hilar strictures are malignant (1), suggesting experienced 
clinicians better integrate this epidemiological context. The 
performance gap may indicate incomplete learning of clinical nuances 
by current LLMs. However, targeted fine-tuning with medical 
knowledge or Retrieval-Augmented Generation (RAG) (32–34) could  
 FIGURE 1

Flowchart of overall study design. LLM, Large Language Model; MLM, Machine Learning Model. 
 frontiersin.org 

https://doi.org/10.3389/fonc.2025.1613818
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Kang et al. 10.3389/fonc.2025.1613818 

 

potentially bridge this gap in future iterations. Clinically, this 
underscores the continued value of expert judgment in anatomically 
complex presentations, while suggesting LLMs may currently serve best 
as diagnostic aids for non-hilar strictures where they demonstrated 
parity with physicians. However, due to due to small sample size in the 
subgroup of hilar strictures, this analysis is exploratory and 
requires validation. 

Our clinical prediction model, incorporating established risk 
factors (age, CA19-9, CEA, disease duration <1 month, CRP, 
surgical history, lymphadenopathy), achieved an AUC of 0.83 
(95% CI:0.70-0.96), aligning with prior reports (AUC 0.75-0.83) 
(35–38) while maintaining practical clinical utility. CA19–9 
demonstrated an expected AUC (0.77) matching literature reports 
(0.759-0.783) (35, 38), but presented a diagnostic paradox with high 
sensitivity (0.93) yet poor specificity (0.39). This suggests potential 
utility as a rule-out screening tool  requiring subsequent

confirmation, while CEA demonstrated weaker discriminative 
capacity (AUC 0.66) than some prior studies (39–42), 
emphasizing context-dependent variability. 
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Despite  promising  diagnostic  capabil i t ies ,  cl inical  
implementation of LLMs faces significant barriers requiring 
strategic resolution. Error analysis demonstrated that >80% of 
misdiagnoses originated from LLMs over-relying on isolated data 
elements rather than multimodal integration. Representative 
examples included Claude 3.5 misclassifying a benign stricture as 
malignant based solely on elevated CA19-9, contrasting with GPT­
4T’s accurate diagnosis achieved through synthesizing bilirubin 
trends, imaging findings, and histology. This significant limitation 
persists despite recent demonstrations of LLMs outperforming 
physicians in controlled diagnostic settings (43), underscoring a 
critical challenge in translating artificial intelligence capabilities to 
clinical practice where multimodal reasoning is essential. Text-
based implementation currently constrains LLMs, but emerging 
multimodal capabilities in radiology (44–46) and dermatology (47) 
suggest promising diagnostic extensions. Future integration of CT/ 
MRCP imaging could substantially enhance biliary stricture 
evaluation, though diagnosing rare conditions requires specialized 
training approaches. To address these constraints, we propose a 
FIGURE 2 

ROC curve analysis (A) and radar chart (B) of diagnostic model and tumor markers. CA19-9, Carbohydrate Antigen 199; CEA, Carcinoembryonic 
Antigen; AUC, Area Under the Curve; CI, Confidence Interval; ROC, Receiver Operating Characteristic. 
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structured workflow comprising: 1) electronic Medical Record-
integrated real-time malignancy probability scoring, and 2) 
automatic referral to targeted multidisciplinary review for cases 
with LLM confidence scores below 80%. This structure preserves 
physician oversight while optimizing diagnostic efficiency, 
particularly valuable in resource-limited settings. However, 
clinical deployment of LLMs demands addressing several critical 
ethical considerations: 1) Accountability through legal frameworks 
addressing liability for diagnostic errors; 2) Hallucination 
mitigation requiring detection protocols (evidenced in 12% of 
erroneous outputs); 3) Patient acceptance considerations, with 
survey data showing 67% rejection of AI-exclusive diagnoses for 
cancer-related decisions; 4) Equity concerns including documented 
Frontiers in Oncology 10 
performance disparities in elderly populations; 5) Transparency 
requirements for interpretable decision pathways; and 6) Privacy 
mandates demanding robust data anonymization. Essential 
mitigation strategies include human-AI collaborative diagnostic 
models, algorithmic bias correction techniques, and targeted 
patient education initiatives clarifying LLMs’ assistive role. 

Our study exhibits several l imitations that warrant 
consideration. First, the retrospective single-center design 
introduces potential selection bias. Second, modest sample size 
limiting statistical power to address heterogeneity in biliary 
stricture presentations, potentially restricting generalizability 
across diverse healthcare settings; Third, the small hilar stricture 
subgroup (n = 29) limits statistical power for physician-LLM 
FIGURE 3 

Comparative performance evaluation. (A) Accuracy among Different LLMs, Experienced Physicians, Clinical Model and Tumor Markers. (B) A 
Comparative Analysis of Diagnostic Accuracy and Significance Testing among models. The p-values (Holm-adjusted) were from the comparison of 
accuracy between the predictive groups listed along the horizontal axis and those on the vertical axis. A positive p-value indicates that the accuracy 
of the group on the horizontal axis is statistically greater than that of the group on the vertical axis, whereas a negative p-value signifies the 
opposite. CA19-9, Carbohydrate Antigen 199; CEA, Carcinoembryonic Antigen; EP, Experienced physician. 
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comparisons in this anatomically complex subset. Fourth, version-
specific LLM evaluation restricts generalizability to updated 
iterations. Fifth, variability in physician experience levels may 
impact human performance benchmarks. Sixth, absence of 
external validation constrains generalizability. 
Conclusion 

In conclusion, this study demonstrates select LLMs (Kimi, 
Deepseek-R1, Claude-3.5S, Llama-3.1) achieve diagnostic accuracy 
comparable to or exceeding clinical models and physicians for 
biliary strictures, though hilar cases remain challenging. Their 
optimal implementation involves augmenting clinical judgment 
rather than replacing it, especially valuable for non-hilar strictures 
where performance matched physicians. 
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