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Objective: Our study aimed to explore the potential of deep learning (DL)

radiomics features from CT images of primary gastric cancer (GC) in predicting

gastric cancer liver metastasis (GCLM) by establishing and verifying a prediction

model based on clinical factors, classical radiomics and DL features.

Methods: We retrospectively analyzed 1001 pathologically confirmed GC

patients from June 2014 to May 2024, divided into non-LM (n=689) and LM

groups (n=312). CT-based classic radiomics and DL features were extracted and

screened to construct a DL-radiomics score. This score, along with statistically

significant clinical factors, was used to build a fused model which visualized as a

nomogram. The model’s predictive performance, calibration, and clinical utility

were assessed and compared against a clinical model. Additionally, the DL-

radiomics score’s role in distinguishing between synchronous andmetachronous

GCLM was evaluated.

Results: The fused model showed good predictive performance [AUC: 0.796

(95% CI: 0.766-0.826) in training cohort and 0.787 (95% CI: 0.741-0.834) in test

cohort], outperforming the clinical model, radiomics score and DL score

(P<0.05). In addition, the decision curve confirmed that the model provided

the largest clinical net benefit compared with all other models in the relevant

threshold. DL-radiomics score showed moderate predictive performance in

distinguishing between synchronous GCLM and metachronous GCLM, with an

AUC of 0.665 (95% CI, 0.613-0.718).

Conclusion: The CT-based fused model has demonstrated significant value in

predicting the occurrence of GCLM, and can provide a reference for the

personalized follow-up and treatment of patients.
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1 Introduction

As the fifth most common cancer diagnosis and the leading

cause of cancer-related death in the world, poor prognosis of gastric

cancer (GC) poses a serious challenge to human health (1). One

primary contributor to this adverse outcome is the tendency of GC

to metastasize distantly with common sites include liver,

peritoneum, and bone (2). Among these, the liver stands out as

the primary target organ for hematogenous metastasis of GC. The

overall incidence of gastric cancer liver metastases (GCLM) is about

9.9%~18.7%, of which synchronous GCLM accounts for about 80%

and metachronous GCLM accounts for about 20%. A number of

studies have shown that the overall survival of patients with

synchronous GCLM is worse than that of patients with

metachronous GCLM (3).

At present, the predominant imaging methods employed for

detecting liver metastasis (LM) in patients with GC are computed

tomography (CT) and magnetic resonance imaging (MRI). Among

them, CT is more widely used due to its reasonable price,

convenience and less contraindications (4). However, it is difficult

to detect early micro-lesions or micro-metastasis by traditional CT,

and the LM after GC surgery, i.e., metachronous GCLM, cannot be

predicted early, which may lead to missing the best time for

treatment (5). The accuracy and sensitivity of MRI in the

diagnosis of LM are higher than CT. However, due to its high

price and long examination time, it is usually used as a

supplementary test in clinical practice only when other

examination methods have found suspicious LM. Based on the

above reasons, it is particularly important to find a CT-based

method to predict the occurrence of GCLM and screen out high-

risk patients with GCLM.

In recent years, artificial intelligence has gradually penetrated

into the field of medical research, especially in medical imaging, so

radiomics came into being (6). It can be used as a non-invasive

visualization tool to extract tumor features and reveal tumor

heterogeneity. Classical radiomics feature extraction relies on

predefined statistical descriptors, such as shape, pixel intensity,

and texture. Some scholars have applied this method to the

prediction of colon cancer liver metastases (CCLM), and achieved

good results, which confirmed the feasibility of this method (7–10).

Deep learning (DL), based on deep neural networks, can

automatically learn and extract valuable features from original

medical images without pre-definition (11–13). The features

extracted by the two methods reflect abstract information at

different levels of tumor imaging, and reveal the imaging features

of tumors more comprehensively. To the best of our knowledge,

existing studies predicting the occurrence of GCLM have relied

solely on clinical characteristics or visually assessable CT image

features (4, 5, 14, 15) and no research has used mixing of classic

radiomics features and DL features to predict the occurrence of

GCLM, and this study may be the first attempt.

Our study aimed to explore the potential of radiomics features

from CT images of primary GC in predicting GCLM, and to

establish and verify a prediction model based on clinical factors,

classical radiomics features and DL features. In addition, we further
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evaluated the ability of the DL-radiomics score constructed by the

selected classical radiomics features and DL features to distinguish

between synchronous GCLM and metachronous GCLM.
2 Materials and methods

2.1 Patients

The Institutional Review Board of the First Affiliated Hospital of

Zhengzhou University approved our research (Ethical review

number: 2021-KY-1070-002) and waived the requirement of

written informed consent. We retrospectively collected patients

with GC confirmed by pathology in the First Affiliated Hospital

of Zhengzhou University from June 2014 to May 2024, and

screened patients based on the following inclusion and

exclusion criteria.

The inclusion criteria were:

Non-LM Group: (1) Patients were followed up regularly for at

least two years in our hospital and there was no evidence of liver

metastasis during the follow-up period; (2) Patients had complete

clinical data.

LM Group: (1) Patients found liver metastases that could be

confirmed by pathology or imaging examination during the follow-

up period; (2) Patients had complete clinical data.

And the common exclusion criteria were: (1) The patient had

primary malignant tumors in other organs; (2) The patient had a

history of gastric cancer treatment; (3) CT image quality is poor or

insufficient stomach distension.

Finally, we included a total of 1001 patients. According to

whether the patients had LM during the follow-up period, we

divided them into two groups, including non-LM group (n=689)

and LM group (n=312). A flowchart detailing the procedure of

patient selection is displayed in Figure 1. Baseline clinical

information of patients was collected, including sex, age, tumor

location, tumor thickness, clinical T stage, clinical N stage, degree of

differentiation, Lauren type, Her-2 lever, CEA, CA199. Based on the

computer-generated random numbers, patients were randomly

divided into the training cohort and the test cohort at a ratio of 7: 3.
2.2 CT image acquisition and image
preprocessing

All patients underwent abdominal enhanced CT examination

before receiving GC treatment. The venous phase cross-sectional

CT image with a thickness of 5 mm was selected to delineate the

region of interest (ROI). The CT examination method is shown in

detail in the Supplemetary Appendix S1. A radiologist (Reader 1),

with over eight years of experience in interpreting medical films,

utilized 3D Slicer software to outline ROI along the tumor’s edge in

all CT scans capable of displaying gastric malignancies. After a

month, Reader 1 was reassigned, and a second radiologist (Reader

2), also possessing more than eight years of experience, was chosen

for the task. CT images from 100 patients diagnosed with GC were
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randomly chosen from the study cohort. Both Reader 1 and Reader

2 then independently repeated the segmentation of ROIs to assess

intra- and inter-observer reproducibility. Intraclass and interclass

correlation coefficients (ICCs) were computed to quantify

agreement. Reliability was deemed satisfactory when ICC values

exceeded 0.8.

Before segmentation and feature extraction, image preprocessing is

performed to improve the stability of radiological features. In order to

standardize CT images from different CT scanning equipment, two

steps are used: (a) all CT images were resampled to a voxel size of 1× 1 ×

1 mm³ using cubic spline interpolation; and (b) the pixel intensity was

normalized to transform the images to standardized inputs, which had

the intensity range from -1024 to 1024 HU and the unified abdomen

window (window-level [WL] of 50 and window-width [WW] of 350).
2.3 DL radiomics features extraction

An autoencoder (AE), constructed based on a deep

convolutional neural network (DCNN), was employed to DL
Frontiers in Oncology 03
features. The AE comprised two primary components: a 3D

encoder and a 3D decoder. The 3D encoder functioned to

automatically extract latent-space vectors from 3D ROI.

Subsequently, the decoder reconstructed CT slices from these

latent-space vectors, ensuring that the reconstructed slices closely

matched the original input to the encoder. In this study, these

latent-space vectors were referred to as DL features. In addition,

classical radiomics features were extracted using Pyradiomics

(http://pyradiomics.readthedocs.io) and included shape features,

first-order features, second-order features, high-order features. All

the feature extraction methods were further explained in the

Supplemetary Appendix S2.
2.4 Feature selection and model
construction

The feature screening process was carried out according to the

following steps in the training cohort. Firstly, we applied the

variance threshold method to filter out features with a variance
FIGURE 1

Flowchart of patient selection process. GC, gastric cancer; LM, liver metastases; GCLM, gastric cancer liver metastases.
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not exceeding 1.0. Then, Spearman correlation analysis was

performed to remove features that had an average correlation

coefficient greater than 0.7. Next, we used the independent

sample t-test to select features that exhibited significant

differences (P < 0.05) with the target variable. Ultimately, the least

absolute shrinkage and selection operator (LASSO) algorithm was

applied to was utilized to further refine the selection of features

highly correlated with GCLM. LASSO regression operates by

introducing an L1 regularization term with parameter l to the

loss function, so that the weights of irrelevant features are 0, thereby

achieving feature selection and preventing overfitting. We

performed a 10-fold cross-validation to determine the optimal l
value, and the optimal l defined as the largest value within one

standard error of the minimum binomial deviance. Consequently,

multivariable logistic regression analysis was used to build two types

of scores, radiomics and DL, reflecting the different phenotypic

characteristics of the tumors. The DL-radiomics score combining

the DL and classical radiomics features were also constructed.

Univariable analysis was performed to identify statistically

significant clinical factors (P < 0.05). Subsequently, multivariable

logistic regression analysis was employed to develop a fused model

by combining the DL-radiomics score and the significant clinical

factors. Then, a fused nomogram was generated to provide the

clinician with an applicable tool to estimate the probability of future

LM in patients with GC. The model construction process is shown

in Figure 2. Additionally, a clinical model containing only clinical

variables was built for comparison.
2.5 Performance evaluation

The receiver operator characteristic (ROC) curves of each

model were drawn respectively to obtain the area under the curve
Frontiers in Oncology 04
(AUC) value and 95% confidence interval (CI). Then DeLong ‘s test

was used to compare whether the differences between different ROC

curves were statistically significant. Then we applied the confused

matrix to further evaluate other performance indicators of the

models, including accuracy (ACC), sensitivity (SENS), specificity

(SPEC), positive predictive value (PPV), and negative predictive

value (NPV). In addition, we plotted the calibration curves to

evaluate the consistency between the predicted probability of the

models and the actual probability. The decision curve was used to

evaluate the clinical application value of the models, thereby judging

the net benefit of the models in practical application.

We collected the interval time of LM patients from the diagnosis

of GC to the diagnosis of LM. Patients with an interval time of less

than 6 months were included in the synchronous GCLM group

(n=192), while those with an interval time exceeding 6 months were

placed in the metachronous GCLM group (n=120). We further

explored the ability of the DL-radiomics score to distinguish

patients with synchronous GCLM from patients with

metachronous GCLM.
2.6 Statistical analysis

We used Python 3.6, R software 4.0.3 (R project for statistical

computing, https://www.r-project.org) to analyze baseline clinical

information. Categorical variables were manifested as numbers or

percentages, and Chi-square analysis was performed to analyze

categorical data. Means and SDs were used to present continuous

variables. Differences between the two groups were assessed using t-

tests if the data conformed to a normal distribution and had equal

variance; otherwise, Mann-Whitney U tests were applied. Statistical

significance was set at P < 0.05.
FIGURE 2

Overview of the study design. (A) Collection of 5mm venous phase CT Images; (B) Extraction of DL features and classical radiomics features; (C)
Feature selection and model construction; (D) Model visualization and evaluation. DL, deep learning.
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3 Results

3.1 Patient characteristics

The clinical information of the 1001 patients (77.82% males;

mean age, 59.46 ± 10.40; range, 20–88 years) we finally included is

shown in Supplementary Table S1. According to the ratio of 7:3, we

randomly divided all samples into training cohort (n=701, 79.50%

males; mean age, 59.60 ± 10.35; range, 20–86 years) and test cohort

(n=300, 74.00%males; mean age, 59.12 ± 10.54; range, 23–88 years).

There was no significant difference in clinical characteristics

between the training cohort and the test cohort (Supplementary

Table S2, P>0.05). In addition, the clinical characteristics of non-

LM group and LM group in different cohorts were compared and

the detailed results are shown in Table 1. The results revealed tumor

thickness, CEA and CA199 showed significant variations in training

cohort and test cohort between non-LM group and LM

group (P<0.05).

Then, tumor thickness, CEA and CA199 were used to construct

a clinical model. ROC curves of the model were plotted in the two

cohorts (Figures 3A, C). The AUCs were 0.686 (95% CI, 0.652-

0.721) in the training cohort and 0.658 (95% CI, 0.605-0.712) in the

test cohort, respectively, showing a moderate ability to predict the

occurrence of GCLM. The results are specifically outlined

in Table 2.
3.2 DL radiomics score construction

In the training cohort, we extracted 2437 features from the 3D

ROI of GC, including 1925 classic radiomics features and 512 DL

features. We screened the features separately to remove irrelevant

features and reduce feature redundancy. Finally, 39 classic

radiomics and 29 DL features were retained, which were used to

construct radiomics and DL score, respectively. Furthermore, same

features screening process was conducted on two types of radiomics

features, ultimately retaining 57 radiomics features, which was used

to construct a DL-radiomics score. Please refer to Supplemetary

Appendix S3 for detailed results of feature screening and scores

construction methods. Figure 4 illustrated that the distribution of

different scores between non-LM group and LM group exhibited

statistically significant differences, and the score of LM group is

generally higher than that of non-LM group (P<0.05).
3.3 Performance and validation of different
models

We evaluated the predictive ability of scores for predicting

GCLM. The results showed that in the training cohort, the AUC of

the radiomics score, the DL score and the DL-radiomics score were

0.703 (95% CI, 0.669-0.737), 0.716 (95% CI, 0.683-0.75) and 0.770

(95% CI, 0.739-0.801), respectively. In the test cohort, the AUC of

the three scores were 0.690 (95% CI, 0.638-0.742), 0.694 (95% CI,

0.642-0.746) and 0.748 (95% CI, 0.699-0.797), respectively. In all
Frontiers in Oncology 05
cohorts, the AUC of the DL-radiomics score combined with the two

types of features both was significantly higher than that of the

radiomics score and the DL score, the difference was statistically

significant with the DeLong test (P < 0.05), indicating that it had

better predictive performance (Table 2, Figure 3).

Multivariable logistic regression analysis results showed that

DL-radiomics score and tumor thickness, CEA and CA199 were

independent predictors of LM (Supplementary Table S3).

Therefore, we combine them to construct a fused model and a

fused nomogram generated based on fused model was displayed in

Figure 5. Fused model showed good predictive performance in both

cohorts, with AUC values greater than 0.78 [0.796 (95% CI, 0.766-

0.826) in the training cohort, 0.787 (95% CI, 0.741-0.834) in the test

cohort]. Compared with any other model constructed in our study,

the AUC value of the fused model is the highest, which indicated

that the fused model has good discrimination between the LM

group and the non-LM group. The DeLong test confirmed the AUC

value of the fused model was higher than that of other models (P <

0.05) except DL-radiomics score (P > 0.05), which also indicated

that the model combining classical radiomics and DL features

achieved better performance than any of them alone (Table 2,

Figure 3). As shown in the decision curve (Figure 6), the fused

model demonstrated a significant net benefit compared to other

models across the relevant threshold range for the whole cohorts.

Meanwhile, we observed within almost all threshold ranges, the

fused model consistently outperformed both treat-all and treat-

none strategies. In addition, the calibration curve showed a good

calibration of the fused model, as shown in the Figure 7.
3.4 Synchronous GCLM and metachronous
GCLM

Figure 8 illustrated the distribution of DL-radiomics score

between patients with synchronous GCLM and metachronous

GCLM. DL-radiomics scores are higher in patients with

synchronous GCLM (P < 0.05), indicating that patients with high

radiomics scores were more likely to have early LM. The

discriminatory capacity of the DL-radiomics score was further

evaluated using ROC curves (Supplementary Figure S1), with an

AUC of 0.665 (95% CI, 0.613-0.718) (Table 3), indicating a

moderate ability of DL-radiomics score to differentiate between

patients with synchronous GCLM and metachronous GCLM. In

addition, we also evaluated the ability of other scores to distinguish

patients with synchronous GCLM and metachronous GCLM. The

detailed results were shown in Supplementary Table S4 and

Supplementary Figure S1.
4 Discussion

As a stage IV b disease (16), GCLM is one of the important

reasons for the poor prognosis of GC. However, CT is less sensitive

to detect early micro-metastases of LM and cannot predict

metachronous GCLM, which may lead to treatment delay. At
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TABLE 1 The clinical characteristics of patients in the training and test cohorts.

Characteristics Training cohort (n=701) Test cohort (n=300)

Non-LM(n=475) LM(n=226) P Non-LM(n=214) LM(n=86) P

Age (mean ± SD, years) 58.91±10.15 61.06±10.63 0.010* 59.40±10.62 60.92±10.18 0.061

Sex, No. (%) 0.074 0.405

Female 107(22.5) 37(16.4) 59(27.6) 19(22.1)

Male 368 (77.5) 189(83.6) 155(72.4) 67(77.9)

Tumor location, No. (%) 0.012* 0.475

Cardia/fundus 181 (38.1) 61 (27.0) 75(35.1) 32(37.2)

Body 81 (17.0) 44 (19.5) 40(18.7) 15(17.4)

Antrum 119 (25.1) 57 (25.2) 60(28.0) 18(20.9)

More than two-thirds of stomach 94 (19.8) 64 (28.3) 39(15.2) 21(24.5)

Tumor thickness [mean ± SD, (mm)] 16.79±5.81 19.15±7.41 ＜0.001* 16.89±7.36 20.46±7.47 ＜0.001*

Clinical T stage, No. (%) 0.585 0.079

T1 34(7.2) 19(8.4) 28(13.1) 4(4.6)

T2 85(17.9) 32(14.2) 39(18.2) 9(10.5)

T3 219(46.1) 104(46.0) 98(45.8) 43(50.0)

T4 137(28.8) 71(31.4) 49(22.9) 30(34.9)

Clinical N stage, No. (%) ＜0.001* 0.086

N0 151(31.8) 46(20.3) 78(36.4) 15(17.5)

N1 90(18.9) 64(28.3) 38(17.8) 21(24.4)

N2 115(24.2) 72(31.9) 41(19.2) 27(31.4)

N3 119(25.1) 44(19.5) 57(26.6) 23(26.7)

Degree of differentiation, No. (%) 0.228 0.597

Un-/poorly differentiated 255(53.7) 133(58.8) 118(55.1) 33(38.3)

Moderately/highly differentiated 220(46.3) 93(41.2) 96(44.9) 35(40.7)

Lauren type, No. (%) 0.345 0.062

Intestinal 175(36.8) 84(37.2) 68(31.8) 43(50.0)

Diffuse 151(31.8) 82(36.3) 70(32.7) 22(25.6)

Mixed 149(31.4) 60(26.5) 76(35.5) 21(24.4)

Her-2 lever, No. (%) 0.167 0.948

Negative 217(45.7) 90(39.8) 82(38.3) 34(39.5)

Positive 258(54.3) 136(60.2) 132(61.7) 52(60.5)

CEA, No. (%) ＜0.001* ＜0.001*

≤5(Normal) 385(81.1) 133(58.8) 174(81.3) 43(50.0)

>5(Abnormal) 90(18.9) 93(41.2) 40(18.7) 43(50.0)

CA199, No. (%) ＜0.001* ＜0.001*

≤37(Normal) 411(86.5) 155(68.6) 182(85.0) 56(65.1)

>37(Abnormal) 64(13.5) 71(31.4) 32(15.0) 30(34.9)
F
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LM, liver metastasis; CEA, carcinoembryonic antigen; CA199, Carbohydrate antigen199; *p<0.05.
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present, many scholars have made many attempts to predict the

occurrence of GCLM. Yang et al. established and validated a model

containing clinical and radiological features to predict LM after

resection in patients with GC before surgery (4). Similarly, She et al.

retrospectively analyzed the clinical and spectral CT data of 80

patients with GC who underwent surgical resection, and

constructed a clinical indicator-spectral CT iodine concentration

model to explore its value in predicting GCLM (14). Unlike them,

our study integrates classical radiomics and DL features to deeply

mine the deep information hidden in CT images, and combines

them with patients’ clinical characteristics to establish a fused model

for GCLM. This model achieved optimal predictive performance

among all models constructed.
Frontiers in Oncology 07
We analyzed the baseline clinical information of the two

groups of patients, and found that tumor thickness, CEA level

and CA199 level were independent predictors of GCLM, which

was consistent with some previous related research results (5, 17–

19). The occurrence of LM may be caused by the gradual

progression of GC. GC progresses from the innermost mucosal

layer of the stomach wall outward. As tumor thickness increases,

cancer cells are more likely to detach from the gastric wall, leading

to an elevated risk of LM (15, 18, 20). Serum tumor markers, such

as CEA and CA19-9, serve as valuable indicators for the

recurrence or metastasis of gastrointestinal cancers. The

elevation of serum tumor markers may precede the detection of

abnormalities by imaging examination, thereby aiding clinicians
FIGURE 3

Comparison of different models. ROC curves of different models to predict the occurrence of GCLM, in training cohort (A) and test cohort (C); the
heat map shows that the DeLong test compares the statistical results of the AUC values of different models, in training cohort (B) and test cohort
(D). DL, deep learning; ROC, receiver operator characteristic; GCLM, gastric cancer liver metastases.
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in the earlier identification of diseases or postoperative

recurrences (21–23). Similarly, our study found that the

abnormal proportion of CEA and CA199 in patients with

GCLM was higher than that in patients non-LM, and were

independent risk factors for LM.

Radiomics enables the extraction of numerous quantitative

features from medical images to describe the heterogeneity,
Frontiers in Oncology 08
morphology and texture of tumors (24). These features can be used

to predict the biological behavior of tumors (25), treatment response

(26, 27) and prognosis of patients (28, 29). In our study, image-based

features were computed with classical radiomics and DL, respectively,

which were then utilized to construct three scores: radiomics score,

DL score and DL-radiomics score. Each score demonstrated a certain

predictive capacity for GCLM [AUC of radiomics score: 0.690 (95%
TABLE 2 Performance of different models.

Cohort Model AUC ACC SENS SPEC PPV NPV

Training cohort

Clinical model .686
(.652,.721)

.723
(.690, .756)

.476
(.411, .541)

.841
(.809, .874)

.590
(.519, .661)

.770
(.734, .806)

Radiomics score .703
(.669, .737)

.700
(.666, .734)

.559
(.495, .624)

.767
(.729, .806)

.536
(.472, .599)

.784
(.747, .822)

DL score .716
(.683, .75)

.640
(.604, .676)

.749
(.692,.805)

.588
(.543, .632)

.466
(.415, .517)

.830
(.790,.870)

DL-
radiomics score

.770
(.739, .801)

.699
(.665, .733)

.705
(.646, .764)

.696
(.654, .737)

.526
(.470,.582)

.831
(.794, .868)

Fused model .796
(.766, .826)

.733
(.700,.766)

.731
(.674,.789)

.734
(.694,.773)

.568
(.512,.625)

.850
(.816, .885)

Test cohort

Clinical model .658
(.605, .712)

.703
(.652, .755)

.452
(.346, .559)

.801
(.748, .854)

.469
(.360,.578)

790
(.736, .844)

Radiomics score .690
(.638, .742)

.607
(.551, .662)

.750
(.657, .843)

.551
(.485, .617)

.394
(.318, .469)

.850
(.791, .909)

DL score .694
(.642, .746)

.703
(.652, .755)

.536
(.429, .642)

.769
(.712, .825)

.474
(.373, .574)

.810
(.756, .863)

DL-
radiomics score

.748
(.699, .797)

.663
(.610,.717)

.702
(.605,.800)

.648
(.584, .712)

.437
(.353, .521)

.848
(.794, .903)

Fused model .787
(.741, .834)

.683
(.631, .736)

.679
(.579, .778)

.685
(.623, .747)

.456
(.369, .543)

.846
(.792, .899)
AUC, area under the receiver operating characteristic curve; CI, confidence intervals; ACC, accuracy; SENS: sensitivity; SPEC, specificity; PPV, positive predictive value; NPV, negative
predictive value.
FIGURE 4

The violin plots showing distribution of different radiomics scores between Non-LM group and LM group in training cohort. (A) Radiomics score;
(B) DL score; (C) DL-radiomics score. LM, liver metastases; DL: deep learning; LM: liver metastases.
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CI, 0.638-0.742); AUC of DL score: 0.694 (95% CI, 0.642-0.746) and

AUC of DL-radiomics score: 0.748 (95% CI, 0.699-0.797)]. Among

them, the performance of the DL score is comparable to that of the

radiomics score, and DL does not show its advantages (P > 0.05).

However, the DL-radiomics score performs best among them (P <

0.05), likely due to its combination of low-level (classical radiomics)
Frontiers in Oncology 09
and high-level (DL) image abstractions for capturing texture patterns

(30, 31). Previous studies have similarly confirmed that model trained

with multiple types of features exhibit superior performance than any

of them alone (32–34).

To improve the predictive performance of CT-based radiomics

for GCLM, multivariable logistic regression was used to create a
FIGURE 6

Decision curves analysis for different models. DL, deep learning.
FIGURE 5

Fused nomogram with the DL-radiomics score and clinical factors (tumor thickness, CEA and CA199). DL, deep learning; CEA, carcinoembryonic
antigen; CA199, Carbohydrate antigen199.
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FIGURE 7

Calibration curve of Fused model to predict the of GCLM occurrence. GCLM, gastric cancer liver metastases.
FIGURE 8

The violin plot illustrating the distribution of DL-Radiomics score for both synchronous GCLM and metachronous GCLM. DL, deep learning; GCLM,
gastric cancer liver metastases.
TABLE 3 The performance of DL-radiomics score in distinguishing synchronous GCLM from metachronous GCLM.

Model AUC ACC SENS SPEC PPV NPV

DL-
Radiomics score

.665 (.613, .718) .608 (.553, .662) .725 (.645, .805) .534 (.463, .605) .494 (.420, .568) .756 (.683, .828)
GCLM, gastric cancer liver metastases; ACC, accuracy; SENS: sensitivity; SPEC, specificity; PPV, positive predictive value; NPV, negative predictive value.
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fused model by combining DL-radiomics score and significant

clinical factors. Its AUC value was significantly higher than that

of all other models (P < 0.05) except the DL-radiomics score (P >

0.05) [0.796 (95% CI, 0.766-0.826) in the training cohort, 0.787

(95% CI, 0.741-0.834) in the test cohort]. However, it provided a

largest clinical net benefit over the relevant threshold range than

any other model, indicating that it can make better predictions in

various situations. Other models perform well under certain

thresholds, but are not as stable as the fused model. At the same

time, within a wide range of threshold probability, the fused model

consistently outperformed both treat-all and treat-none strategies,

suggesting its robustness in balancing overtreatment risks and

missed diagnoses. These all substantiated the high predictive

accuracy and wide applicability of the fused model, while also

demonstrating that the comprehensive inclusion of meaningful

features can enhance the model’s ability to learn from a broader

dataset, thereby improving its precision, robustness, and

generalizability. The calibration curve confirms that the GCLM

positive probability value predicted by the fused model is in good

agreement with the actual probability value, avoiding the risk of

model overfitting (35). Then, we visualized the fused model into a

nomogram, which serves as an intuitive tool that provides

personalized risk assessments in the form of scores, based on

specific clinical factors and imaging data of patients (36). This

aids clinician determining the likelihood of LM, enabling early

identification of high-risk patients and thereby facilitating the

formulation of more appropriate treatment plans.

Furthermore, we validated that DL-radiomics score can be

employed to distinguish between patients with synchronous and

metachronous GCLM. A number of studies have shown that the

overall survival of patients with synchronous GCLM is worse than

that of patients with metachronous GCLM (3). In the field of

CCLM, many scholars have made studies to prove the difference

between the synchronous and metachronous CCLM. They believed

that the pathological differences between the two led to the

treatment effect and prognosis of synchronous CCLM are worse

than those of metachronous CCLM, and synchronous CCLM may

be a more invasive disease (37, 38). Therefore, the management of

synchronous and asynchronous CCLM needs to be personalized to

meet the needs of each patient and achieve better therapeutic effect.

Similarly, our results showed that DL-radiomics score has moderate

ability to distinguish synchronous GCLM and metachronous

GCLM patients. This finding suggests that there are differences

between the two types of metastasis at the imaging phenotype level,

and its potential biological heterogeneity may result in different

overall survival rates.

There are still some limitations in our research. First of all, this

is a single-center retrospective study, and no external validation has

been established. The limitations of sample sources may affect the

representativeness of the model results. Secondly, CT images come

from different devices, which may have some minor effects on the

results. Finally, our model was only based on CT images in the
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venous phase, and images in the plain and arterial phases were not

included in the study.
5 Conclusion

In summary, we developed a CT-based fused model achieved

better predictive performance and stability than models based only

on clinical factors or one type of radiomics features. The results of

model can predict the risk of LM in GC patients. At the same time,

the DL-radiomics score combining classical radiomics features and

DL features also showed moderate ability to distinguish

synchronous GCLM and metachronous GCLM, which provided a

reference for personalized follow-up and timely treatment

of patients.
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