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Background: Nowadays, artificial intelligence (AI) diagnostic models based on

ultrasound features have been gradually integrated into the evaluation of thyroid

nodules. However, the diagnostic effects of different AI-assisted diagnosis

methods vary greatly.

Objective: This study aims to systematically evaluate the performance of the

ultrasound-based artificial intelligence diagnostic models in differentiating

benign and malignant thyroid nodules and to determine the most effective

diagnostic model.

Methods: We conducted a comprehensive literature search in PubMed, Web of

Science, and the Cochrane Library using subject-specific keywords to identify

studies on AI-assisted thyroid nodule diagnosis. Study quality was assessed using

Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2). Meta-

analysis was performed using Meta-Disc 1.4, Review Manager 5.4, R 4.4.2, and

Stata 17.0. Pooled sensitivity, specificity, diagnostic odds ratio (DOR), and area

under the summary receiver operating characteristic curve (SROC-AUC) with

95% confidence intervals (CI) were calculated. Subgroup analyses and clinical

applicability assessments were conducted.

Results: Twenty-eight studies involving 134,028 patients, 158,161 thyroid

nodules, and 529,479 ultrasound images were included. The AI-assisted

diagnostic system demonstrated high diagnostic performance: pooled

sensitivity = 0.89 (95% CI: 0.87–0.91), specificity = 0.84 (0.80–0.88), positive

likelihood ratio (PLR) = 5.60 (4.40–7.20), negative likelihood ratio (NLR) = 0.13

(0.10–0.16), DOR = 43.94 (30.11–64.14), and SROC-AUC = 0.93 (0.91–0.95). The

threshold effect analysis (Spearman correlation = -0.18, P > 0.05) indicated no

significant heterogeneity. The diagnostic accuracy is higher in Asian countries, in

prospective andmulticenter designs, with external validation sets, without cross-

validation, with deep learning, and in postoperative patient subgroups.

Additionally, improved performance was observed in cohorts with smaller

nodule diameters (<20 mm), higher malignancy rates, older patient age (≥50

years), and higher female proportions, though heterogeneity remained

significant. Univariate and multivariate meta-regression analyses identified AI
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type, malignancy rate of nodules as significant sources of heterogeneity. Notably,

the EDLC-TN model showed the highest diagnostic accuracy.

Conclusion: AI-assisted diagnostic techniques demonstrate significant

potentialin thyroid nodule evaluation, with the EDLC-TN model showing

particularly high clinical utility. Optimal diagnostic performance was observed

for nodules <20 mm in diameter and in patients aged ≥50 years.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/view/

CRD42024581421, identifier CRD42024581421.
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1 Introduction

Thyroid nodules are localized, abnormal hyperplastic masses in

the thyroid tissue, which are common and frequently occurring

diseases. They mainly include nodular goiter, neoplastic nodules,

cystic lesions, and inflammatory nodules. With the advantages of

being economical and noninvasive, ultrasonography has been

widely used for the initial diagnosis and follow-up of thyroid

nodules and remains the diagnostic tool of choice in clinical

practice (1, 2). The most important thing in the diagnosis and

treatment of thyroid nodules is to differentiate between their benign

and malignant nature. With the wide application of high-resolution

ultrasound technology and the increase in people’s health

awareness, the detection rate of thyroid nodules is increasing year

by year. However, the traditional ultrasound diagnostic mode is

highly dependent on the experienced judgment of radiologists,

which has inherent defects such as strong subjectivity and limited

diagnostic efficiency (3). In the last 5 years, the rapid development

of ultrasound-based artificial intelligence diagnostic systems has

brought new methods for the diagnosis of thyroid nodules. This

artificial intelligence smart diagnostic system has high accuracy and

stability. Practical applications have shown that this auxiliary

diagnostic system can effectively reduce the overuse of fine-needle

aspiration biopsy (FNA) due to subjective judgment errors and

unnecessary surgical operations while significantly shortening the

waiting time for patients’ diagnosis and treatment (4, 5). In

addition, the technique has good diagnostic accuracy in thyroid

nodule diagnosis. Currently, intelligent assistive systems for thyroid

nodule diagnosis include various methods such as random forest

(RF), machine learning (ML), and convolutional neural network

(CNN). However, there are significant differences in diagnostic

efficacy among different technical routes, and their clinical

application value still needs to be further systematically evaluated.

Existing studies have shown that applying this technology to the

clinical diagnosis of thyroid nodules can achieve high accuracy. It is

worth noting that due to the relatively short application time of this
02
technology, there is still some controversy in the academic

community, and the clinical results vary. For example, the results

of the diagnostic model used by WeiX’s team showed a high

specificity of 94%, while the results of the diagnostic model used

by BudaM’s team showed a specificity of only 52%, which is a

significant difference (6). Based on the data from the studies we

included, we found a large gap in specificity between the different

diagnostic models. Therefore, this study intends to use meta-

analysis methods to systematically evaluate the overall

performance of intelligent auxiliary diagnosis models based on

ultrasound images in the diagnosis of thyroid nodules, to screen

out the model with the best diagnostic performance, and to provide

a scientific basis for the clinical practice of thyroid cancer.
2 Methods

2.1 Search strategy and selection criteria

This study was conducted in strict adherence to the Preferred

Reporting Items for Systematic Reviews and Meta-Analyses

(PRISMA) guidelines, and the systematic review was registered on

PROSPERO at https://www.crd.york.ac.uk/PROSPERO/view/

CRD42024581421. A total of 2,392 articles were identified

through a literature search across three databases (PubMed:

1,558; Web of Science: 800; Cochrane Library: 34; database

inception to August 31, 2024). After removing 620 duplicate

records, an additional screening of titles and abstracts excluded

studies that did not meet the inclusion criteria, such as those lacking

data (n = 26), being irrelevant (n = 1533), conference proceedings

(n = 6), or letters (n = 15). This resulted in 192 articles eligible for

full-text evaluation. Following a detailed assessment of the complete

texts, further exclusions were made due to the unavailability of full

texts (n = 1), incomplete data (n = 97), or irrelevance (n = 66).

Ultimately, 28 studies were included in the analysis (6–33). We

searched using keywords and medical subject terms (MeSH terms):
frontiersin.org
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(Artificial Intelligence OR Machine Learning OR Convolutional

Neural Network) AND (Thyroid Nodule OR Thyroid Cancer OR

Thyroid Neoplasms). Specific search formulas are provided in the

Appendix. Two researchers independently performed the literature

selection process (Figure 1), with discrepancies resolved through

discussions during a four-person consensus meeting.

Inclusion criteria: (1) All patients were studied as patients with

thyroid nodules, and all underwent ultrasonography; (2) Fine-

needle aspiration (FNA) or surgical biopsy was used as the “gold

standard” for diagnosing benign and malignant thyroid nodules; (3)

Data were complete, and four-quadrant contingency tables could be

extracted; (4) Articles generally adhered to the STARD (Standards

for Reporting of Diagnostic Accuracy) statement for diagnostic

accuracy studies in thyroid cancer research, and (5) At least one

artificial intelligence (AI) model was included. Exclusion criteria:

(1) non-original research articles, including reviews, meta-analyses,

conference proceedings, editorials, letters, and case reports; (2)
Frontiers in Oncology 03
unavailability of full text; (3) non-English-language publications;

and (4) studies with overlapping study populations.
2.2 Data extraction

We arranged for two researchers to extract data from each

original study and cross-check it independently. Any discrepancies

were resolved through discussions within the research team.

Specific information extracted from each original study included:

first author, year of publication, country, study design, data source,

number of cases, study center, malignancy rate of thyroid nodules,

number of ultrasound images, reference standard, mean age,

proportion of females, mean nodule diameter (in mm), type of

artificial intelligence (AI) model, validation set type, depth of study,

number of nodules, subgroup status, and diagnostic performance

metrics (such us true positives [TP], false positives [FP], false
FIGURE 1

PRISMA diagram for the systematic review.
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TABLE 1 Study characteristics.

Author
and year

Country Data source
No. of
patients

Center
study

Malignant
of all
nodules (%)

No. of
US images

BudaM2019 (6) USA 2006.8-2010.5 Duke University School of Medicine 1439 Single 142/1377 (10.3%) 1631

ChenC2024 (7) China
2019.10-2022.10 Zhejiang,Taizhou Cancer Hospital,
Shenzhen People’s Hospital, Shanghai Tenth
People’s Hospital

6579 multicenter 2611/6784 (38.5%) 11201

ChenD2020 (8) China
2011.1-2016.4 Affiliated Hospital of Kunming
Medical University

1480 Single 1211/1558 (77.7%) 1558

ChenJH2024 (9) China 2019.9-2023.2 Shengjing Hospital 300 Single 158/238 (66.4%) 313

ChenYF2022 (10) China
2018.1-2019.12 Guangdong First hospital
2019.1-2019.12 Guangdong second hospital

636 multicenter 499/1588 (31.4%) 1588

JinZ2022 (11) China
2013.1-2018.12,2016.5-2019.11 The First Affiliated
Hospital of Jinan University,Guangdong Provincial
People’s Hospital

3613 multicenter 1085/3965 (27.4%) 3965

KimYJ2022 (12) Korea
2010.1-2020.3 Mary’s Hospital 2020.1-2020.12 Yeouido
St.Mary’s Hospital

7577 multicenter 3194/15409 (20.7%) 15409

KohJ2020 (13) Korea
2004.1-2019.12 Severance and Kyung Hee Hospital,
Samsung and CHA Bundang Medical Center

15375 multicenter 8453/15375 (54.9%) 15375

KoSY2019 (14) Korea 2012.5-2015.2 Jeju National University Hospital 1576 Single 396/589 (67.2%) 589

LaiM2023 (15) China 2019.1-2022.9 Zhejiang Cancer Hospital 1242 Single 647/1735 (37.3%) 1735

LiL2024 (16) China
2020.8-2022.2,2022.3-2022.8 First affiliated hospital of
Nanjing medical university

748 Single 381/748 (50.9%) 748

LiX2019 (17) China
2012.1-2018.3 Tianjin Cancer,Traditional Chinese and
Western Medicine Hospital,Jilin,Weihai
Municipal Hospital

45644 multicenter 17627/42952 (41%) 396998

NairG2024 (18) USA
2017.4-2018.5 Stanford dataset,2018.1-2023.12
private practice

277 multicenter 40/314 (12.7%) 314

ParkVY2019 (19) Korea 2016.6-2017.2 Yonsei University College of Medicine 286 Single 156/286 (54.5%) 4919

SunC2020 (20) China
2016.6-2016.12 Peking Union Medical College,Beijing
Tiantan Hospital

1037 multicenter 651/1037 (62.8%) 1037

VelascoPF2024 (21) Spain 2021.6-2022.12 Hospital Clıńico Universitario Valladolid 172 Single 19/172 (11.1%) 398

WangL2019 (22) China 2018.1-2018.2 Affiliated Hospital of Qingdao University 276 Single 2557/5007 (51.1%) 5007

WeiX2020 (23) China
2015.1-2017.12 Tianjin Cancer Institute,Jilin,Cangzhou
Chinese and Western Medicine,Peking BinHai Hospital

26541 multicenter 15255/25509 (59.8%) 26541

WuGG2021 (24) China 2017.6-2019.4 Tongji,Xiangya Hospital 2974 multicenter 1820/5123 (35.5%) 5123

YaoJC2023 (25) China
2006.5-2022.4 Zhejiang,Taizhou Cancer Hospital,
Hangzhou First and Zhejiang People’s Hospital,Sun Yatsen
Cancer Center

1690 multicenter 903/1690 (53.4%) 7566

ZhangB2019 (26) China
2011.4-2016.6 Affiliated Hospital of Jinan University,
Guangdong General Hospital

2064 multicenter 750/2064 (36.3%) 2064

ZhaoCK2021 (27) China
2019.2-2019.4 Ma’anshan People’s Hospital,
2017.9-2019.1 Shanghai Tenth People’s Hospital

822 multicenter 301/849 (35.5%) 849

ZhengYX2024 (28) China
2009.1-2023.2 Zhejiang Cancer and
Zhejiang Provincial People’s Hospital

780 multicenter 257/780 (32.9%) 780

ZhouH2020 (29) China 2017.1-2018.3 HwaMei Hospital 2284 Single 672/1734 (38.8%) 1734

ZhouTH2024 (30) China
2017.7-2020.8,2020.9-2021.12 Hangzhou First People’s
Hospital,Yantai Yuhuangding and Zhongshan Hospital

637 multicenter 443/637 (69.5%) 1903

(Continued)
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TABLE 1 Continued

Author
and year

Country Data source
No. of
patients

Center
study

Malignant
of all
nodules (%)

No. of
US images

ZhuJL2021 (31) China
2015.1-2017.6 Tianjin Cancer Hospital,2017.8-2017.12
Tianjin Fifth Hospital 2015.1-2017.4 BinHai Hospital

6687 multicenter 10368/18733 (55.3%) 18733

ZhuLC2013 (32) China
2010.1-2012.12 Affiliated Hospital of Wenzhou
Medical College

618 Single 425/689 (61.7%) 689

ZhuYC2022 (33) China 2021.1-2021.7 Pudong New Area People’s Hospital 674 Single 356/712 (50%) 712
F
rontiers in Oncology
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TABLE 2 Study characteristics and population statistics according to malignant nodule class (test group nodules).

Author
and year

Design
Reference
standard

No.of
malignant
nodules

Mean size ±
SD (mm)

Mean age ±
SD (years)

F% (female)

BudaM2019 (6) Retrospective FNA,US 15 (15.2%) 27.0 ± 13.0 52.3 ± 14.0 NA

ChenC2024 (7) Retrospective FNA,US 504 (38.8%) 11.3 ± 7.2 47.3 ± 12.8 703 (55.7%)

ChenD2020 (8) Retrospective SP,US 1211 (77.7%) NA 43.1 ± 11.4 1178 (79.6%)

ChenJH2024 (9) Retrospective SP,FNA,US 21 (67.7%) 10.2 ± 7.83 45.52 ± 11.47 23 (74.2%)

ChenYF2022 (10) Retrospective SP,US 66 (27%) 24.0 ± 11.0 46.0 ± 13.0 146 (78%)

JinZ2022 (11) Retrospective SP,FNA,US 235 (27.2%) 29.3 ± 11.7 47.5 ± 13.0 578 (75.6%)

KimYJ2022 (12) Retrospective FNA,US 25 (42%) 8.96 ± 6.13 52.0 ± 15.0 45 (76%)

KohJ2020 (13) Retrospective SP,US 538 (68.9%) 23.6 ± 13.4 47.2 ± 12.9 571 (73.1%)

KoSY2019 (14) Retrospective SP,US 100 (66.7%) 12.9 ± 2.3 49.7 ± 12.2 127 (84.7%)

LaiM2023 (15) Retrospective SP,FNA,US 44 (35.2%) 10.2 ± 2.7 48.95 ± 3.69 100 (80%)

LiL2024 (16) Retrospective SP,FNA,US 80 (50%) NA NA NA

LiX2019 (17) Retrospective SP,US 542 (38%) NA 50.0 ± 9.0 1138 (80%)

NairG2024 (18) Retrospective SP,FNA,US 23 (18.9%) 21.0 ± 32.0 61.5 ± 22.6 86 (78.2%)

ParkVY2019 (19) Prospective SP,FNA,CNB,US 58 (56.9%) 16.49 ± 1.07 45.9 ± 13.0 81 (85.3%)

SunC2020 (20) Retrospective SP,FNA,US 422 (76.7%) 10.5 ± 7.3 42.3 ± 10.7 325 (77%)

VelascoPF2024 (21) Retrospective FNA,US 19 (11%) 24.0 ± 11.0 52.3 ± 15.3 143 (83.1%)

WangL2019 (22) Retrospective SP,US 181 (65.6%) 11.7 ± 8.7 44.3 ± 11.5 143 (79.01%)

WeiX2020 (23) Retrospective SP,US 4330 (62.3%) 13.12 ± 11.49 46 (18–84) 8379 (76.2%)

WuGG2021 (24) Retrospective SP,US 509 (44.4%) 15.0 ± 10.0 45.54 ± 11.82 1059 (66.5%)

YaoJC2023 (25) Retrospective SP,FNA,US 112 (62.9%) 14.9 ± 7.3 50.0 ± 6.6 131 (73.4%)

ZhangB2019 (26) Retrospective SP,US 750 (36.3%) 15.0 ± 10.0 45.25 ± 13.49 1337 (64.8%)

ZhaoCK2021 (27) Retrospective FNA,US 31 (30.4%) 18.0 ± 8.43 46.97 ± 10.2 23 (29.9%)

ZhengYX2024 (28) Retrospective SP,US 57 (26.1%) 31.0 ± 4.0 51.8 ± 4.5 163 (74.8%)

ZhouH2020 (29) Retrospective SP,FNA,US 428 (63.7%) 20.0 ± 10.0 48.6 ± 12.4 833 (64.3%)

ZhouTH2024 (30) Prospective SP,FNA,US 225 (77%) 9.81 ± 6.41 44.46 ± 12.02 217 (75%)

ZhuJL2021 (31) Retrospective SP,US 530 (51.36%) NA 52.01 ± 11.83 197 (75.48%)

ZhuLC2013 (32) Retrospective SP,FNA,US 425 (61.7%) 13.3 ± 6.5 47.46 ± 11.1 315 (74.1%)

ZhuYC2022 (33) Retrospective SP,FNA,US 100 (50%) 14.80 ± 8.25 53.56 ± 14.19 381 (77.9%)
SP, surgical pathology; FNA, fine needle aspiration cytology; US, ultrasonography; CNB core needle biopsy; NA, not applicable.
Data in parentheses are percentages mean data are ± standard deviation.
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TABLE 3 Data extraction.

Author
and year

Type of AI Validation DL
Number
of nodules

Group TP FP FN TN

BudaM2019 (6) CNN(MDCNN)
Internal Validation
(10-fold
cross-validation)

Y 1377
1278Training Group+
99Validation Group

13 40 2 44

ChenC2024 (7)
DCNN
(Inception-ResNet)

External Validation Y 7279
4530Training Group+
648,1263,138Validation
Group

117 2 13 6

ChenD2020 (8) LLR(Logistic)
Internal Validation
(10-fold
cross-validation)

N 1370
822Training Group+
274,274Validation Group

172 17 40 45

ChenJH2024 (9) RF(2D-US and CEUS)
Internal Validation
(10-fold
cross-validation)

N 313
282Training Group+
31Validation Group

17 3 2 9

ChenYF2022 (10)
MTI-RADS
(InceptionResNetV2,
DCNN)

Internal Validation
(5-fold
cross-validation)

Y 1588
1345Training Group+
243Validation Group

55 23 11 154

JinZ2022 (11) RF(Thy-Wise)
External Validation
(10-fold
cross-validation)

N 3965
2168Training Group+
930,867Validation Group

214 229 21 403

KimYJ2022 (12) DL(VGG16 DCNN) External Validation Y 15409
14809Training Group+
432,168Validation Group

105 87 9 231

KohJ2020 (13) CNN(DCNN) External Validation Y 15375
13560Training Group+
634,781,200,200Validation
Group

130 8 25 37

KoSY2019 (14) CNN(DCNN)
Internal Validation
(3-fold
cross-validation)

Y 589
439Training Group+
150Validation Group

91 9 9 41

LaiM2023 (15) DCNN(ResNet50)
External Validation
(5-fold
cross-validation)

Y 1242
894Training Group+
223,125Validation Group

90 6 15 14

LiL2024 (16) PLS-DA
External Validation
(cross-validation)

N 748
471Training Group+
117,160Validation Group

100 4 9 47

LiX2019 (17)
DCNN
(ResNet50, Darknet19)

External Validation Y 45644
42952Training Group+
1118,154,1420Validation
Group

461 113 82 764

NairG2024 (18)
AIBx V2(DCNN,
ResNet 34)

External Validation Y 314
192Training Group+
122Validation Group

20 5 2 95

ParkVY2019 (19) DCAD(FCN, DCNN) External Validation Y 5205
4919Training Group+
184,102Validation Group

82 6 8 88

SunC2020 (20) DCNN(VGG-F)
Internal Validation
(cross-validation)

Y 1587
1037Training Group+
550Validation Group

385 25 14 126

VelascoPF2024 (21)
Koios DS(AI-
based DSS)

Internal Validation
(cross-validation)

Y 172
172Training Group+
172Validation Group

13 71 2 86

WangL2019 (22)
CAD
(YOLOv2NN, DCNN)

Internal Validation
(cross-validation)

Y 276
276Training Group+
276Validation Group

126 14 13 123

WeiX2020 (23)
EDLC-TN
(DCNN, DenseNet)

External Validation Y 25509
17859Training Group+
1000,6650Validation
Group

346 38 25 591

WuGG2021 (24) DCNN(ResNet50) External Validation Y 2295
1289,793Training Group+
213Validation Group

79 26 21 87

(Continued)
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negatives [FN], true negatives [TN]). In this study, for data

selection, all external validation sets were used for data extraction

and meta-analysis. When multiple external validation sets were

available for evaluating AI-assisted diagnostic performance, only

the largest cohort was selected for analysis. For nodule attributes, we

focused on characteristic data of malignant nodules, including their

diameter size, population age, and percentage of females

(Tables 1–3).
2.3 Quality assessment

The methodological quality of the included studies was assessed

using the Quality Assessment of Diagnostic Accuracy Studies-2

(QUADAS-2) tool, which evaluates the risk of bias and applicability

concerns across four domains for the 28 articles. Each risk shift

associated with a question is evaluated as “Yes,” “No,” or “Uncertain,”

and as “High,” “Low,” or “Uncertain” in terms of its applicability. This

assessment was independently completed by two researchers. Any

differences that emerged were resolved by the research members
Frontiers in Oncology 07
through group discussions. Based on the evaluation results, the

QUADAS-2 scale was completed, and the quality assessment was

subsequently performed using Review Manager 5.4 (Figure 2).
2.4 Statistical analysis

We used Meta-Disc 1.4, Review Manager 5.4, R 4.4.2, and Stata

17.0 software for statistical analysis. Diagnostic efficacy was

evaluated by constructing and summarizing ROC (SROC) curves

by combining sensitivity, specificity, diagnostic advantage ratio

(DOR), and AUC at 95% CI. The Deeks’ Funnel Plot Asymmetry

Test was then used to assess publication bias. The Spearman

correlation coefficient was also used to evaluate the threshold

effect between studies. For heterogeneity evaluation, we used

Cochran’s Q-test and I-squared (I2) statistic. Univariate and

multivariate meta-regression analyses were employed to identify

the source of heterogeneity, and subgroup analyses were conducted.

Variables that produced heterogeneity were analyzed, and p-values

< 0.05 were considered statistically significant.
TABLE 3 Continued

Author
and year

Type of AI Validation DL
Number
of nodules

Group TP FP FN TN

YaoJC2023 (25) ST
External Validation
(10-fold
cross-validation)

Y 1690
1349Training Group+
163,178Validation Group

55 7 11 105

ZhangB2019 (26) RF
Internal Validation
(10-fold
cross-validation)

N 2064
1238Training Group+
826Validation Group

83 116 11 616

ZhaoCK2021 (27) ML External Validation N 849
520Training Group+
223,106Validation Group

30 16 3 57

ZhengYX2024 (28) XGBoost
Internal Validation
(5-fold
cross-validation)

N 780
562Training Group+
218Validation Group

52 14 4 148

ZhouH2020 (29) DLRT(DCNN)
External Validation
(cross-validation)

Y 1750
1645Training Group+
105Validation Group

50 8 6 41

ZhouTH2024 (30)

AI-

SONIC™Thyroid

(DCNN)

External Validation Y 637
346Training Group+
291Validation Group

213 8 12 58

ZhuJL2021 (31) DCNN (BETNET) Internal Validation Y 18733
16401Training Group+
1000,300,1032Validation
Group

725 39 51 217

ZhuLC2013 (32) ANN
Internal Validation
(cross-validation)

Y 689
464Training Group+
225Validation Group

124 14 24 63

ZhuYC2022 (33) ANN (TDUS-Net)
External Validation
(10-fold
cross-validation)

Y 712
500Training Group+
200Validation Group

78 5 22 95
frontier
Y, yes; N, NO; TP, true positive; FP, false positive; FN, false negative; TN, true negative; DL, deep learning; ANN, artificial neural network; CNN, convolutional neural network; MDCNN,
multitask deep convolutional neural network; DCNN, deep convolutional neural network; ResNet50,ResNet model18 with 50 layers; Darknet19,Darknet model 19 with 19 layers; DCAD, deep
learning-based US CAD system; FCN, Fully Convolutional Network; CAD, Computer-aided diagnosis systems;YOLOv2NN, YOLOv2 neural network; RF, random forest; LLR, LASSO, logistic
regression; LASSO, the least absolute shrinkage and selection operator; SVM, support vector machine; RBF, radial basis function; EDLC-TN, ensemble deep learning classification model for
thyroid nodules; DLRT, deep learning Radiomics of thyroid; ML, Machine learning (ML-assisted US visual approach);BETNET, the Brief Efficient Thyroid Network, based on the Visual
Geometry Group-19 (VGG-19) model; MTI-RADS, model based on American College of Radiology Thyroid Imaging Reporting and Data System; Thy-Wise, based on a SHapley Additive
explanation algorithm; SHAP, SHapley Additive explanation; AIBx V2, AIBx version2; VGG, very deep convolutional networks for large-scale image recognition; TDUS-Net, TI-RADS scores US
network mode; ST, swin-transformer; Inception-ResNet, a middle-size model using both depth-wise convolution and residual connected layers; PLS-DA, partial least-squares discriminant
analysis; Koios DS(AI-based DSS), artificial intelligence based decision support system); XGBoost, extreme Gradient Boosting; AI-SONIC™Thyroid, AI-assisted diagnostic system
(version 5.3.0.2).
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3 Results

3.1 Literature search and study
characteristics

After a comprehensive literature review and checking, 192

records were finally obtained. Unavailability of full text (1),
Frontiers in Oncology 08
incomplete data (97), and irrelevant studies (66) were excluded.

Finally, a total of 28 studies that met the criteria were included in

this meta-analysis (Figure 1). Of the 28 included studies, all were in

English, 21 studies were from China (75%), 4 studies were from

Korea (14%), 2 studies were from the United States (7%), and 1

study was from Spain (4%).25 studies were from Asian countries

(89%), and 3 studies were from Western countries (11%).2 studies
FIGURE 2

Quality evaluation outcome for each study and summary of quality assessment.
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TABLE 4 The results of subgroup analyses.

SEN SPE I2
5%CI)c

Pc Pooled DOR AUC Pd

4 (0-100) 0.22
48.11 (34.07-67.92) 0.94 (0.91-0.96)

0.73
21.38 (3.18-143.87) 0.89 (0.86-0.92)

4 (0-100) 0.17
40.08 (27.34-58.77) 0.93 (0.90-0.95)

0.84
149.7 (71.95-311.45) 0.97 (0.95-0.98)

/ 51.33 (31.33-84.09) 0.94 (0.92-0.96) /

/ 38.83 (15.83-95.28) 0.88 (0.84-0.90) /

/ 26.89 (14.54-49.72) 0.91 (0.89-0.94) /

/ 32.51 (11.47-92.11) 0.90 (0.88-0.93) /

8 (0-100) 0.25
30.1 (15.95-56.79) 0.90 (0.88-0.93)

0.81
55.14 (35.43-85.80) 0.94 (0.92-0.96)

4 (0-100) 0.27
51.03 (31.85-81.76) 0.94 (0.91-0.95)

0.87
35.38 (18.66-67.11) 0.93 (0.90-0.95)

(0-100) 0.43
36.64 (22.92-58.58) 0.93 (0.90-0.95)

0.54
58.95 (32.91-105.61) 0.95 (0.92-0.96)

(0-100) 0.78
46.52 (29.93-72.31) 0.94 (0.91-0.95)

0.12
36.58 (17.93-74.63) 0.93 (0.90-0.95)

(Continued)
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Subgroup
No.

of models
Pb Pb

(Pooled SEN I2% Pa Pooled SPE I2% Pa

Country

Asian 25 0.89 (0.87-0.91) 80.16 0.00
0.06

0.85 (0.82-0.88) 92.96 0.00
0.68 3

Western 3 0.88 (0.76-0.95) 0.00 0.74 0.74 (0.39-0.93) 97.04 0.00

Design

Retrospective 26 0.89 (0.87-0.91) 76.82 0.00
0.00

0.83 (0.79-0.87) 94.41 0.00
0.02 4

Prospective 2 0.94 (0.90-0.96) 26.84 0.24 0.91 (0.85-0.95) 37.46 0.21

AI algorithms

CNN 17 0.90 (0.88-0.92) 80.12 0.00 / 0.85 (0.80-0.89)
91.19

0.00 / /

ANN 2 0.81 (0.76-0.86) 24.32 0.25 / 0.90 (0.76-0.96)
87.32

0.00 / /

RF 3 0.90 (0.85-0.93) 22.85 0.27 / 0.75 (0.62-0.85)
97.32

0.00 / /

Mixed 6 0.86 (0.81-0.90) 56.05 0.04 / 0.84 (0.71-0.92)
95.52

0.00 / /

Center study

Single 12 0.87 (0.83-0.90) 45.52 0.04
0.00

0.82 (0.73-0.89) 93.05 0.00
0.00 2

multicenter 16 0.90 (0.88-0.93) 82.78 0.00 0.85 (0.81-0.89) 95.52 0.00

Validation type

External 16 0.89 (0.86-0.91) 74.75 0.00
0.00

0.87 (0.81-0.91) 95.75 0.00
0.00 2

Internal 12 0.90 (0.86-0.93) 81.45 0.00 0.80 (0.73-0.86) 92.42 0.00

Cross-validation

CV 17 0.89 (0.86-0.91) 74.16 0.00
0.00

0.82 (0.76-0.88) 94.34 0.00
0.00 0

NCV 11 0.90 (0.87-0.93) 82.10 0.00 0.86 (0.81-0.90) 91.04 0.00

Deep learning

DL model 21 0.89 (0.87-0.91) 80.35 0.00
0.00

0.85 (0.80-0.89) 93.41 0.00
0.01 0

NDL model 7 0.89 (0.85-0.92) 79.33 0.00 0.81 (0.72-0.88) 95.13 0.00
9
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were prospective studies (7%), and 26 studies were retrospective

(93%). In terms of diagnostic models, these included CNN 17

studies (61%), ANN 2 studies (7%), RF 3 studies (11%), and

Mixed Model Group 6 studies (21%). Twelve studies employed a

single-center design (43%), while 16 studies utilized a multicenter

design (57%). 16 studies used an external validation set (57%), and

12 studies used an internal validation set (43%). Seventeen studies

performed cross-validation (61%), while 11 studies did not (39%).

21 studies employed deep learning (75%), and 7 studies used non-

deep learning (25%). 11 studies selected only cases after thyroid

surgery (39%), and 17 studies were FNA cases (61%). Sixteen

studies were thyroid nodules with a mean diameter of < 20mm.

Nine studies included patients with a mean age of 50 years or older.

The malignant rate of thyroid nodules was ≥50% (50%) in 14

studies and < 50% (50%) in the remaining 14 studies (Tables 4, 5).

In addition, this meta-analysis included a total of 134,028 patients,

158,161 thyroid nodules, and 529,479 ultrasound images of thyroid

nodules (Tables 1–3).
3.2 Study quality assessment

The QUADAS-2 scale was employed to assess the

methodological quality of the 28 articles included in this study.

Among these, 11 studies exhibited case selection bias because the

cases selected by the original authors were exclusively surgical

patients, which may have resulted in a significantly higher risk of

thyroid cancer in this group. One study demonstrated index test

bias due to using the same data set to train and test the same data set

to train and test the AI diagnostic model, comprising a total of 172

nodules. However, since the original authors mitigated overfitting

through cross-validation, this study can still be rated as low risk in

terms of applicability (21). The results showed that the research

quality of the studies included in this meta-analysis was

satisfactory (Figure 2).
3.3 Diagnostic accuracy and heterogeneity
evaluation

We analyzed the threshold effect by Meta-Disc, and the results

showed that the Spearman correlation coefficient value was -0.18,

P>0.05, no statistical significance, the threshold effect caused no

heterogeneity, and we could continue to merge the effect sizes of the

diagnostic models and meta-analysis of related data.

Among the 28 studies included in the meta-analysis, the

diagnostic performance of AI-assisted diagnostic technology for

thyroid nodules was evaluated. The results indicated that the AI-

assisted diagnostic system demonstrated good diagnostic efficacy

for distinguishing benign and malignant thyroid nodules: the

pooled sensitivity was 0.89 (95% CI: 0.87–0.91); the pooled

specificity was 0.84 (95% CI: 0.80–0.88); the positive likelihood

ratio (PLR) was 5.60 (95% CI: 4.40–7.20); the negative likelihood

ratio (NLR) was 0.13 (95% CI: 0.10–0.16); and the diagnostic odds

ratio (DOR) was 43.94 (95% CI: 30.11–64.14) (Table 6).

Additionally, the area under the curve (AUC) for the summary
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TABLE 5 Summary estimate of Univariable meta-regression analysis.

Sensitivity Specificity
I2

(95%CI)c
Pc Pooled DOR

(95% CI)
AUC

(95% CI)
Pd

0 (0-100) 0.81
41.78 (28.48-61.27) 0.93 (0.91-0.95)

0.83
58.16 (17.99-187.96) 0.92 (0.89-0.94)

68 (27-100) <0.05
67.68 (42.57-107.58) 0.95 (0.93-0.97)

0.04
27.40 (18.03-41.63) 0.90 (0.87-0.93)

11 (0-100) 0.32
51.33 (31.33-84.09) 0.94 (0.92-0.96)

0.05
33.12 (19.29-56.86) 0.91 (0.88-0.93)

0 (0-100) 0.95
43.95 (30.00-64.38) 0.93 (0.91-0.95)

0.57
44.87 (11.66-172.74) 0.91 (0.89-0.94)

7 (0-100) 0.34
49.23 (34.21-70.85) 0.94 (0.91-0.96)

0.30
32.34 (13.23-79.02) 0.90 (0.87-0.93)

97 (95-99) 0.00
29.88 (15.17-58.85) 0.90 (0.87-0.92)

0.38
53.82 (34.70-83.49) 0.94 (0.92-0.96)

81 (60-100) 0.00
46.85 (25.24-86.96) 0.93 (0.91-0.95)

0.07
42.26 (27.20-65.67) 0.93 (0.91-0.95)
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b

.00

.00

.00

.05

.05

.00

.00
Subgroup
No.

of models
Pb PSEN

(95% CI)
I2 Pa SPE

(95% CI)
I2 Pa

Number of patients

≥500 23 0.89 (0.87-0.91) 81.05 0.00
0

0.84 (0.79-0.87) 93.8 0.00
0

<500 5 0.91 (0.85-0.96) 0.00 0.93 0.86 (0.77-0.95) 97.09 0.00

Malignant of all nodules (%)

≥50% 14 0.9 (0.88-0.92) 85.97 0.00
0

0.88 (0.84-0.92) 78.69 0.00
0

<50% 14 0.88 (0.85-0.91) 31.98 0.12 0.79 (0.73-0.85) 95.28 0.00

AI algorithms

CNN 17 0.90 (0.88-0.92) 80.12 0.00
0

0.85 (0.80-0.89) 91.19 0.00
0

Mixed 11 0.87 (0.83-0.90) 66.26 0.00 0.83 (0.75-0.89) 95.42 0.00

Number of nodules

≥500 24 0.89 (0.87-0.91) 80.41 0.00
0

0.84 (0.80-0.88) 93.82 0.00
0

<500 4 0.90 (0.84-0.97) 0.00 0.90 0.83 (0.72-0.94) 97.13 0.00

Population statistics according to malignant nodule class (test nodules)

No. of malignant nodules

≥30% 22 0.89 (0.87-0.91) 81.44 0.00
0

0.86 (0.82-0.90) 84.05 0.00
<0

<30% 6 0.89 (0.84-0.95) 47.31 0.09 0.78 (0.68-0.88) 97.28 0.00

Mean size (mm)

≥20 8 0.88 (0.85-0.91) 48.22 0.06
0

0.80 (0.67-0.89) 96.2 0.00
0

<20 16 0.90 (0.87-0.92) 78.58 0.00 0.86 (0.81-0.89) 87.34 0.00

Mean age

≥50 9 0.89 (0.85-0.92) 82.16 0.00
0

0.85 (0.74-0.92) 96.4 0.00
0

<50 18 0.89 (0.87-0.92) 78.66 0.00 0.83 (0.79-0.87) 92.84 0.00
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receiver operating characteristic (SROC) plot was 0.93 (95% CI:

0.91–0.95) (Figure 3).

Although these results indicate that AI-assisted diagnostic

techniques exhibit good diagnostic efficacy for thyroid nodules,

significant heterogeneity was observed in the pooled analysis of

sensitivity and specificity. In the meta-analysis, the heterogeneity of

sensitivity for AI-assisted diagnostic techniques was I² = 77.05%

(95% CI: 68.84%-85.27%), P = 0, while the heterogeneity of

specificity was I² = 94.34% (95% CI: 92.99%-95.69%), P = 0.

These findings suggest that although the diagnostic sensitivity and

specificity of the thyroid AI-assisted diagnostic system are high,

there is substantial heterogeneity among studies (I² > 50%, P = 0)

(Figure 4A). The forest plot of the diagnostic odds ratio (DOR)

demonstrated a pooled DOR value of 43.94 and a diagnostic score

of 3.78, indicating that the AI diagnostic model has strong

diagnostic value and can be applied to evaluate individual clinical

cases (Figure 4B). In addition, we did forest plots of positive

likelihood ratio (PLR) and negative likelihood ratio (NLR), and

we found that positive likelihood ratio = 5.61 and negative

likelihood ratio = 0.13, which indicates that the AI diagnostic

model has a high diagnostic value for thyroid nodules (Figure 4C).

Given the large number of studies included, there may be other

factors influencing the overall results. Therefore, we conducted a

sensitivity analysis (Figure 5B), sequentially excluding individual

studies, and did not find any study with apparent heterogeneity. To

identify heterogeneity, we also performed a Bivariate Boxplot

analysis, which indicated that four articles exhibited significant

he t e rogene i t y : 1 (BudaM2019) , 15 (SunC2020) , 16

(VelascoPF2024), and 28 (ZhuYC2022) (Figure 5D). Sensitivity

analysis results indicated that the four individual studies did not

significantly impact the stability of the results. Therefore, we

conducted further sensitivity analysis by simultaneously excluding

the four articles identified in the Bivariate Boxplot analysis. After

exclusion, the sensitivity I² was 73.47% (95% CI: 62.79%–84.15%), P

= 0.00. The specificity I² was 93.36% (95% CI: 91.56%–95.16%), P =

0.00, indicating no significant changes in overall sensitivity and

specificity heterogeneity. Thus, the results of the 28 studies included

in this analysis demonstrate high stability across studies

(Supplementary Figure S1). We conducted a publication bias test,

with the Deeks’ Funnel Plot of Asymmetry Test yielding a p-value of

0.28, indicating that the studies were generally symmetrical. We also

performed an Egger test (p = 0.992), which confirmed the absence

of publication bias across the studies (Figure 5C). Given that all

included studies in this research were of high quality and stability,

the AI type of these four articles does not substantially impact the

results, and the findings of this study are highly reliable.

After excluding the influence of threshold effects on

heterogeneity, we conducted a subgroup univariable meta-

regression analysis based on the completeness of the collected

data, including (country/region, study design, number of centers,

validation type, cross-validation, deep learning, reference standard)

to determine the sources of heterogeneity in sensitivity and

specificity. We found that six subgroups, excluding region, had

statistically significant effects on the heterogeneity of sensitivity and

specificity. The results of the joint model showed that no subgroup
T
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had a statistically significant impact on the heterogeneity of

sensitivity and specificity. The diagnostic performance results of

the AI diagnostic model indicated that Asian countries, prospective

studies, multicenter studies, studies using external validation sets,

non-cross-validation, deep learning models, and the subgroup of

patients who underwent thyroid surgery had higher diagnostic

accuracy, but also exhibited higher heterogeneity. AI models

demonstrated high diagnostic performance in Asian populations,

with a sensitivity of 0.89 (0.87–0.91) and a specificity of 0.85 (0.82–

0.88). In prospective studies, AI models performed notably well,

with an AUC of 0.97 (0.95–0.98). In multicenter studies, the AI

diagnostic model demonstrated high sensitivity (0.90, 95% CI 0.88–

0.93) and specificity (0.85, 95% CI 0.81–0.89). Additionally, when

an external validation set was available, the diagnostic model

exhibited high diagnostic performance, with an AUC of 0.94

(95% CI 0.91–0.95). The non-cross-validation group had a higher

AUC of 0.95 (0.92–0.96). In the deep learning subgroup, the deep

learning group had a high AUC of 0.94 (0.91–0.95). Finally, the

subgroup of patients who underwent surgery alone had high

diagnostic accuracy, with a pooled DOR of 47.32 (27.99–

80.02) (Table 4).
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We also conducted univariable meta-regression analysis on the

remaining eight subgroups (number of patients, overall malignancy

rate, AI type, nodule count, nodule malignancy rate, nodule

diameter, patient age, and female proportion) using univariable

meta-regression analysis. We found that, except for nodule count,

which had a statistically significant effect on sensitivity

heterogeneity but no statistically significant effect on specificity

heterogeneity, the remaining seven subgroups all had statistically

significant effects on both sensitivity and specificity heterogeneity

(Figure 6, Table 5). The results of the joint model showed that the

four subgroups—thyroid nodule malignancy rate, nodule size,

patient age, and female proportion — had statistically significant

effects on the heterogeneity of sensitivity and specificity. The results

of the AI diagnostic model’s diagnostic performance showed that

the diagnostic performance of the AI diagnostic model was stronger

when the number of patients and nodules was higher, the nodule

malignancy rate was higher, the convolutional neural network

(CNN) was used, the nodule diameter was smaller, and the

patient age and female proportion were higher. The AI model

demonstrated high diagnostic performance in studies with a large

sample size (≥500 patients), with an AUC of 0.93 (0.91–0.95). When

the thyroid nodule malignancy rate was ≥50%, the AI model

exhibited a sensitivity of 0.90 (0.88–0.92) and specificity of 0.88

(0.84–0.92). Among AI model subtypes, the convolutional neural

network (CNN) model performed best, with a sensitivity of 0.90

(0.88–0.92) and specificity of 0.85 (0.80–0.89). The more nodules

included in the study, the better the diagnostic performance of the

AI model, with an AUC of 0.94 (0.91–0.96). The higher the

malignancy rate of the nodules, the better the diagnostic

performance of the model, with an AUC of 0.94 (0.91–0.96). The

AI-assisted diagnostic model demonstrated higher sensitivity (0.90

[0.87–0.92]) and specificity (0.86 [0.81–0.89]) for thyroid nodules

with an average diameter <20 mm. For patients with thyroid

nodules aged 50 years or older, the AI-assisted diagnostic model

has higher diagnostic value, although the difference is not

statistically significant. The AI-assisted diagnostic model has

higher sensitivity (0.90, 95% CI: 0.87–0.92) and specificity (0.85,

95% CI: 0.81–0.89) in populations with a higher proportion of

female patients (Table 5). Finally, considering the heterogeneity of

the included studies, we conducted a multi-factor meta-regression

analysis by including all variables in the model, in addition to the

results of the combined model. The results showed that nodule

malignancy rate, and AI type had statistically significant
TABLE 6 Meta-analysis results of AI-assisted diagnosis of thyroid nodules.

Statistical measure Pooled estimate(95%CI) Cochran’s Q I2(%) P value

Pooled sensitivity 0.89 [0.87-0.91] 117.66 77.05 0.00

Pooled specificity 0.84 [0.80-0.88] 476.82 94.34 0.00

Pooled positive likelihood ratio 5.60 [4.40-7.20] 422.45 92.03 0.00

Pooled negative likelihood ratio 0.13 [0.10-0.16] 118.91 77.29 0.00

Pooled diagnostic odd ratio 43.94 [30.11-64.14] 144.27 81.28 0.00
AI, artificial intelligence.
FIGURE 3

SROC curve for diagnosis of thyroid nodules by AI-aided diagnostic
models.
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heterogeneity in sensitivity and specificity, and were significant

sources of heterogeneity (Tables 4, 5).

We divided the AI-assisted diagnostic system into four

subgroups: CNN, RF, ANN, and Mixed Model Group. By

comparing the DOR and weights of each subgroup, we found

significant heterogeneity within the CNN and Mixed Model

Group subgroups. The diagnostic odds ratio (DOR) indicates the
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strength of the association between the diagnostic test results and

the disease; a higher value indicates better discriminatory

performance. Since the AI diagnostic models differ across

subgroups, we compared and analyzed the overall DOR values

between different diagnostic model subgroups, finding significant

differences between groups. The RF group had the lowest DOR

value (22.83), while the CNN group had the highest DOR value
FIGURE 4

(A) Forest plot for sensitivity and specificity after combination. (B) Forest plot for diagnostic odds ratio and diagnostic score after combination.
(C) Forest plot for likelihood ratio after combination (LR+, LR-).
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(51.66). The AI diagnostic model of the CNN group demonstrated a

significantly higher value for distinguishing benign from malignant

thyroid nodules compared to the Mixed Model Group, RF, and

ANN groups (Figures 7, 5A).

Finally, we evaluated the clinical applicability of thyroid nodules

diagnosed using AI-assisted ultrasound diagnosis technology. The

results showed that when the pre-test probability was set at 30.00%,

the positive likelihood ratio (PLR) was 6.00, and the post-test

probability of a positive test result reached 71.00%. The NLR was

0.13, and the post-test probability for negative test results was only

5.00%, indicating that the thyroid AI-assisted diagnostic system has

high clinical predictive value (Figure 8). Diagnostic performance was

visualized using a likelihood ratio scattergram, where PLR < 10.00

and NLR > 0.10 indicate higher diagnostic accuracy. The combined

effect size of all diagnostic models showed that the intelligent auxiliary

diagnostic model performed poorly in terms of diagnosing and ruling

out malignant thyroid nodules. However, as shown in the figure, the

intelligent diagnostic models used in the five studies (11, 13, 14, 18,

and 23) demonstrated very high accuracy for thyroid nodules, with

the models used being PLS-DA, AIBx V2 (DCNN, ResNet 34),

DCAD (FCN, DCNN), EDLC-TN (DCNN, DenseNet), and

XGBoost (Figure 9). After comprehensively comparing the

sensitivity, specificity, DOR, PLR, and NLR of these five models, we

found that the model used in the WeiX2020 (23) study had a

sensitivity of 0.93 (95% CI: 0.90–0.96), specificity of 0.94 (95% CI:
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0.92–0.96), Diagnostic Score was 5.37 (95% CI: 2.67–5.37), Odds

Ratio was 215.25 (95% CI: 127.73–362.73), DLR Positive was 15.44

(95% CI: 11.33–21.03), and DLR Negative was 0.07 (95% CI: 0.05–

0.10) (Figures 4A–C). The model used was EDLC-TN (an ensemble

deep learning classification model for thyroid nodules). The ROC

curve for the AI-based diagnosis of thyroid nodules showed an AUC

of 0.93 (95% CI: 0.91–0.95), indicating that the thyroid intelligent

assistance model has high accuracy in distinguishing between benign

and malignant nodules (Figure 3).
4 Discussion

In recent years, artificial intelligence tools have become

increasingly common in various disciplines. Artificial intelligence is

beneficial in assessing thyroid nodules, primarily for risk stratification

and the diagnosis of benign and malignant thyroid nodules. This

meta-analysis encompassed a substantial number of studies that

examined various types of AI models, spanning from the past to

the present. Our goal is to systematically compare the performance of

existing artificial intelligence models in identifying benign and

malignant thyroid nodules based on ultrasound image features,

identify the optimal model, and provide guidance for developing

improved intelligent diagnostic models. We systematically

investigated sources of heterogeneity and compared the I2 for
FIGURE 5

(A) Diagnostic Odds Ratio of different AI-aided diagnostic models after combination. (B) Result of Sensitivity analysis. (C) Results of Deeks’ Funnel
Plot of Asymmetry Test for publication bias. (D) Bivariate Boxplot for diagnosis of thyroid nodules by AI.
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subgroup analyses with the pooled effect size, I2, which showed no

significant changes in sensitivity or specificity across subgroups.

Given the obvious heterogeneity suggested by I2 after the

combined effect size, we also performed univariate and multivariate

meta-regression analyses for different subgroups. All factors except

region were sources of heterogeneity, among which the malignant

rate of thyroid nodules, and different AI types were significant sources

of heterogeneity. At the same time, the diagnostic accuracy of AI

models is constrained by multiple factors, all of which increase the

complexity of diagnostic model construction (34, 35).
4.1 The quality of ultrasound images

Ultrasound imaging provides standardized, high-contrast visual

features of thyroid nodules, including size, shape, density, and blood

flow signal patterns, on which both artificial intelligence algorithms

and radiologists rely for assessment. The lack of a uniform

ultrasound image acquisition protocol across the original studies
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included in this study, coupled with the variability in institutional

operating procedures and equipment specifications (E.g., Ransducer

frequencies, gain settings), greatly limits the generalizability of the

current model across different clinical Settings. The frequency of the

ultrasound probe will affect the resolution of the image; the higher

the frequency, the higher the resolution. Different ultrasound

devices and probes were used in each original study, which is also

a source of potential heterogeneity. For example, in the study of

ChenJH et al., L14-3U transducer of Resona 9 device (Mindray,

Shenzhen, China) (frequency: 3–9 MHz) and an L12–5 transducer

(frequency: 5–12 MHz) from an iU22 device (Philips, Amsterdam,

The Netherlands) (9). However, KimYJ et al. used a higher

frequency probe, and the Philips iE33 US instrument with a 12–

15 MHz linear array transducer (Philips Medical Systems) provided

ultra-high resolution imaging for image acquisition (12). A

multicenter study showed that ultrasound equipment from

different manufacturers had a significant impact on AI model

per formance . S tud ie s conduc ted in As ia may have

overrepresented certain regional manufacturers (e.g., Mindray)
FIGURE 6

Univariable meta-regression analysis.
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and underrepresented brands commonly used in the West (e.g.,

General Electric) (36). In addition, the number of phantom

ultrasound devices included in each study varies greatly, which

can significantly affect the image quality. YaoJC et al. collected

ultrasound images of patients using 26 different devices produced

by the General Electric Company, Philips, Esaote, Siemens, and

Toshiba (25). Heterogeneity of ultrasound systems and operators

from different manufacturers may contribute to variability during

training. Of course, different types of ultrasound devices were used

in the study, which helped to increase the diversity of the data.

Almost all studies were trained and tested on only a

representative single image of each nodule, and the reviewed

images were static two-dimensional images, ignoring dynamic

features such as hemodynamics and tissue elasticity. Most studies

have selected transverse and longitudinal sections, while other

sections are rarely included. The selection of representative images

and semi-automatic segmentation can theoretically be affected by the

operator’s experience, and this method may limit the diagnostic

ability of observers and artificial intelligence models. For example,

Buda et al. used two orthogonal images of transverse and longitudinal

sections as model feature extraction images (6). In clinical practice,

physicians often rely on real-time ultrasound information to evaluate

thyroid nodules rather than a single representative image. Thus,

radiologists were able to assess based on more thorough imaging of

each thyroid nodule, which may explain the higher performance of
Frontiers in Oncology 17
experienced radiologists. At present, due to the complexity of 3D

model architecture, the limitation of computational efficiency, and

the difference in tools, 3D dynamic image models have not become a

research hotspot. At present, researchers have developed artificial

intelligence models based on contrast-enhanced ultrasound (CEUS)

images. For example, the study by ChenJH et al., included in this

study, applied machine learning to extract radiomics features of two-

dimensional ultrasound (2D-US) combined with contrast-enhanced

ultrasound (CEUS) images of the thyroid to classify and predict

benign and malignant thyroid nodules, with an AUC of 0.94 (9). In

addition, manually labeled ultrasound images can significantly affect

the accuracy of the model. The images mainly extract image Texture

Features, Higher-Order Features, and other information, and the

labeled images affect the model’s ability to learn features, especially

small nodules. For example, the study of ZhuJL et al. includedmarked

thyroid nodule images (33), which is also a potential source of

heterogeneity and an important factor affecting the accuracy of

the model.
4.2 Size of thyroid nodule

Different nodule sizes can affect the recognition ability of AI

diagnostic models. In this study, the diameter sizes of nodules in

different original studies were quite different. In general, for image
FIGURE 7

The results of subgroup analyses(AI algorithms).
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feature extraction, the degree of thyroid nodule margin of large

nodules cannot be judged because it exceeds the view boundary,

which may lead to poor model performance. Chen et al. showed

that nodule size and tumor edge roughness were risk factors for

detecting malignant nodules (8, 16, 37, 38). This information will be

lost when the nodule is too large. However, for small nodules,

especially thyroid micropapillary carcinoma smaller than 10mm,

the boundary may not be clear, and the AI system may not have

enough identifiable features to make a correct prediction. The study

by KoSY et al. showed that the inclusion of thyroid nodules of

different sizes would affect the results, and their model findings

could not guarantee high accuracy in other studies with large

groups of different nodules (14). An international study shows

that in Asia, more thyroid cancers are detected through

asymptomatic screening (51%), whereas in Western countries,

more cancers are detected through symptoms (30%). Nodules

detected by screening are usually small and have atypical features,

which may lead to inconsistent model criteria for small nodules in

different regions (39). In addition, the biopsy rate of small nodules is

low in clinical practice. According to ATA guidelines, most thyroid

nodules less than 10mm are treated conservatively, which leads to

insufficient data in the training set and is also a factor causing

bias (37).
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4.3 Different subtypes of thyroid nodules

Diagnosis of thyroid nodules is not only about identifying

benign and malignant nodules, but also requires accurate

identification of benign and malignant nodules of various

histologic types of the thyroid gland. Existing training datasets are

often inadequate in size, especially for rare histologic subtypes such

as follicular carcinoma, which may introduce selection bias and

affect model performance. This meta-analysis study included only

two (25, 28) that sampled follicular thyroid carcinoma, and there

are still fewer studies on rare subtypes, and determining the specific

type of follicular thyroid nodule is a difficult challenge in accurately

diagnosing thyroid cancer. Fine needle aspiration cytology (FNAC)

can only provide a vague Bethesda class IV diagnosis with uncertain

malignancy and clinical prognosis, most models only included

nodules with malignant or benign clear pathologic findings, and

most studies excluded thyroid nodules that were undiagnosable or

cytologically or histologically indeterminate, such as Bethesda class

IV suspected malignant nodules.YaoJC et al. constructed the swin-

transformer (ST) model for follicular thyroid nodules with an AUC

of 0.90 (25). In the dataset studied by ParkVY et al., 95.5% of the

patients had typical papillary thyroid carcinoma with ultrasound

features different from those of follicular carcinoma, medullary

carcinoma, and lymphoma. However, other subtypes, such as

follicular carcinoma and mesenchymal carcinoma, also had some

different ultrasound features compared to benign thyroid lesions.

The algorithm may be less efficient in diagnosing medullary

carcinoma compared to other subtypes because it has more

ultrasound features compared to benign thyroid lesions.

Therefore, there is still a need to validate the diagnostic model for

nodules with indeterminate cytological findings and therefore

characterized as “heterogeneous of uncertain significance” or

“follicular lesions of uncertain significance” (19). The proportion

of papillary thyroid carcinoma may be higher in Asian populations

than in the West, whereas other subtypes, such as follicular

carcinoma, are relatively rare (40). Since the majority of

malignant nodules in the current studies were papillary

carcinomas, it is still not possible to evaluate and compare the

performance of machine learning algorithms in each cancer

subtype. In addition, Hashimoto nodules and chronic atrophic

nodules can exhibit similar ultrasound features to malignant

nodules, and there are differences in the ultrasound features of

different pathologic types, which may decrease the classification

performance when the model is applied to regions with different

pathologic spectrums (41).
4.4 Regional differences

About 89% of the subjects in this Meta-analysis were from Asia,

and only 11% were from Western countries. Although most studies

verified the results in different external test sets, the accuracy and

clinical applicability of the results were satisfactory; however, there

was inevitably racial bias, and this regional difference may be one of
FIGURE 8

Fagan nomogram: Evaluation of clinical applicability of AI-assisted
diagnostic techniques in thyroid nodules diagnosis.
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the important sources of heterogeneity in the studies. In a statistical

study of 25 countries, the incidence of thyroid cancer in Asian

countries was significantly higher than that in Western countries,

mainly because the popularization of ultrasound screening in Asian

countries led to overdiagnosis, especially in middle-aged and elderly

individuals older than 50 years, rather than an increase in true

disease (39). The increase in incidence may also be related to

economic development, population life pressure, inflammation,

and other factors. Asian countries have invested heavily in

thyroid disease research and accumulated a large number of high-

quality thyroid ultrasound image datasets. After rigorous screening

and annotation, these datasets provide a solid foundation for model

training, enabling the model to identify the characteristics of

thyroid nodules in this population more accurately. A recent

Chinese study was trained and tested on ultrasound data from

nine hospitals (42). Researchers in Asian countries have optimized

and adjusted the diagnostic model according to local medical

practice and patient characteristics. By adjusting the model’s

parameter settings and refining the feature extraction method, the

model becomes more suitable for the medical environment and

patient population of Asian countries, thereby improving diagnostic

accuracy. It may not perform well in Western populations,

particularly in thyroid cancer subtypes with distinct distributions.

This is consistent with the results of the subgroup analysis of this

study, showing that the diagnostic accuracy of the AI diagnostic

model was higher for Asian countries. However, the results of

subgroup analysis in this meta-analysis showed that the effect of

country and region subgroups on heterogeneity was not statistically

significant, possibly due to the small number of studies included in

Western countries.
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4.5 Feature extraction methods

According to the 2015 American Thyroid Association ATA

guidelines, it is divided into six types, including mixed type,

intermediate type, and peripheral type, only in terms of

calcification. At present, suspicious ultrasound features of thyroid

cancer are mainly identified by sonographers, and accurate

differentiation of these features is difficult and may be

misunderstood or missed (37). Feature extraction is primarily

divided into two approaches: experienced radiologists and

radiomics. The former is based on human feature extraction,

while the latter is based on computer-based image analysis. AI

models are typically trained on datasets annotated by experienced

radiologists, essentially learning to recognize the same diagnostic

patterns as those used by human experts (43). In traditional

machine learning models, experts in the relevant domain will first

set the most applicable features to reduce the complexity of the data

and highlight patterns. However, some hidden relationships may be

lost when manually entered, and they may not be able to capture

complex, non-intuitive relationships in the data in advance.

However, these features may be hidden in a simple image texture,

and computer-aided diagnosis (CAD) systems are a novel AI

technique developed to achieve automatic analysis of ultrasound

images (44). ZhaoCK2021, ZhengYX2024, and other studies

included in this study all manually extracted ultrasound features

(27, 28), while ChenJH2024, LaiM2023, and other studies

automatically extracted features through CNN (9, 15). By

comparing the feature extraction methods, we found that

ultrasound image features extracted by radiologists were

significantly better than image-based methods, such as those used
FIGURE 9

Likelihood ratio scattergram: Evaluation of clinical applicability of AI-assisted diagnostic techniques in thyroid nodules diagnosis.
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by Chen et al., who extracted empirical features by radiologists for

TI-RADS classification, with an AUC of 0.97 (8). However, the

model of Lai et al. used the PyRadiomics (45) feature extraction

package to extract radiomics features for training machine learning

models, and its AUC was only 0.856, which was significantly lower

than the empirical features extracted from ultrasound images (15).

Features automatically extracted by computer-based image analysis

models may contain redundant information (such as artifacts in

ultrasound images). Instead of selecting radiomics features with

partial thyroid nodule signs in a single image, an experienced

radiologist reviews a series of thyroid ultrasound images to make

the final decision. It has the best correlation with the nature of the

nodule. Traditional methods (such as logistic regression + manual

features) can explicitly incorporate clinical prior knowledge (such as

Bethesda classification criteria), while AI model extraction of

features may ignore these key rules (46). Furthermore, the large

number of different radiomics features poses an intractable

challenge that hinders the use of machine learning models for

diagnosing thyroid nodules in the clinic (47).

A recent study by Chen JH et al. used a machine learning model

(DT) to construct feature importance combined with LASSO to

select features (9). With different feature screening methods, the

final remaining features are different, and the accuracy of the final

model is also different. Although the malignant characteristics of

different types of TI-RADS, such as C-TIRADS and ATA-TIRADS,

are basically the same, there are also differences. There may be

differences in the interpretation criteria of ultrasound features by

radiologists in different regions. When a standard training model

for a single region is used, performance may decline in other regions

(48). The different sections of thyroid nodules, such as longitudinal

section and transverse section, will affect the extraction of

ultrasound image features. The number of representative

ultrasound features used in each study varied; for example, the

study by Chen et al. (8) included 10 ultrasound features, while the

study by zhaoCK et al. (27) included only 6 ultrasound features.

Finally, the image acquisition process of KoSY et al. ‘s study, such as

selecting input images for thyroid nodules and labeling ROIs, relied

on radiologists and was essentially operator dependent due to the

perception variation of radiologists and the possibility of ignoring

obvious features (14). Aspects of the influencing characteristics are

a source of potential heterogeneity and also limit further

exploration of potential effects on diagnostic efficacy.
4.6 Malignant rate of thyroid nodules

The results of this study showed that the higher the malignant

rate of thyroid nodules, the stronger the diagnostic performance of

the AI diagnostic model. However, most of the included studies

used retrospective data, which was susceptible to case selection and

information bias. Additionally, the cases in both the training set and

test set were all patients who underwent thyroid ultrasound

screening in hospitals. As can be seen from the extracted data

table, the proportion of malignant thyroid nodules in each of the

included original studies was significantly higher than that in the
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normal population (8, 30). The study by ChenYF et al., which

included thyroid nodules with surgical resection or FNA, had a high

overall malignancy rate, and only thyroid nodules with surgical

pathological findings were included, which may have resulted in a

higher than usual rate of malignant nodules (10). The real-world

data would be a greater proportion of benign nodules and a smaller

proportion of malignant nodules, which could lead to overfitting

and thus compromise accuracy. The surgical rate of small thyroid

nodules (<1cm) in Asian countries (such as China and South

Korea) is significantly higher than that in Western countries, and

there is a higher proportion of overdiagnosis. This difference leads

to a different proportion of “surgically confirmed benign nodules”

in the training data, and the proportion of malignant cases in the

training data is distorted, which affects the model’s judgment

threshold for the true malignant risk (40). Additionally, thyroid

nodules have a high risk of malignancy, which may have

contributed to selection bias in our sample. Since the cytologic

results of fine-needle aspiration biopsy may be inconclusive, only

the histopathological results of surgical resection can be used as the

reference standard for the final diagnosis of nodules.

In our meta-analysis study, 11 studies were identified with case

selection bias, as the original authors had selected only surgical

patients. According to the 2015 American ATA guidelines, patients

with thyroid nodules, if they are highly suspected of malignancy or

have been confirmed to be malignant and the Bethesda reporting

system indicates category V or VI, even in low-risk Papillary

Thyroid Microcarcinoma(PTMC) patients, surgical treatment is

not recommended (37). However, these 11 studies included

patients who did not undergo FNA after ultrasound evaluation

and chose to proceed directly to surgery. The surgical criteria were

outlined as follows: benign nodules exceeding 4.0 cm in size and

malignant nodules confirmed by preoperative needle biopsy

pathology. For cases where ultrasound strongly suggested

malignancy but the standards for fine-needle aspiration biopsy

(FNAB) weren’t met, FNAB was advised prior to determining

subsequent management (22). Therefore, we considered that the

patients were highly suspected of malignancy, such as a history of

thyroid radiation in childhood, family history of thyroid cancer,

extrathyroidal extension, and thyroid ultrasound assessment of TI-

RADS classification 4c or 5. We considered that there was a high

risk of patient selection bias in these studies, so only surgical

patients were selected as the sample. It was rated as high risk in

terms of patient selection. Because the original authors evaluated

the models using a validation set, and both achieved high diagnostic

accuracy, they were still rated as low risk in terms of

Applicability Concerns.
4.7 Age of patients

Additionally, this study found that the AI-assisted diagnosis

system demonstrated higher diagnostic performance for patients

aged 50 years or older. Results such as those of Chen et al. suggest

that age is an important risk factor associated with malignancy. The

prevalence of thyroid nodules gradually increases with age, which is
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consistent with previous research results (8, 49). Age-related tissue

degeneration, fibrosis, or calcification may change the

ultrasonographic appearance of nodules. Older patients often

have multiple coexisting lesions that may interfere with image

interpretation, and age-related histological changes such as

fibrosis and calcification may affect the ultrasonographic features.

As a result, the model’s performance fluctuates when applied across

regions, affecting its accuracy (50).
4.8 Gender of patients

The detection rate of thyroid nodules in females is higher than

that in males, which is a risk factor for the detection of thyroid

nodules. The increasing incidence of thyroid cancer among women

has been particularly marked since 2000 (39). The results of this

study showed that the larger the proportion of women ≥70%, the

higher the intelligent assisted diagnosis system’s sensitivity was, at

0.90 (0.87-0.92), and specificity, at 0.85 (0.81-0.89), in the diagnosis

of thyroid nodules, (50). The effects of estrogen may be the primary

factor contributing to the incidence of thyroid nodules in women.

In this study, the majority of the included original studies showed a

significantly higher proportion of female patients than male

patients, which made the model training more biased toward

females. However, in external validation sets such as those in

Chenc et al.'s study, the proportion of male patients was

significantly higher than that of female patients, which could also

affect accuracy (7, 51). The proportion of female patients was

positively correlated with AI accuracy, but due to the limited

number of original studies with a higher proportion of male

patients, gender-specific conclusions still require further validation.
4.9 Reference standards

The gold standard is the reference standard for the accuracy

evaluation of diagnostic tests. It must be the most recognized and

accurate diagnostic method at present, and its implementation,

testing timing, methods, and interpretation standards should be

unified. If the gold standard is interpreted by different people, it may

lead to differences in the results and thus introduce bias. The

different exclusion and inclusion criteria of each of the included

original studies were also a potential source of heterogeneity; the

study by ChenJH et al. excluded patients with incomplete FNA

pathological results or classified as Bethesda I, III, or IV. However,

Koh et al. included only surgically confirmed or cytologically

confirmed benign (class II) or malignant (class VI) on the

Bethesda system. Different reference standards affect the

diagnostic accuracy of AI models (9, 13).
4.10 Model architecture

Notably, compared with traditional machine learning methods,

deep learning demonstrated higher accuracy in diagnosing thyroid
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nodules, with a sensitivity of 0.89 (0.87-0.91) and a specificity of

0.85 (0.80-0.89). Traditional machine learning models often use a

variety of classifiers in the development process, such as the study of

JinZ et al. (11) using random forest (RF), support vector machine

(SVM) and extreme gradient boosting (XGBoost) to build

ultrasound and ultrasound and clinical combined machine

learning models, respectively. Different classifiers have their

characteristics. The decision tree (DT)-based methods achieve

classification and regression tasks through conditional probability

distributions, but DT, as a non-parametric method, is prone to

overfitting. However, DT-based ensemble methods (such as

random forest, RF; gradient boosting decision tree, GBDT; and

XGBoost) significantly improve performance. By randomly

selecting feature subsets and samples for parallel training, RF has

the advantages of high training efficiency, low generalization error,

strong noise resistance, and simple parameter adjustment. GBDT

enhanced feature selection ability by gradient boosting (52).

XGBoost provides further support for custom loss functions,

regularization terms, and handling of missing values,

demonstrating greater flexibility. In contrast, linear models have

obvious limitations: Support vector machine (SVM) can deal with

nonlinear problems through kernel functions, but the selection of

kernel functions is time-consuming and difficult to adapt to large-

scale data. Although logistic regression (LR) is suitable for multi-

classification tasks with small samples, its function is limited.

Overall, RF and XGBoost significantly exceed the performance

boundaries of traditional DT and linear models with their

stability and flexibility, respectively. These traditional models are

built on the paradigm of “artificial features + shallow models”, and

their performance highly depends on the quality of feature

engineering. Features automatically extracted by deep learning

(DL) models may contain redundant information (such as

artifacts in ultrasound images). Whereas traditional methods

(such as logistic regression + manual features) can explicitly

incorporate clinical prior knowledge, DL models may ignore these

key rules (46). Although the SVM model can achieve nonlinear

classification by kernel function, feature extraction completely relies

on manual design, which faces problems such as a high threshold of

expertise, limited dimension, and feature interaction. The shallow

nature of the model structure also limits the expression ability.

Linear models can only learn global linear relationships. Although

DT can capture nonlinear features, the tree structure based on the

greedy algorithm is easy to overfit and ignore the global pattern.

These fundamental defects make traditional machine learning

perform poorly in processing high-dimensional and complex data

such as images and speech, highlighting its inherent limitations in

feature learning and deep pattern capture.

Deep learning algorithms consist of structures called deep

neural networks, of which convolutional neural networks are a

specific type that is widely used in the field of image processing (53).

Its multi-threaded task can be used for more complex radiomics

image analysis. For example, Zhou et al. ‘s study adopted a CNN

architecture and a transfer learning strategy and achieved a high

AUC of 0.97 (29). The study by Yao et al., which constructed a

multimodal deep learning model involving 6,032 (Papillary Thyroid
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Cancer, PTC) cases, was used to develop the DeepThy-Net model,

which showed high accuracy (54). Lee, J.H., et al. used deep learning

to locate and diagnose metastatic lymph nodes in thyroid cancer

and achieved high clinical application value (55). These findings

collectively demonstrate the excellent diagnostic performance of

artificial intelligence, regardless of imaging type, and the emergence

of deep learning as a more powerful approach to diagnosing thyroid

cancer. Deep learning has an inherent architectural advantage. The

deep learning system trained by pre-simulation can automatically

obtain relevant ultrasound features through multi-level nonlinear

transformation. The hierarchical feature learning capability of deep

learning enables the automatic extraction of complex multi-layered

imaging features from raw ultrasound data, whereas machine

learning relies on predefined features that may miss subtle details

(53). For example, a convolutional neural network (CNN) has a

layered architecture that mimics a biological vision system: the

bottom layer learns local features such as edges and colors, the

middle layer combines textures and parts, and the upper layer forms

a complete object representation. This end-to-end hierarchical

feature learning has the advantages of distributed encoding and

incremental refinement, enabling the model to automatically extract

more essential feature representations from the data. Deep

networks such as the Transformer architecture can model long-

distance dependencies in natural language through a multi-layer

self-attention mechanism, and achieve the same expressive ability

with fewer parameters. The superior performance of deep learning

also stems from its ability to learn complex spatial relationships and

identify relevant features, especially in analyzing the complex

anatomy of thyroid nodules and surrounding structures (56). The

data-dependent nature of deep learning algorithms shows that

model performance continues to improve with the increase in the

amount of training data, while classical machine learning

algorithms tend to be stable. Meanwhile, most well-performing

deep learning models are generated from baseline architectures, and

the diagnostic performance of AI models will be further improved

through innovative modifications of training strategies and

algorithm architectures (19, 29) . As more and more

comprehensive features are included in artificial intelligence

models, their prediction results will be closer to pathological

results. Deep learning models, such as DCNN, can learn features

directly from ultrasound images without the limitations of manually

designed features, thereby improving the repeatability of diagnosis.
4.11 External validation set

External validation was designed to explore true differences in

characteristics between the development and validation cohorts and

to evaluate the performance of diagnostic models. All selected

studies were conducted strictly according to the independent

external validation set, except for VelascoPF2024, which used the

same data set for both internal and external validation. However,

some of the studies included in the literature utilize public data sets

(such as the Stanford dataset) as internal data sets, which is

questionable (18, 21). Although this is a practical option, the
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overall characteristics of these open-source data sets are often

difficult to obtain and limited by inadequately collected data.

Diagnostic models generally perform well on training datasets;

however, there are differences between the performance of the

model on the training set and the performance on the validation

set. This difference may be reduced when the training and

validation datasets are drawn from the same population, and this

imperfect model training and validation result in poor model

performance on the external validation set. The results of this

study showed that the diagnostic performance of the AI model in

the non-cross-validation group was higher than that in the cross-

validation group, mainly because the sample size of each study in

the non-cross-validation group was much larger than that in the

cross-validation group, and more patients’ nodules were included in

the model, which eventually had better test power and

generalization. Due to the lack of large-scale external validation,

most AI applications have not yet been applied to clinical decision-

making. Therefore, external validation is necessary to reduce the

risk of model overfitting, assess the stability of model performance

in different populations, and potentially enhance clinicians’

confidence in AI-assisted diagnostic tools.
4.12 Prospective study

In prospective studies, the performance of AI-assisted

diagnostic techniques, particularly in terms of sensitivity,

specificity, and the area under the curve (AUC), is outstanding.

Prospective studies can be enrolled at the onset of symptoms and

performed according to prespecified diagnostic criteria and trial

algorithms, reducing selection bias. However, retrospective studies

may have problems, such as selectivity, including the retrospective

selection of patients who have been diagnosed, which can miss some

undetected cases and lead to bias. However, only two prospective

studies were included in this meta-analysis, accounting for only 7%

of the total studies, which may affect the accuracy of the results

(19, 30).

In addition, this meta-analysis included various artificial

intelligence models, including some commercial computer-aided

diagnosis (CAD) and machine learning (ML) models. Although

several commercial AI-assisted diagnostic systems have been

introduced into clinical practice in recent years, such as the AI-

SONIC™ Thyroid model mentioned in the ZhouTH2024 study,

which achieved a sensitivity of 95% for identifying malignant

thyroid nodules, some manufacturers may adjust the model

thresholds to improve sensitivity, which could affect the accuracy

of the results in this study. The heterogeneity of imaging systems

and operators across different manufacturers may introduce

variability during the training process, potentially limiting the

interoperability of devices manufactured by other suppliers (30,

57). However, due to differences in algorithm architecture, training

dataset quality, and validation methods, significant disparities

remain in the diagnostic performance of these systems, and their

clinical application value requires further validation and

optimization (30).
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The bivariate boxplot results of this study suggest significant

heterogeneity among the four articles, specifically studies 1, 15, 16,

and 28 (Figure 5D). Although this does not affect the reliability of

the final pooled effect size, we carefully analyzed these four articles

from various aspects, including population characteristics,

diagnostic thresholds, reference standards, study design, and

sample size, to identify the specific reasons for the outlier studies.

We found that studies 1 and 16, BudaM2019 and VelascoPF2024,

used cytopathology from fine-needle aspiration (FNA) as the sole

reference standard and had lower malignant rates of included

nodules compared to other studies, at 10.3% and 11.1%,

respectively. Consequently, the specificity for diagnosing thyroid

nodules was only 52.0% (6, 21). We analyzed studies 15 and 28,

SunC et al.’s DCNN (VGG-F) model, which actually combines

multiple features, using SVM for feature extraction, and combines

the deep features prioritized by the convolutional neural network

(CNN) with hand-crafted features (20). ZhuYC2022 et al.’s ANN

(TDUS-Net) model employs color Doppler ultrasound (CDUS)

features extracted via deep learning (whole ratio, intranodular ratio,

peripheral ratio, and number of vessels) and gray-scale ultrasound

(US) features, which differ significantly from those of other models

(33). These factors may be a significant source of heterogeneity.

Ultimately, we selected the WeiX2020 study as having the

optimal model. The core advantage of the EDLC-TN model lies

in its innovative ensemble learning framework and multi-stage

design (23). The model first extracts the region of interest (ROI)

through precise nodule segmentation, eliminating interference from

irrelevant background in ultrasound images, so that subsequent

classification can focus on key nodule features (such as edge

morphology and internal echoes). In the classification stage,

EDLC-TN employs a multi-model ensemble strategy based on

DenseNet (58): by training three structurally distinct weak

classifiers (based on ROI, mask, and fused features, respectively)

and integrating their outputs via voting and averaging methods, the

model retains DenseNet’s efficient capture of subtle features

through dense connections while addressing the limitations of

single algorithms through model diversity. This design enables

the model to achieve an accuracy rate of 98.51% (AUC 0.941) on

the test set, far surpassing other comparison models. Additionally,

the superiority of EDLC-TN is evident in its data and training

strategies. The study utilized a multi-center dataset (26,541 images

spanning four hospitals and various devices), implemented

dynamic learning rate adjustment (Adam optimizer gradually

decaying from 0.1), and enforced strict data standardization. In

external validation (unseen GE ultrasound device-acquired image

data), the model maintained an accuracy rate of 95.76%,

demonstrating its cross-device adaptability. The constructed

EDLC-TN model is a universal network platform that can be

applied to ultrasound images from different medical centers.

Whether applied to ultrasound images from hospitals with

completely different types of ultrasound devices or compared with

the performance of radiologists, the model achieved excellent

accuracy, sensitivity, and specificity. This indicates that the

EDLC-TN model has the potential to effectively learn from

different types of medical images and possesses high
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generalizability. This will be beneficial for screening programs

and lead to more effective referral systems across all medical

fields, thereby yielding widespread beneficial clinical and public

health outcomes. However, due to the limited number of studies on

which the model is based, its generalizability and applicability

across different medical centers require further validation through

large-scale, multi-center prospective studies.

Additionally, interpretability models remain a significant

research challenge. At present, many scholars have doubts about

the reliability of AI models. As a “black box” system, these models

lack the interpretability of the diagnosis and decision-making

process, resulting in a cognitive gap between doctors and models

and weakening clinical trust. Interpretable AI is a set of tools and

methods that help people understand and interpret the predictions

made by machine learning algorithms. This includes an

interpretable model and an interpretable interface. This

contributes to the accuracy, fairness, and transparency of

diagnostic models and understanding of the results of AI-driven

decision making (59). The reliability and interpretability of

diagnostic AI tools can be improved through collaborative

engagement between AI developers and clinical practitioners. In

addition, most models only output static binary classification

probability results (such as malignant probability) and lack an

interactive feedback mechanism with clinicians. This “silent box”

feature makes doctors more inclined to use traditional transparent

diagnostic methods, which leads to doubts about the actual value of

AI and hinders the deep application of big data technology in the

medical field (8, 26). In the study of Zheng et al., the model was

constructed, and the interpretability analysis was performed

through the Shapley Additive Explanations (SHAP) to achieve the

transparent effect of the model (28). The study by Yao et al.

developed a multimodal generative pre-trained transducer model,

ThyGPT, which provides a transparent, interpretable, publicly

available, and efficient AI-aided tool for the diagnosis and

management of thyroid nodules (42). Model transparency

requires further optimization to explain the decision-making

process of algorithms, and the accurate conclusions of deep

learning models still need to be verified on external test sets with

large samples (60–62).

The artificial intelligence system offers a new option for

diagnosing thyroid nodules and has significant clinical application

value. This meta-analysis presents a comprehensive subgroup

analysis of AI models, addressing emerging trends in imaging

technology. These methodological advances contribute to a more

complete understanding of the role of ultrasonographic AI in the

diagnosis of thyroid nodules, although further validation in

different populations is still needed. AI diagnostic models

(especially deep learning algorithms) can significantly improve

the diagnostic accuracy and sensitivity of radiologists at all levels

(63), which can effectively improve the diagnostic accuracy of young

radiologists and radiologists in primary hospitals, and shorten the

growth cycle of radiologists. Urban-rural medical resources are not

balanced in China and many countries worldwide. The research and

development of artificial intelligence systems can help reduce

barriers and provide convenient ways for community hospitals to
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improve the diagnosis of thyroid cancer. The implementation of

ultrasound-based AI in the primary healthcare system could enable

the early detection and management of thyroid nodules, particularly

thyroid cancer, in remote areas with limited diagnostic resources.

AI models can also reduce the time required for image

interpretation by doctors, decrease clinical workload, decrease

labor intensity, and mitigate the influence of subjective factors on

diagnosis. Additionally, they can serve as a reference for clinical

experts to enhance the quality of clinical diagnosis of thyroid

cancer, particularly for smaller thyroid nodules (64). AI

technology can efficiently extract image features, transform the

traditional image diagnosis from subjective qualitative analysis to

objective quantitative assessment, and realize the whole process of

auxiliary diagnosis from nodule detection, benign and malignant

judgment to pathological classification and prognosis prediction,

which is helpful to promote the transformation from population to

individual diagnosis and treatment of thyroid nodules (65). If

widely and continuously implemented, it is expected to reduce

the relatively invasive FNA biopsy in the diagnosis of thyroid

nodules, avoid the discomfort of patients in the process of FNA

biopsy and the risk of biopsy-related side effects or complications,

realize the early and accurate diagnosis of thyroid nodules, improve

the influence on treatment options and prognosis, reduce the risk of

delayed diagnosis caused by false negative results, and reduce the

anxiety of patients. Reduce healthcare spending and improve

patient satisfaction and patient experience. The use of AI models

did not lead to a change in the mortality rate despite an increase in

the detection rate of thyroid cancer. The medical community also

needs to pay attention to the problem of overdiagnosis. For

example, it may be more appropriate to use AI models to adopt

active surveillance strategies for small papillary carcinomas. In the

future, the workflow optimization of AI initial screening and

physician confirmation, as well as dynamic monitoring integrated

into portable devices, can help doctors dynamically monitor disease

progression and optimize the management of high-risk patients,

which is expected to further improve the accuracy and accessibility

of thyroid nodule management.

In the actual clinical scenario, when physicians need to perform a

comprehensive evaluation of patients with thyroid nodules, they may

encounter a large amount of information from case data, clinical

features, radiomics, and genomics. It is important to study the ability

to build a unified model from both macro and micro levels, integrate

and analyze information such as pathology, genomics, and clinical

data, so as to achieve truly multimodal and cross-body assisted

diagnosis. At present, diagnostic models based on thyroid

ultrasound image features are gradually favoring hybrid models and

multimodal large language models. For example, the weights of the

hybrid assisted multi-classification model consisting of Deep Maxout

and CNN built by Gulame et al. are automatically learned through

transfer learning, which is significantly better than the earlier method

of a single model (66). Yao et al. proposed an AI-assisted diagnosis

system of a large language model for thyroid nodule risk assessment.

The ThyGPTmodel was trained and verified on large sample data sets,

and the LlaMA2-13Bmodel framework was used to segment and store

thyroid-related knowledge and cases combined with the Lang-Chain
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framework. The hybrid architecture of Swin-Transformer and DCNN

is used for image analysis, which integrates multi-source information

to generate feature markers, and intuitively displays the decision-

making basis and the contribution of ultrasound features through

human-computer interaction. This model provides a new direction for

the development of next-generation CAD systems (67).

Despite the advantages of AI models, enormous challenges

remain. First, the use of artificial intelligence models in clinical

practice raises ethical and legal issues. Regulators must develop clear

guidelines that address issues such as patient privacy, data security,

and diagnostic decision-making responsibility to ensure the safe,

effective, responsible, and ethical use of AI technologies in clinical

Settings. Addressing these challenges is critical for the successful

implementation and widespread adoption of auxiliary diagnostic

models for thyroid nodules in clinical practice. Second, future AI

developments should prioritize adaptability, algorithmic rhythm

transparency, and interpretability to facilitate professional

acceptance and integration of AI-assisted diagnostic technologies.

At the same time, unresolved issues regarding data security protocols

and ambiguous accountability frameworks in smart healthcare

technologies continue to impede clinical adoption. Third, at

present, AI is more suitable for use as an adjunct rather than a

stand-alone diagnostic method, and its results must be reviewed by

certified physicians. Further research and method standardization

are needed to address these discrepancies in the future, to integrate

AI software seamlessly into physicians’ workflows, and external

validation studies with large samples should be conducted (68).

Fourth, clinical ultrasound is a highly dynamic diagnosis and

treatment process, and doctors rely on real-time images for

comprehensive judgment. Dynamic data processing will face many

technical challenges. The amount of data to be processed by real-

time video analysis is hundreds of times that of static images, which

requires the development of new neural network architectures (such

as 3D CNN+Transformer). Instead of the current mainstream 2D

CNN model, the inference delay needs to be controlled to ensure

clinical usability, which puts forward extremely high requirements

for algorithm optimization. A lightweight model (such as

deformable convolution) specifically for the characteristics of

ultrasound video is developed, which integrates color Doppler,

pulse wave, and other multimodal timing data, and the chip inside

the ultrasound probe realizes end-to-end real-time processing. In the

future, dynamic ultrasound database standards (such as probe

motion trajectory and time synchronization markers) will be

established. Evaluation frameworks such as real-time human-

computer interaction tests will be developed through databases to

simulate clinical environments. Progressive verification processes

will be designed from static frames to video clips, and then stepwise

verification of complete clinical scenarios will be formed through

real-time streaming. Finally, international multicenter data sets

should be established in the future to ensure that the samples of

each subgroup are balanced, include data from different ultrasound

devices and different acquisition protocols, and adopt unified image

annotation standards and pathological confirmation procedures to

construct diagnostic models for different subtypes of thyroid

nodules. The model needs to create a well-defined set of features
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that can be efficiently captured by human visual assessment and

computational analysis (69). The model can incorporate the

characteristics of cervical lymph nodes and also provide value for

surgical methods used in treating thyroid cancer patients, such as

lymph node dissection. AI models offer promising prospects for

clinical applications, and factors such as human selection bias and

reliance on human labor can be improved.

This meta-analysis should acknowledge several important

limitations. First, the heterogeneity among the included studies is

significant. In addition to the various factors discussed in the

analysis section, there may be some unrecognized factors that

have been overlooked or that could not be further analyzed due

to the limited number of original studies. Second, over half of the

studies employed retrospective designs, which may introduce

potential selection and bias. Since researchers developed AI

models, the training phase required the construction of models

with accurate labels based on reference standards, a step that

necessitated a retrospective design, whereas the predictive phase,

which involved a validation set (or test set), did not. Third, the

generalizability of these findings may be limited by the fact that

most studies were conducted in Asian regions, so our findings may

have limited generalizability to populations in other regions.

Fourth, since some basic characteristics of thyroid nodules, such

as nodule echogenicity, internal structure, and calcification, were

not included, it is not possible to further explore the impact of these

basic characteristics on diagnostic performance. Finally, we only

included studies written in English, which may make this meta-

analysis more susceptible to publication bias.
5 Conclusion

This meta-analysis examined the clinical value of an artificial

intelligence-assisted diagnosis system based on ultrasound images

in the diagnosis of benign and malignant thyroid nodules, and the

results demonstrated high clinical potential. Among them, the

EDLC-TN model shows higher diagnostic accuracy and clinical

effectiveness in the diagnosis of thyroid nodules. For thyroid

nodules in female patients with an average diameter of <20mm

and an age of ≥50 years, artificial intelligence-assisted diagnostic

models are more effective, especially deep learning models.
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