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Purpose: This study was intended to evaluate the performance of biparametric

MRI (bpMRI) radiomics for detecting clinically significant prostate cancer (csPCa)

in men with prostate-specific antigen (PSA) of 4–10 ng/mL.

Method: We retrospectively included 287 patients with PSA levels of 4–10 ng/

mL. Radiomics features were extracted from two MRI protocols of T2-weighted

imaging (T2WI) and diffusion-weighted imaging (DWI, with b-values of 0, 1000,

and 2000 s/mm²), and then selected with the least absolute shrinkage and

selection operator (LASSO) regression method. The apparent diffusion

coefficient (ADC) maps were calculated from these images and used for

analysis. The radiomics signature (Radscore) based on the most useful

radiomics features was calculated with the logistic regression method. MRI/US

fusion targeted biopsy results were used as the reference standard. Diagnostic

performance was decided using the area under the receiver operating

characteristic (ROC) curve (AUC), and compared with Delong’s test. Finally, a

model integrating radiomics features and Prostate Imaging Reporting and Data

System (PI-RADS) was constructed.

Results: A total of 15 T2WI radiomics features and 12 from DWI features were

retained after selection with LASSO regression. On the test set, radiomics

outperformed PI-RADS, with an AUC of 0.928 (95% CI 0.868–0.988) vs. 0.807

(95% CI 0.705–0.908; P=0.04). Additionally, the combined nomogram

generated higher diagnostic accuracy (AUC 0.955, 95% CI 0.905–1.00),

significantly outperforming both PI-RADS (P=0.002) and radiomics

alone (P=0.02).

Conclusion: bpMRI-based radiomics exhibited promising diagnostic accuracy

for the detection of csPCa, significantly outperforming either PI-RADS or PSAD

among patients with PSA of 4–10 ng/mL. Furthermore, the developed

nomogram integrating radiomics and PI-RADS could further enhance

diagnostic performance.
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Introduction

Prostate cancer represents a significant global health issue,

affecting approximately 10 million men worldwide, with 7 million

experiencing metastatic disease (1, 2). PSA plays an important role

in early detection, management, and surveillance of patients with

high risk of PCa (3, 4). In many developed countries, PSA level

higher than 3-4.0 ng/mL was recommended prostate biopsy (5).

Nevertheless, the elevation of PSA also can be caused by benign

prostatic hyperplasia or prostatitis, thereby leading to high

sensitivity but low specificity when using PSA as an independent

predictor for PCa (5). Moreover, for patients with PSA levels of

4–10 ng/mL (often mentioned as the gray zone), the detection of

csPCa is merely approximately 22%, resulting in many unnecessary

biopsies or overtreatment for these populations (6, 7).

Currently, MRI plays a crucial role and is the primary imaging

modality in the diagnosis, location, and management of PCa (8–10).

PI-RADS, which is based on multiparametric MRI (mpMRI), has

been widely applied in clinical practice. However, it is noteworthy that

despite its high sensitivity, MRI exhibits lower specificity (11–13).

Furthermore, mpMRI needs a long examination time to acquire DCE

images, which prevents its application for some elderly people or

claustrophobic patients (14). In recent years, radiomics has emerged

as a promising technique and has been intensively studied in various

diseases and preliminary studies have demonstrated the potential of

radionics in PCa (15–17). Some studies employing radiomics in PCa

used multiple MRI protocols including T2WI, dynamic contrast-

enhanced (DCE) images, DWI, and apparent diffusion coefficient

(ADC) maps (11, 18). Nevertheless, in recent years, many studies

have shown that DCE has a marginal impact in evaluating lesions in

the transitional zone (TZ) and can be omitted for those lesions in the

peripheral zone (PZ) (19–21). As a result, bpMRI without DCE has

been studied intensively, which can offer the benefits of shorter

examination times and reduced costs, while maintaining similar

performance to mpMRI (22–25). Therefore, in this study we

intended to evaluate the accuracy of PSAD, PI-RADS v2.1, and

bpMRI-based radiomics for the detection of csPCa among patients

with PSA gray zone.
Materials and methods

Patient selection

This retrospective study was approved by the institutional

review board (IRB) of Yancheng First People’s Hospital, with the

requirement for informed consent was waived. Between March

2017 and December 2022, 390 consecutive patients suspected of

having PCa and with PSA between 4–10 ng/mL were identified

from out institution. Of them, 103 were excluded because of the

following reasons: (1) prior diagnosis or treatment of PCa (n=29);

(2) underwent only systematic 10–12 core biopsy rather than MRI/

US fusion targeted biopsy (n=26); and (3) presence of severe
Frontiers in Oncology 02
artifacts images on MRI (n=48). Consequently, 287 patients were

included in the final study cohort, which was randomly divided into

the training cohort (n=201) and the test cohort (n=86). Figure 1

demonstrates the patient selection process.
MRI acquisition and interpretation

All prostate MRI examinations were performed with a 3.0T

scanner (MAGNETOM Skyra, Siemens AG). The bpMRI protocols

included T1-weighted (T1WI), T2WI, and DWI. Detailed image

acquisition parameters are provided in Table 1. All MRI images

were independently interpreted by two genitourinary radiologists

(with respective 2 and 4 years of experience), who were blinded to

the final histopathology results and other clinical information.
Prostate biopsy procedure

After the MRI examination, all lesions with suspicion of PCa

underwent MRI/US targeted biopsy by an urologist with at least 16

years of experience. For suspected lesions, targeted biopsy cores

were obtained from both axial and sagittal planes, with a minimum

of two cores acquired per lesion. Prostate biopsy specimens were

assessed by a genitourinary pathologist with more than 16 years of

experience, and each lesion was assigned Gleason scores (GS), with

the index tumor defined as the lesion with the highest GS score. In

cases where more than one lesion shared the same highest GS, one

with the highest tumor involvement percentage was selected as the

index tumor. In this study, clinically significant PCa was defined as

GS ≥7, and prostate volume was estimated using the ellipsoid

formula. PSAD was calculated as the ratio of PSA to prostate

volume (PSA/PV), and tumor size was obtained from T2WI.
Feature extraction and radiomics analysis

Three-dimensional volumetric region of interest (ROIs) were

manually delineated by 2 experienced radiologists (with 6 and 8

years of experience) on T2W images using 3D Slicer. Both

radiologists were blinded to all clinical information, and all

images were from MRI examination before targeted biopsy. These

ROIs were then co-registered to the ADC maps to ensure spatial

alignment prior to feature extraction. For co-registration, we

employed a rigid registration approach, with mutual information

as the similarity metric and nearest-neighbor interpolation to

preserve ROI labels. This co-registration ensures that the features

extracted from both modalities correspond to the same anatomical

region, enabling meaningful multimodal radiomic analysis.

Radiomic features were extracted from both T2W and DWI

sequences with these 3D ROIs using PyRadiomics package

(version 3.1.0). Unless otherwise specified, all feature extraction

parameters followed the default settings in PyRadiomics. A total of
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93 features were extracted from each original image sequence,

including 18 first-order statistics, 24 Gray Level Co-occurrence

Matrix (GLCM) features, 16 Gray Level Run Length Matrix

(GLRLM) features, 16 Gray Level Size Zone Matrix (GLSZM)

features, 14 Gray Level Dependence Matrix (GLDM) features, and

5 Neighboring Gray Tone Difference Matrix (NGTDM) features.

Shape features were calculated in 3D based on the volumetric

segmentation masks. No resampling was applied and the original

voxel spacing of the images was retained. Gray-level discretization

was conducted using the Fixed Bin Width (FBS) approach, with a

default bin width of 25. For texture features, 13 directions in 3D

were considered, with a pixel distance of 1. In addition to features

extracted from the original images, we also extracted features from

filtered images using PyRadiomics’ default image filters, including

wavelet transforms and Laplacian of Gaussian (LoG) filters. For

patients with more than one lesion, only the index lesion-either the

one with the highest Gleason score or the largest size-was selected

for evaluation. To ensure feature reliability, both inter- and intra-

reader agreement for lesion segmentation and feature extraction

were assessed using intraclass correlation coefficient (ICC), only

those with ICCs ≥0.75 were retained for further analysis. The

feature selection procedure was conducted using the LASSO
Frontiers in Oncology 03
regression method to select the most informative radiomics

features. Radiomics signature (Radscore) was developed based on

the top-ranked features, by using five-fold cross-validation on the

training dataset to enhance model generalizability. We extracted

1040 radiomics features from T2WI (579 features) and DWI (561

features). After LASSO regression analysis, 27 robust non-zero

coefficient features were retained to develop the final radiomics

signature, including 15 features from T2WI and 12 from DWI.

There was no significant difference in the Radscore between the

training group and the test group (P=0.39). However, a significant

difference in Radscore values was observed between csPCa and non-

csPCa groups both in the training group (median 1.16 vs. -2.32,

P<0.001) and in the test group (median 1.91 vs. -2.23, P<0.001).
Statistical analysis

For continuous variables, were reported as mean ± standard

deviation (normally distributed) or median and interquartile range

(non-normally distributed), with comparisons performed with the

independent t-test or Mann–Whitney U test, respectively. The

Kolmogorov–Smirnov test was used to examine the normality of
FIGURE 1

Study selection process for this systematic review and meta-analysis.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1615005
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ji et al. 10.3389/fonc.2025.1615005
distribution for continuous variables. Categorical variables are

presented as numbers and corresponding percentages, and

compared with the chi-square (c2) test. Given the imbalance

between csPCa and non-csPCa cases, the Synthetic Minority

Oversampling Technique (SMOTE) method was applied to solve

this problem. The overall diagnostic performed was determined by

AUC, and compared with DeLong’s test (26). Additionally, we

calculated the sensitivity, specificity, positive likelihood ratio (LR+),

and negative likelihood ratio (LR−). The best threshold for

diagnostic performance was decided with the Youden index. The

inter-reader agreements were assessed using Cohen’s kappa (k)
value which was interpreted as follows: <0.20, slight; 0.21-0.40, fair;

0.41-0.60, moderate; 0.61-0.80, substantial; and ≥0.81, almost

perfect. Since multiple pairwise comparisons were performed

among different models (Radiomics, PI-RADS, PSAD, and the

combined model), P values from DeLong’s tests were adjusted

using the Benjamini-Hochberg false discovery rate method to

control for multiple testing (27). Statistical analyses were

performed with R (version 4.3.2), with P values less than 0.05

indicated statistically significant. The net benefit of the combined

model was assessed with the decision curve analysis (DCA), and the

calibration curves were plotted to visually demonstrate the

agreement between predicted probabilities and actual outcomes.
Results

Patient characteristics

Table 2 demonstrates the characteristics of demographic and

clinical for the study cohort. Among the 287 patients who

underwent MRI/US fusion-targeted biopsy, 82 (28.57%) were

diagnosed with csPCa, while the remaining 206 (71.43%) were

either benign prostatic hyperplasia or non-clinically significant PCa.

No statistically significant difference was found between the training

cohort and the test cohort regarding age, PSA level, prostate

volume, or PSAD, indicating good comparability between the two

groups. However, the training set contained a higher proportion of

lower GS values, while the test set includes relatively more high GS

cases (P=0.04).
Frontiers in Oncology 04
Diagnostic performance of using PSAD and
PI-RADS

For PSAD, the calculated AUC for the training cohort was 0.693

(95% CI 0.613–0.774), with an optimal threshold of 0.125 ng/mL/

mL, where the sensitivity and specificity were 44.8% (95% CI 31.7%-

58.5%) and 85.2% (95% CI 78.3%-90.6%), respectively. In

comparison, the PI-RADS v2.1 achieved an AUC of 0.813 (95%

CI 0.752–0.873), which outperformed PSAD (P=0.007). At a cutoff

score of ≥3, PI-RADS achieved sensitivity of 94.8% (95% CI 85.6%-

98.9%) and specificity of 46.5% (95% CI 38.1%-55.0%), respectively.

A moderate inter-reader agreement was observed between the two

radiologists, with a Cohen’s kappa value of 0.55 (95% CI:

0.52–0.60).
Diagnostic performance of BpMRI
radiomics

On the training cohort, the radiomics model (AUC 0.943, 95%

CI 0.901-0.984) performed significantly better than both PSAD

(P<0.001) and PI-RADS (P<0.001), with sensitivity of 93.1% (95%

CI, 83.3%-98.1%) and specificity of 88.7% (95% CI 82.3%-93.4%),

respectively. When Radscore was combined with PI-RADS,

diagnostic accuracy was enhanced substantially, with an AUC of

0.968 (95% CI 0.958–0.998; P=0.03). ROC curves for PSAD, PI-

RADS, radiomics, and the combined model are presented in

Figure 2A and summarized in Table 3. On the test cohort,

radiomics also outperformed PI-RADS, with an AUC of 0.928

(95% CI 0.868–0.988) vs. 0.807 (95% CI 0.705–0.908; P=0.04).

According to DeLong’s test, the combined nomogram generated

higher diagnostic accuracy (AUC 0.955, 95% CI 0.905–1.00),

significantly outperforming both PI-RADS (P=0.002) and

radiomics alone (P=0.02), as shown in Figure 2B. Decision curve

analysis (Figure 3) showed that the combined model provided

superior clinical utility compared with either PI-RADS or

radiomics alone. Additionally, calibration curves (Figure 4)

confirmed excellent agreement between predicted probabilities

and actual outcomes for the risk of csPCa both one the training

cohort and in the test cohort.
Discussion

In this study, we evaluated the PSAD, PI-RADS, bpMRI-based

radiomics, and a combination model for identifying csPCa in men

with PSA gray zone. Our analyses indicated that radiomics

significantly outperformed both PI-RADS and PSAD; moreover,

integrating radiomics with PI-RADS could further improve

diagnostic accuracy. The consistency of results between the

training and test datasets demonstrated the robustness of our

findings. However, it should be noted that in this study MRI

images were interpreted according to PI-RADS by two junior

radiologists, which might partly explain the lower diagnostic

performance compared to prior studies involving experienced
TABLE 1 MRI parameters.

Parameter
T2WI
(axial)

T2WI
(sagittal)

DWI

Field of view (mm) 220×220 240×180 260×260

Acquisition matrix 276×240 104×125 104×125

Repetition time (ms) 3000 6000 6000

Echo time (ms) 100 77 77

Section thickness, no
gaps (mm)

3.0 3.0 3.0

Acquisition time 4m 6s 3m 42s 3m 54s
DWI, diffusion weighted imaging; T2WI, T2-weighted imaging.
DWI performed with b values of 0, 100, 1000, 2000s/mm2.
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readers (28). Previous studies have demonstrated the promising

diagnostic value of MRI radiomics among patients suspected of

PCa, with reported AUCs ranging from 0.933 to 0.941 (29–31).

However, in most studies radiomic features are extracted from full

mpMRI of at least 3 sequences (T2WI, DCE, ADC, and DWI) and

few studies were focused on patients in PSA gray zone. In one study

using bpMRI-based radiomics for csPCa, the calculated AUC was

0.844. Nevertheless, this research was focused on lesions only

located in TZ, and the final model was based on TZ volume and

Radscore (32).

The goal of PSA screening is to detect PCa at an early stage, and

then reduce disease-specific mortality. However, relying only on

PSA levels leads to a high false-positive rate, resulting in substantial

over-detection of clinically insignificant, low-grade cancers (5). This

may cause many unnecessary diagnostic and therapeutic

interventions, as well as associated side effects, particularly in

patients within the PSA gray zone. In our study, 28.57% of

patients were ultimately diagnosed as benign prostatic hyperplasia

or non-csPCa, suggesting many unnecessary biopsies or

overtreatment. Although PI-RADS has been a consensus protocol

guideline for a decade, its adoption varies widely across hospitals

and institutions (33). Additionally, while mpMRI is effective for

detecting PCa, it is costly and time-consuming as a screening tool.

In light of this, more and more studies have explored bpMRI as an
Frontiers in Oncology 05
alternative to mpMRI for detecting and managing PCa, with

comparable diagnostic performance while significantly reducing

scan time. Nevertheless, it is reported that DCE may enhance the

performance of detecting csPCa with PI-RADS scores ≥3,

particularly by upgrading PI-RADS 3 lesions to PI-RADS 4 (34,

35). Conversely, Van der Leest et al. introduced a “fast bpMRI”

protocol utilizing only axial T2WI for detecting csPCa in patients

with PSA levels higher than 3 ng/mL (14). Their findings

demonstrated that this abbreviated protocol achieved the same

sensitivity as mpMRI (both 95%) with only a minor increase in

false-positive rate (65% vs. 69%), although the technique requires

further external validation.

In the current study, all radiomics features were extracted from

two MRI protocols of T2WI and DWI. T2WI offers high soft tissue

contrast and is particularly effective for delineating prostate

anatomy and identifying structural abnormalities, whereas DWI

provides information on tissue cellularity by assessing water

molecule diffusion, which is typically restricted in cancerous

tissues due to increased cellular density (36). Both T2WI and

DWI indicated negative correlations with the proportion of nuclei

or cytoplasm and positive correlations with luminal space

percentage in prostate tissue (36). As Gleason scores increase,

glandular architecture becomes more disordered, leading to a

fragmented luminal appearance (17). These histopathological
TABLE 2 Characteristics of patients.

Variable
Training (n=201) Validation (n=86)

csPCa (n=59) Non-csPCa (n=142) P csPCa (n=23) Non-csPCa (n=63) P

Age
(Years, mean±SD)

71.57±8.75 68.33±7.53 0.01 70.28±8.54 68.06±7.77 0.03

PSA
(ng/mL, median [IQR])

6.99 (5.58-8.00) 7.11 (5.60-8.52) 0.5 7.57 (6.10-9.01) 6.24 (5.25-7.99) 0.04

PV
(ml, median [IQR])

38.08 (26.66-56.64) 58.02 (40.94-73.79) <0.001 34.37 (25.40-46.18) 51.59 (40.40-70.76) <0.001

PSAD
(ng/mL/mL,

median [IQR])
0.13 (0.16-0.23) 0.09 (0.12-0.16) <0.001 0.15/0.18-0.31) 0.09 (0.11-0.17) <0.001

Gleason score

≤3+3 142 63

3+4 30 9

4+3 15 4

4+4 5 8

>4+4 9 2

PI-RADS 2.1

2 74 34

3 54 25

4 49 18

5 24 9
csPCa, clinically significant prostate cancer; IQR, interquartile range; PI-RADS, Prostate Imaging Reporting and Data System, version 2.1; PSA, prostate-specific antigen; PSAD, prostate-specific
antigen density; PV, prostate volume; SD, standard deviation.
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alterations are reflected in characteristic signal patterns on T2WI

and DWI, supporting their application in radiomics-based analyses.

Despite advances in auto-segmentation technology of image

processing, manual delineation by radiologists is still the primary

approach for lesion regions in radiomics research. However,

manual segmentation remains labor-intensive and prone to
Frontiers in Oncology 06
variability between and within readers, which can undermine

model reliability and limit clinical applicability (37). Moreover,

delineating lesions on a single slice rather than across the full three-

dimensional volume may fail to capture the complete

morphological characteristics, reducing the accuracy of

volumetric analysis. While automated segmentation offers greater
FIGURE 2

ROC analysis for PSAD, PI-RADS, radiomics, and the combination of PI-RADS and radiomics for prediction of clinically significant prostate cancer.
(A) training group; (B) validation group. PI-RADS, Prostate Imaging Reporting and Data System, version 2.1; PSAD, prostate-specific antigen density.
TABLE 3 Diagnostic performance.

Indicator
Sensitivity
(95% CI)

Specificity
(95% CI)

LR+ (95% CI) LR- (95% CI) AUC (95% CI) P for AUC

Training Cohort

PSAD 44.8% (31.7%-58.5%) 85.2% (78.3%-90.6%) 3.03 (1.86-4.93) 0.65 (0.51-0.83) 0.693 (0.613-0.774) <0.001

PI-RADS≥3 94.8% (85.6%-98.9%) 46.5% (38.1%-55.0%) 1.77 (1.5-2.09) 0.11 (0.04-0.34)
0.813 (0.752-0.873) <0.001

PI-RADS≥4 69.0% (55.5%- 80.5%) 80.3% (72.8%-86.5%) 3.50 (2.41-5.08) 0.39 (0.26-0.57)

Radscore 93.1% (83.3%-98.1%) 88.7% (82.3%-93.4%) 8.26 (5.18-13.20) 0.08 (0.03-0.20) 0.943 (0.901-0.984) 0.03

PI-RADS+ Radscore 94.8% (85.6%-98.9%) 88.0% (81.5%-92.9%) 7.92 (5.05-12.4) 7.92 (5.05-12.4) 0.968 (0.958-0.998) /

Validation Cohort

PSAD 30.4% (13.2%-52.9%) 92.1% (82.4%-97.4%) 3.83 (1.35-10.90) 0.76 (0.57-1.00) 0.722 (0.607-0.837) 0.002

PI-RADS≥3 91.3% (72.0%-98.9%) 47.6% (34.9%-60.6%) 1.74 (1.33-2.28) 0.18 (0.05-0.70) 0.807 (0.705-0.908) 0.002

PI-RADS≥4 69.6% (47.1%-86.8%) 82.54% (70.9%-90.9%) 3.98 (2.18-7.27) 0.37 (0.20-0.69)

Radscore 91.3% (72.0%-98.9%) 87.3% (76.5%-94.4%) 7.19 (3.72-13.90) 0.10 (0.03-0.38) 0.928 (0.868-0.988) 0.02

PI-RADS+ Radscore 87.3% (66.4%-97.2%) 95.7% (86.7%-99.0%) 18.30 (5.98-55.70) 0.14 (0.05-0.39) 0.955 (0.905-1.00) /
AUC, area under the receiver operating characteristic curve; CI, confidence interval; LR+, positive likelihood ratio; LR-, negative likelihood ratio; PI-RADS, Prostate Imaging Reporting and Data
System; PPV, positive predictive value; PSAD, prostate-specific antigen density; Radscore, radiomic score.
aCompared with PSAD+PI-RADS.
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efficiency, studies have reported slightly inferior performance

compared to manual delineation, potentially due to the lower

precision of current auto-segmentation algorithms (37).

Furthermore, many automated methods are optimized for lesions

in the PZ, requiring separate solutions for accurate segmentation in

the TZ.

Our study has several limitations. First, the retrospective single-

center study design may result in selection bias and limit the

generalizability of our findings; thus, external validation is

warranted. Second, MRI/US targeted biopsy results were used as

the reference standard, which may lead to the omission of some

MRI-invisible but pathologically significant lesions. Third, ROI

delineation was performed manually by two radiologists, which

may introduce potential subjectivity. Fourth, we did not assess

model performance separately in the PZ and TZ due to limited

subgroup sample sizes. Future research with larger and more

balanced datasets is needed to evaluate diagnostic performance
Frontiers in Oncology 07
according to anatomical zones. Lastly, the imbalance in GS

distribution between the training and test cohorts may have

introduced bias in model evaluation and could potentially affect

the generalizability of the model. However, it is worth noting that

our dataset was split strictly with a 7:3 ratio, and the distribution of

csPCa cases was also preserved in the same proportion across

the cohorts.
Conclusions

BpMRI-based radiomics significantly outperformed both PI-

RADS and PSAD in predicting csPCa in men with PSA levels gray

zone. Combining radiomics with PI-RADS further enhances

diagnostic accuracy. Despite the promise shown by these

methods, further validation and refinement, particularly in

distinguishing between different anatomical zones of the prostate,
FIGURE 3

Decision curves analyses for PI-RADS, radiomics, and the combination of PI-RADS and radiomics for prediction of clinically significant prostate
cancer. (A) training group; (B) validation group. PI-RADS, Prostate Imaging Reporting and Data System, version 2.1.
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are needed. This approach holds the potential to reduce

unnecessary biopsies and overtreatment in those patients.
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