
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Abdelbaset Mohamed Elasbali,
Jouf University College of Applied Medical
Science Qurayyat, Saudi Arabia

REVIEWED BY

Husam Qanash,
University of Ha’il, Saudi Arabia
Hamad Alanazi,
Al Jouf University, Saudi Arabia

*CORRESPONDENCE

Liqun Yang

cysylq@swu edu.cn

Xiaoxue Ke

kexiaoxue@126.com

†These authors contributed equally to this
work

RECEIVED 21 April 2025
ACCEPTED 06 June 2025

PUBLISHED 09 July 2025

CITATION

Ghani MU, Du L, Moqbel AQ, Zhao E, Cui H,
Yang L and Ke X (2025) Exosomal ncRNAs in
liquid biopsy: a new paradigm for early
cancer diagnosis and monitoring.
Front. Oncol. 15:1615433.
doi: 10.3389/fonc.2025.1615433

COPYRIGHT

© 2025 Ghani, Du, Moqbel, Zhao, Cui, Yang
and Ke. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 09 July 2025

DOI 10.3389/fonc.2025.1615433
Exosomal ncRNAs in liquid
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Cancer’s aggressive nature and delayed diagnoses often result in poor prognoses

and limited treatment outcomes. Early detection, personalized treatments, and

effective monitoring are essential for improving cancer management. Traditional

tumor biomarkers, such as beta-2 microglobulin and Carcinoembryonic Antigen

(CEA), are often yield inaccurate and inconclusive results. Recently, exosomal

cargoes, especially non-coding RNAs (ncRNAs) such as microRNAs (miRNAs),

long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have gained

attention as promising tools for the early, non-invasive detection of cancer. For

instance, serum exosomal long ncRNA FOXD2-AS1 has demonstrated promising

diagnostic potential in colorectal cancer (CRC), achieving an overall AUC of 0.736

across all patients and an improved AUC of 0.758 specifically for early-stage CRC,

highlighting its effectiveness as a stage-specific biomarker for early detection and

clinical assessment. Similarly, exosomal lncRNA-GC1 has effectively

distinguished gastric cancer patients from controls and related conditions, with

AUCs exceeding 0.86, thereby outperforming traditional markers such as CA 72-

4, CEA, and CA19-9, which all scored below 0.79. Despite their great potential,

the clinical application exosomal ncRNAs remains limited. This review highlights

recent advancements in exosomal ncRNA research and their potential as

diagnostic markers, addressing both the opportunities and challenges for

clinical implementation.
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GRAPHICAL ABSTRACT
1 Introduction

Cancer is a multifaceted and formidable disease that presents a

significant risk to global health. It occurs when a cell’s genetic

material is mutated, leading to abnormal cell division and

unresponsiveness to the body’s natural defense system. Despite

significant research advancements over recent decades, it remains

the second most commonly diagnosed disease and the fifth leading

cause of death among non-infectious diseases worldwide (1).

Prompt diagnosis is crucial, as it significantly improves treatment,

prognosis, and overall survival (OS). Conventional approaches for

early diagnosis include biopsy (2), ultrasound imaging, computed

tomography (CT) scan (3), magnetic resonance imaging (MRI) (4),
Frontiers in Oncology 02
and markers in body fluids such as saliva, sweat, lymph, blood and

urine (5).

Physical screening techniques pose significant challenges in

cancer detection, such as high costs and the likelihood of false

diagnosis. For example, profiling early-stage malignancies, such as

CRC, may encounter challenges such as invasiveness, pain, and

potential bleeding, which could cause patients to hesitate to

undergo frequent examinations. Additionally, distinguishing

between colonic ischemia, ongoing clostridium difficile infection,

benign polyps, and malignant tumors increases the risk of

misdiagnosis (6). In these circumstances, liquid biopsy presents a

promising non-invasive method. By investigating markers such as

circulating free RNA (cfRNA) (7), circulating tumor cells (CTCs),
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tumor-derived vesicles (TDVs) (8), and exosomal ncRNA (9) found

within body fluids can enhance the ability to identify and evaluate

these oncogenic substances in the blood circulation, and offers a

promising approach for early detection.

Exosomes are small extracellular vesicles (EVs) that were

initially discovered in ovine reticulocytes in 1983 (10). At first,

they were considered as cellular waste, but later investigations

revealed that they originate from majority of cell subtypes and are

found in enriched culture medium and various body secretions (11,

12). They play a pivotal role in cell-to-cell interactions by targeting

specific receptors on recipient cells, encapsulate and transport

biomolecules such as enzymes, chemokines, cytokines, proteins,

and ncRNAs (12).

The ncRNAs, formerly thought to be transcriptional by-products

and considered as ‘junk RNAs,’ are now recognized as essential

regulators of biological functions. The differential expression of

certain ncRNAs such as miR-335, miR-383, miR-27a/b, and miR-

376c, in exosomes from patients with HER2-positive and triple-

negative breast cancer (TNBC), compared to healthy individuals,

highlights the importance of exosomal ncRNAs in cancer (13–15).

Additionally, the packaging of lncRNAs such asMALAT1, PCGEM1,

and FAL1 in exosomes affects cancer development and metastasis

(16, 17). Remarkable progress has been made in understanding the

role of ncRNAs in cancer; however, an important gap remains in

research regarding their specific prognostic potential. Most current

studies focus on the mechanistic role of ncRNAs, highlighting their

involvement in tumorigenesis and metastasis. However, the potential

of exosomal ncRNA cargo in exosomes to serve as reliable markers

for predicting clinical outcomes—such as survival, recurrence, and

treatment response—has not been explored. This article aims to

analyze the latest research developments and technological

breakthroughs in this field, presenting exosomal ncRNAs as novel,

non-invasive, highly specific, and sensitive prognostic markers for

various cancers. It also addresses key challenges for clinical

implementation, including standardization, sensitivity, specificity,

and the need for large-scale validation studies. Additionally, we
Abbreviations: HER2, Human epidermal growth factor receptor 2; ISEV,

International society for extracellular vesicles; LIM-domain only protein 7,

LIM-domain only protein 7; SOCS3, suppressor of cytokine signaling 3;

STAT3, Signal transducer and activator of transcription 3; VEGF, Vascular

endothelial growth factor; ZO-1, Zonula Occludens-1; PDCD4, Programmed

cell death 4; PTEN, Phosphatase and tensin homolog; NSCLC, Non-small-cell

lung cancer; ESCRT, Endosomal Sorting Complex Required for Transport;

MVBs, Multivesicular bodies; ILVs, Intraluminal Vesicles; ICAMs, Intercellular

Adhesion Molecules; VCAMs, Vascular Cell Adhesion Molecules; OSCC,

esophageal squamous cell carcinoma; SWI/SNF complex, Switch/Sucrose Non-

Fermentable complex; LNM, Lymph node metastasis; 2-DG, 2-Deoxy-D-glucose;

foxo1, forkhead box protein O1; LUAD, Lung adenocarcinoma; CAF-1,

Chromatin assembly factor; EMT, Epithelial-mesenchymal transition; CEA,

Carcinoembryonic antigen ; AFP, Alpha-fetoprotein; HK2, Hexokinase 2;

RNAi, RNA interference; ROC, Receiver operator characteristics; PGRMC1,

progesterone receptor membrane component 1 ; PSA, prostate-specific antigen;

HNSCC, Head and neck squamous cell carcinoma.
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present ongoing clinical investigations that provide a solid

foundation for the future exploration of exosomal ncRNAs as

promising tools in both diagnostics and therapeutic applications.
2 Exosome’s biosynthesis, principal
components, and distinct cellular role

Exosomes are small lipid bilayer vesicles that originate from

endosomes produced by nearly all cell types in the body. The

transformation of early endosomes into late endosomes is

significantly enhanced within cellular compartments, particularly

the Golgi apparatus. These late endosome compartments, also

known as multivesicular bodies (MVBs), are formed through two

evolving processes: the ESCRT-dependent pathway and the atypical

ESCRT-independent pathway. Both pathways involve membrane

invagination, leading to the formation of intraluminal vesicles

(ILVs) (18). The first pathways encompass more than thirty

proteins arranged into 4 families (ESCRT 0, to III) (19, 20).

ESCRT-independent pathways utilize the ceramide-mediated

trafficking module, demonstrating TSPAN6, CD81, and CD151

(21). Once generated, ILVs are either destroyed in the lysosome

following fusion with the late endosome or, in certain

circumstances, released as exosomes, a kind of extracellular

vesicle (EVs). According to the International Society for

Extracellular Vesicles (ISEV) in 2018 criteria, the standard name

of EVs is based on the biological composition, physical properties

(structural size and structural density), and precursor cell (22).

Exosomes contain a range of biologically active compounds,

such as proteins, fatty acids, enzymes, DNA, and ncRNAs (miRNA,

lncRNAs, circRNAs, snRNAs, snoRNAs, piRNAs, and tRFs).

Additionally, exosomes carry molecules related to the major

histocompatibility complex (MHCI & II), tetraspanins (TSPAN1,

TSPAN6, CD81, and CD151), adhesion molecules (ICAMs,

VCAMs), and membrane proteins like integrins and cadherins.

Recent studies suggest that cellular stress, such as oxidative damage

and hypoxic conditions within the tumor microenvironment trigger

a marked increase in exosome production. This enhancement is

particularly pronounced in tumor cells, which generate exosomes at

a significantly faster rate than normal cells, resulting in considerably

higher concentrations of exosomes in the bodily fluids of cancer

patients. Additionally, factors such as overexpression of p53,

elevated levels of heparanase, and increased Rab GTPase

enzymatic activity further stimulate exosome secretion. These

conditions not only increase the number of exosomes but also

change their content, making them valuable for non-invasive

diagnostic applications. Figure 1 illustrates the biogenesis of

exosomes and their molecular cargo.
3 Insights into exosomal ncRNAs

In the have previous decade, breakthrough progress in next

generation sequencing and genome annotation strategies has

unveiled numerous classifications of ncRNAs. They account for
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98% of human genome transcripts and are classified by length into

two categories: small non-coding RNAs (sncRNAs), which measure

fewer than 200 nucleotides (nts), and long non-coding RNAs

(lncRNAs), which exceed 200 nts (23–25). These ncRNAs are

classified into several types based on their compositional and

functional properties, including ribosomal RNAs (rRNAs),

microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular

RNAs (circRNAs), piwi-interacting RNAs (piRNAs), small nuclear

RNAs (snRNAs), and small nucleolar RNAs. Recent evidence has

shown that exosomes can encapsulate and transport a variety of

ncRNAs, particularly miRNAs, lncRNAs, and circRNAs, and the

aberrant behavior of these cargoes plays a crucial role in signaling

pathways involved in cancer progression and metastasis. MicroRNAs

such as miR-34a and miR-146a target PI3K and its downstream

components, such as mTOR and GSK-3b, promoting cellular

differentiation, proliferation, and invasion, which contribute to

cancer development (26). Exosomal miR-96 promotes tumor

growth, cellular invasion, angiogenesis, metastasis in lung cancer by

targeting LMO7 (27). Exosomal miR-216b-5p from gemcitabine-

resistant H1650 cells is transferred to specific cells, promoting cellular

differentiation, multiplication, and infiltration by targeting the SOCS3

(28). Exosomal miR-21 from human bronchial epithelial (HBE) cells

promotes neovascularization by stimulating STAT3 and inducing

VEGF expression (29). Additionally, serum exosomal miR-92b-5p

levels are associated with proangiogenic signaling in lungs cancer.

Non-Small Cell Lung Cancer (NSCLC) enhance angiogenesis by
Frontiers in Oncology 04
inhibiting the cell-cell adhesion protein ZO-1 via exosomal miR-

23a (30). They also release exosomal miR-214, which can promote

angiogenesis and accelerate lung cancer growth.

Similar characteristics have also been observed in lncRNAs,

which interact with transcriptional regulators, promotor sequences

of genes, and allelic site to influence signal transduction cascades,

thereby exerting either oncogenic or tumor-suppressive effects.

Interestingly, most lncRNAs can be easily traced in different body

fluids, making it a promising marker for early cancer diagnosis. For

instance (31), observed noticed that the levels of SAP30L-AS1 in

exosomes isolated from serum were upregulated in benign prostatic

hyperplasia (BPH), while higher SChLAP1 has been recorded in

prostate cancer (PC) as compared to BPH and normal control (32).

Accordingly, the prostate-specific antigen (PSA) was used to detect

the levels of SAP30L-AS1 and SChLAP1, which showed clear

distinction of their levels in benign and malignant cancers (33).

Likewise, the upregulated serum exosomal XIST levels in patients

with recurrent tiple- negative Breast Cancer (TNBC), compared to

those with non-recurring or post-operative TNBC, signify its

potential as a diagnostic marker for TNBC (34, 35). CircRNAs

can also serve as miRNA sponges, binding to miRNAs and reducing

their regulatory impact on mRNAs during transcription. Figure 2

comprehensively demonstrates the significant role of exosomal

ncRNAs in a broad spectrum of biological processes associated

with cancer, including tumor progression, metastasis, immune

evasion, and therapy resistance.
FIGURE 1

The first phase of the exosome biogenesis is endocytosis, contributing to early endosomes formation. Endosomes and specific cargoes are
subsequently wrapped in Multivesicular Bodies (MVBs). At final step, MVBs attach with the membranous structure and exosomes are exported to
extracellular matrix. The contents of exosomes (enzymes, proteins, DNA, ncRNAs) are transferred to target cells by direct fusion of membranes,
receptor interactions, and endocytic process.
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Considering the critical role of ncRNAs in cancer onset,

invasion, and metastasis as part of the complex cargo within

exosomes, we examined recent advancements in identifying

exosomal ncRNAs as potential non-invasive molecular markers

for pre-onset cancer detection. This analysis aims to enhance our

understanding of their potential as both diagnostic tools and

therapeutic targets. We compare the specificity, sensitivity, and

AUC score of exosomal ncRNAs to other cancer markers,

highlighting their potential for preemptive diagnostic tool.
3.1 Exosomes-derived microRNA

MicroRNAs (miRNAs) are small but important subset of small

ncRNAs. These are single-stranded molecules, typically around 22

nts in length, that influence transcriptional activity by binding to

open reading frames (ORF) or the 3′-untranslated region (UTR) of

the target mRNA (36, 37). So far, 2,654 mature miRNAs have been

recognized in humans (38). These miRNAs are involved in cellular
Frontiers in Oncology 05
functions under both normal and pathological conditions,

including cells growth, differentiation, apoptosis, and metastasis.

Compelling evidence shows that exosomal miRNAs play an

essential in driving tumor heterogeneity, promoting metastatic

potential, and influencing prognosis by interacting with mRNA

and negatively regulating its expression. For example, a significant

increase in serum exosomal miR-22 was observed in patients with

Oral Squamous Cells Carcinoma (OSCC), correlating with Stage

III/IV tumors, lymphoid metastasis, and cellular inflammation (39).

miR-22 is not only exclusive to OSCC; it may also serve as a marker

in various malignancies, including gastric, lung, colorectal, and

ovarian cancers (OC) (40–42). A panel of circulatory miRNA,

comprising four extracellular miRNAs—miR-205, miR-193a-3p,

miR-335, and miR-4732-5p—and seven exosomal miRNA

markers, including miR-26a, miR-223, miR-429, miR-1229, miR-

216b-5p, miR-1246, and miR-217-5p, demonstrated robust

proficiency with an AUC score of 0.92, accuracy of 93%, a PPV

of 96%, a sensitivity of 93%, and a specificity of 96% in screening the

pancreatic ductal adenocarcinoma (PDAC) (43, 44). Several
FIGURE 2

Tumor cells secrete exosomes that act as vehicles for the transport of ncRNAs. ncRNAs exert a wide range of effects on recipient cells, significantly
influencing tumor progression. (I) Exosomal ncRNAs activate oncogenic signaling pathways, upregulate cell cycle-related genes, and inhibit tumor
suppressor genes, thereby promoting rapid and unchecked tumor cell growth. (II) ncRNAs modulate the expression of drug-efflux pumps, and
reprogramming epigenetic markers, contribute to the pharmacoresistant. (III) Reshape the immune microenvironment by regulating cytokine
production, altering antigen presentation, and impairing the activity of cytotoxic T lymphocytes (CTLs), natural killer cells, and macrophages.
(IV) Influence biochemical cycles, for example glycolysis, lipid metabolism, and oxidative phosphorylation, to adapt the metabolic profile of cancer
cells for enhanced energy production and survival under nutrient-deprived conditions. The corresponding exosomal ncRNAs involved in these
processes are highlighted.
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miRNAs, including miR-26, miR-122, and miR-150, have been

identified as promising blood-based markers for the non-invasive

clinical assessment of cholangiocarcinoma (45).

A study utilizing combinations of exosomal miRNAs, such as

miR-21-5p and miR-24-5p, for lung cancer diagnosis has proven

highly effective in differentiating NSCLC from controls, during the

early phase. Furthermore, elevated level of exosomal miRNA such

as miR-222 and miR-7797 in lung adenocarcinoma (LAC) patients

were linked to lymphatic tissues metastasis and tumor severity,

while exosomal miR-126 proved effective in distinguishing clinically

normal control from early-phase NSCLC patients (45). As a

diagnostic marker for NSCLC, a panel of serum-derived four

miRNAs, comprising miR-205-5p, miR-9-3p, miR-1269a, and

miR-210-5p, achieved AUCs of 0.914 in the trainee cohort and

0.877 in the confirmatory cohort (46, 47). Remarkably, suppression

of miR-1269a and miR-205-5p inhibited tumor growth, invasion,

and angiogenesis by targeting the FOXO1 gene, underscoring their

diagnostic utility (48). In another study, plasma exosomal miRNAs

levels were examined in three different groups including lung

adenocarcinoma patients, healthy smokers, and those with

pulmonary granuloma. The study identified that miRNAs, such as

miR-200b-4p, miR-379, miR-192a-3p, and miR-139-5p, could

differentiate lung adenocarcinoma from pulmonary granuloma,

and the normal control group (49).

These miRNAs not only indicate the presence of cancer but also

correlate with the disease stage and prognosis (50). have demonstrated

that exosomes from MDA-MB-231 Breast cancer (BC) cell line

exhibited upregulation of miR-210, which stimulating angiogenesis

and cerebral metastasis in BC individuals. Survival outcomes are

typically poor in patients with BC cerebral metastases exhibiting

elevated miR-210 level. Interestingly (51), findings have highlighted

that aggressive metastatic cell can transfer their potential to non-

metastatic tumor cells through exosomal miRNAs. Exosomes

expressing miR-200a released by BC cells were shown to transmit

metastatic capabilities to non-metastatic cells, as established in

humanized xenograft mice models. Exosomes can transport miR-770

and miR-105, regulating BC cell migration and metastasis (52, 53).

miR-7641 has also been identified as non-invasive marker and a viable

therapeutic target for breast cancer (54, 55). Higher levels of serum

exosomal miR-373 have been associated with TNBC and may serve as

valuable prognostic marker (56). BC patients exhibited elevated levels

of exosomes containing miR-1246 and miR-21 in their plasma

compared to normal controls (57, 58). Additionally, miR-155 acts as

an oncogenic signal transmitted through secreted exosomes, facilitating

intercellular communication and enhancing the aggressiveness of

breast cancer (59, 60). It has been demonstrated that major changes

in the exosomal content and miRNA levels are observed when

comparing Lung’s adenocarcinoma (LUAD) patients to healthy

controls. A notable degree of similarity was observed between the

miRNA profiles derived from plasma exosomes and those originating

from tumors. These findings suggest that exosomal miRNAs could play

a pivotal role in the early detection of LUAD, although further research

is needed to explore their broader diagnostic and prognostic

implications (61). Exosomal miRNAs not only show promise as

biomarkers for early-stage tumor detection, but also as predictive
Frontiers in Oncology 06
indicators for monitoring tumor behavior, treatment response, and

the potential for metastasis. Diagnostic models utilizing exosomal

miRNAs have predominantly been validated through ROC curve

analysis (62–64), which assesses diagnostic accuracy by evaluating

the specificity and sensitivity of the model. Higher specificity and

sensitivity reflect an improved ability to accurately identify both

positive and negative cases. Moreover, a larger AUC score signifies

better overall diagnostic performance (65, 66).
3.2 Exosomes-derived long ncRNA

The synthesis of exosomal lncRNAs has not been fully

elucidated. However, it is assumed that a considerable proportion

of lncRNA transcripts may contain transposable elements (TEs),

implying that they formed via TE insertion into the genetic makeup

(67, 68). RNA polymerase II frequently synthesizes lncRNAs from

intergenic regions, ORFs, or exonic portions of the genomic

material (69). The transcription of lncRNAs typically begins at

divergent promoters, which vary depending on the RNA’s

directionality. Several lncRNAs are transcribed in the opposite

direction from the enhancer regions of genes involved for protein

synthesis. These proteins accelerate the transcription process

through chromatin remodeling complexes (such as SWI/SNF)

and are inhibited by CAF-1 (70, 71). The positioning of the U1

spliceosome and the 3’ UTR at bidirectional transcription sites is

uniquely organized, promoting mRNA splicing in one direction

while facilitating lncRNA splicing and adenine tail addition in the

opposite direction. lncRNAs are distributed across various cellular

regions, including chromatin, nuclear compartment, and the

intracellular matrix.

lncRNAs are frequently found in various types of cancer, and

their atypical expression and sequence variability are related with

oncogenesis. Substantial evidence from research highlights that

exosomal lncRNA us uniquely expressed in bodily fluids of

various tumors. H19 lncRNA, once recognized for its tumor-

suppressive role, is now associated with the activation of lung,

breast, and head-and-neck cancers, as well as promoting cell growth

and proliferation in bladder and hepatocellular carcinoma (HCC)

(72–74). The lncRNA LINC00152 was first identified in exosomes

produced by HCC in 2013. Since then, it has been shown to

contribute to tumor cell adherence and proliferation (75).

Normal cells released exosomal PTENP1, which was transferred

to breast cancer cells and suppressed malignant growth. It has been

shown to have significantly lower levels in breast cancer tissues,

demonstrating strong potential to distinguish individuals with breast

cancer from normal controls, with an AUC score of 0.744 (76).

Exosomal NEAT1 has been shown to contribute to the tumorigenic

characteristics of gastric cancer (GC) in both in vivo and in vitro

studies, not only by suppressing p53 through UBE3C and RAD18,

but also by downregulating the tumor suppressor protein TP53INP1,

thereby stimulating epithelial-mesenchymal transition (EMT) (77).

Exosomal LINC01133 is strongly associated with increased tumor

size and metastatic behavior, establishing it a viable diagnostic tool of

GC (78). Serum exosome-associated lncRNA NNT-AS1 has been
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identified as a driver of oncogenesis in CRC via the miR-496/RAP2C

signaling pathway. It also shows potential as a biomarker, with an

Area Undercurve (AUC) of 0.7908 for recognizing CRC patients and

healthy individuals (79). TTN-AS1 serum exosomal lncRNA were

over expressed in biliary carcinoma patients, and this overexpression

was implicated with the TNM and LNM stage of biliary carcinoma

patients (80, 81).

MALAT1 lncRNA was considerably elevated in plasma

exosomes, showing an AUC of 0.701, distinguishing NSCLC

patients from control. Additionally, MALAT1 was found to have

a strong association with TNM stage and lymph node invasion (82).

MALAT1 has also been designated as the first exosomal lncRNA

marker for Wilms’ tumor, a rare tumor of the kidney, showing

lower expression in urine and plasma-derived exosomes (83). Using

a multivariable logistic regression model, a panel of three lncRNAs

consisting of SNHG16, UBC1, and PCAT1 was designed. The panel

revealed diagnostic effectiveness for BC with substantially increased

AUC values, attaining a value of 0.856 in the training dataset and

0.827 in the confirmatory dataset, showing greater accuracy than

Urinary cytopathology (84–86). A four-lncRNA panel (POU3F3,

UCA1, PEG10, and ESCCAL-1) within exosomes has been used for

diagnosing esophageal squamous cell carcinoma (ESCC). This

panel demonstrated strong efficacy, achieving an AUC score of

0.852 in the confirmatory phase. It has also proven effective in

differentiating between disease stages. Kaplan-Meier analysis

showed that higher levels of POU3F3 and UCA1 correlate with

decreased survival outcomes (87–89). Moreover, Linc-POU3F3

may be a distinct prognostic maker for ESCC patients, with a

significant p-value of 0.005 (90).

In an investigation comprising over 200 people, serum

exosomal FOXD2-AS1, XLOC-009459, and NRIR levels were

considerably elevated in CRC patients. The overall AUC score for

all CRC patients was 0.736, while the score for early-stage CRC

patients was 0.758, indicating that these markers can be effectively

used for stage- specific assessment (91). A panel of four lncRNAs—

GACAT2 (HMlincRNA717), GHSROS, HOTAIR, and TP53COR1

(lincRNA-p21)—achieving an outstanding AUC score of 0.937 in

differentiating NSCLC from normal controls, highlighting its

exceptional diagnostic potential (92, 93). A machine learning

algorithms-based panel comprising twenty exosomal lncRNAs

was created and examined for OC detection, indicating

upregulation of exosomal lncRNAs associated with a poorer

overall survival outcome (94). Exosomal-derived lncRNA-GC1

successfully differentiated GC patients from normal individuals,

gastric ulcer patients, and those with enteric epithelial metaplasia,

with AUC scores of 0.8861, 0.8682, and 0.8735, respectively. In

comparison, conventional markers such as CA 72-4, CEA, and

CA19–9 showed AUC scores below 0.8 in all tests. Notably,

exosomal GC1 demonstrated an AUC score of 0.9022 in GC

patients with negative CEA, CA 72-4, and CA19-9, highlighting

its potential for early and effective screening of GC (95–97).

Exosomal lncRNA GAS5 plays a significant role in tumor

suppression, and its reduced expression in NSCLC cells may

result in activation of oncogenic pathways. Among a sample of

104 patients, GAS5 demonstrated strong diagnostic performance in
Frontiers in Oncology 07
differentiating NSCLC from normal controls, achieving an AUC

score of 0.919 when combined with CEA. It is important to note

that reduced levels of GAS5 are also associated with cancer

development and advanced TNM stages. Exosomal lncRNA RP5-

977B1 also has demonstrated significant diagnostic potential by

effectively distinguishing NSCLC from both normal controls and

lung tuberculosis, outperforming the traditional marker CEA (98).

In the initial phase, a higher concentration of the unique exosomal

lncRNA PEG10 was identified in NSCLC patients compared to

controls, efficiently distinguishing early-phase (I & II) NSCLC cases

from the reference group with an AUC score of 0.8650 (88, 99).

LncRNA CEBPA-dT (formerly CEBPA-AS1 or LOC80054) is

significantly elevated in GC cells, and its presence in serum

exosomes is associated with the cancer stage (TNM), increasing

with more aggressive carcinomas. CeBPA-dT had a higher AUC

score of 0.723 compared to convention GC markers including CA-

125, ca 72-4, and CEA (100). Exosomal CRNDE was significantly

associated with LNM, metastatic status, and survival outcomes. It

demonstrated strong diagnostic performance in distinguishing CRC

patients from individuals with non-invasive infections and healthy

controls, achieving an AUC score of 0.791, sensitivity of 71.4%, and

specificity of 93.3%. In contrast, CEA analysis revealed an inferior

AUC score of 0.689, with sensitivity and specificity of 38.15% and

87.16%, respectively (101). Lnc-GNAQ-6:1 has been shown to be

downregulated in gastric cancers and could serve as a potential

target marker for GC screening, achieving AUC greater than the

standard CEA and CA 72–4 markers (102). Characterization of

exosomal ncRNA led to the identification of lncUEGC1, which

achieved an AUC score of 0.876 for plasma-derived exosomes,

effectively distinguishing stage I and stage II gastric cancer (GC)

patients from normal individuals. This performance surpassed that

of serum CEA, which had an AUC of 0.6614. This method

effectively differentiates stage I GC patients from both normal

controls and persistent atrophic gastritis patients, as well as from

those with chronic disease in the first stage of GC (103). Increased

expression of ENST00000457302.2 and LINC00635 in

hepatocellular carcinoma (HCC) is associated with lymph node

metastasis (LNM), TNM stage, and overall survival (OS). Their

concentrations significantly decrease after surgical procedures,

suggesting their potential utility in monitoring disease

progression or recurrence. Additionally, these exosomal lncRNAs

shows considerable effectiveness in differentiating HCC from

persistent hepatitis B, achieving an AUC score of 0.794 when

combined with plasma Alpha Fetoprotein (AFP) (104). It was

found that the lncRNAs COPB2-DT (ENST00000457302.1) and

ENST00000440688.1 were overexpressed in HCC patients

compared to the healthy controls (HC) and chronic hepatitis

(CH) groups, highlighting their potential as biomarkers for HCC

diagnosis and progression (105). When combined with AFP, these

lncRNAs efficiently differentiated HCC patients from both chronic

hepatitis (CH) and healthy controls (HC), achieving AUC scores of

0.906 and 0.878, respectively. Furthermore, the three-lncRNA

group, when paired with AFP, demonstrated strong predictive

capacity for HCC invasion, with an AUC score of 0.871. The

combination of lncRNA THEMIS2-211, and LINC02418 results
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in a high AUC score of 0.877 (106). Exosomal LINC-PINT

outperforms AFP in efficiently diagnosing patients at an early

stage, especially stage I patients (107). Exosomal HOTTIP

expression was found to be higher in Gastric Cancer (GC)

patients, with a significant correlation to the extent of invasion

and TNM stage. Furthermore, elevated exosomal HOTTIP levels

were associated with suboptimal overall survival, and its

upregulation has been identified as a distinct risk factor in GC

patients. Moreover, HOTTIP shows potential as a marker for GC,

serving as both a screening and predictive tool (103).

Studies have demonstrated that lncRNAs isolated from urinary

exosomes serves as an effective marker for detecting bladder cancer,

indicating their potential for use in non-invasive diagnostic

methods. Individuals with bladder cancer show upregulation of

urinary exosomal lncRNA SNHG16. Interestingly, lncRNA

SNHG16 demonstrated superior diagnostic precision with an

AUC score of 0.792, substantially surpassing the standard

approach of urine cytopathology (108). TALAM1, lncRNA-

FAL1, TTN-AS1, and UCA1 are additional urine-derived

exosomal lncRNAs that distinguish cancer patients from normal

controls. In addition, a panel consisting of the four lncRNAs and

nuclear mitosis related proteins were created, showing strong

prognostic ability with an AUC score of 0.851 (109). Significant

relationships were also discovered between tumor severity and the

lncRNAs UCA1 and MKLN1-AS level. Prostate cancer patients

with upregulation of PC-derived exosomal lncRNA FGD5-AS1d are

associated with poor prognosis and have been shown to activate

M2-type macrophage activation via the NF-kB/STAT3 signaling,

leading to malignant behavior (110). This discovery paves the way

for new opportunities in cancer detection and surveillance, offering

less invasive diagnostic approaches with the potential to improve

patient outcomes through timely interventions.
3.3 Exosomes-derived circular RNAs

CircRNAs represent a unique class of ncRNAs, distinct from the

more common linear structures found in most ncRNA species.

They form covalently closed, continuous loops, lacking the typical 5’

to 3’ polarity and poly(A) tails. They are synthesized through

alternative splicing pathways, specifically via head-to-tail back

splicing. Their Production is regulated by elements that function

both locally (cis-acting) and form a distance (trans-acting).

Complementary pairing sequences, including Alu motif, intronic

complementary sequences (ICSs), reverse complementary matches

(RCMs), are frequently present within the Intronic flanking

sequences of circularizable exons. Circularization of exons can be

facilitated by introns containing reverse complementary repeat

sequences that are shorter than 100 nucleotides (111). It plays

pivotal role in regulating gene expression by influencing both gene

transcription and post-transcriptional processes. CircRNAs show

enhanced resistance to RNase degradation and greater stability

compared to linear RNA transcripts. This distinctive feature

makes them highly valuable as markers for cancer detection.
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From a functional perspective, circRNAs play diverse roles in

cancer biology, influencing tumorigenesis through various pathways.

Some circRNAs act as oncogenes, promoting oncogenesis and tumor

progression. For instance, CircHIPK3 has been implicated in the

pathogenesis of intrahepatic cholangiocarcinoma (iCCA) and breast

cancer (BC), where it contributes to tumor growth and metastasis

(112). In contrast, other circRNAs function as tumor suppressors.

For example, circMTO1 has been shown to inhibit tumor

progression in hepatocellular carcinoma, while circFNDC3B plays

a suppressive role in bladder cancer (113). These examples highlight

the complex and multifaceted roles circRNAs play in cancer biology,

influencing both tumor development and suppression by regulating

key cellular pathways. Further evidence supporting the potential

of circRNAs in personalized oncology is seen in their differential

expression across various cancers. For example, circ-0001821

is downregulated in GC tissues but upregulated in CRC

tissues (114). This unique expression pattern suggests that circ-

0001821 could be a promising diagnostic marker or therapeutic

target, underscoring the potential f circRNAs in personalized

cancer treatments.

Research has shown that circRNAs are abundant and stable in

exosomes, as confirmed through qRT-PCR analysis of tumor-

associated tissues. Notably, the levels of circ-KLDHC10 were

significantly higher in the plasma of CRC-positive patients

compared to normal controls (115). Additionally, malignant brain

tumor associated microglia-secreted exosomal circKIF18A

influences nuclear trafficking in human brain microvascular

endothelial cells (HBMECs) and enhance angiogenesis in

Glioblastoma (116). Serum exosomal circRNA-100284,

upregulated in cisplatin-resistant lung carcinoma cells, sponges

miR-122 and increases HK2 function to stimulate glycolytic

activity and cancer progression. Combining si-circ-0008928 with

2-DG may optimize the therapeutic responses. Exosomal ciRS-122

from oxaliplatin-adaptive CRC cells may be transferred to

susceptible cells, where it targets miR-488 and upregulates PKM2,

enhancing glycolysis and contributing to drug resistance. Likewise,

circFOXK2 stimulates the Pyruvate Dehydrogenase Complex

(PDC) pathway and influences the miR-484/Fis1 axis in HCC,

contributing to mitochondrial fragmentation, oxidative glycolysis,

and pulmonary metastasis (117). The Warburg effect drives

chemotherapy-resistant glioma cells to release exosomal circ-

0072083, thereby enhancing resistance to Temozolomide.

Research has shown that CircHIPK3 is significantly

overexpressed in a wide variety of cancers, including those of the

kidneys, gastrointestinal tract, liver, lungs, gallbladder, pancreas,

cervix, and ovaries. This widespread overexpression suggests that

CircHIPK3 plays a crucial role in oncogenesis across different

tissues. Furthermore, RNAi-mediated silencing of CircHIPK3 has

been shown to effectively suppress cellular growth in CRC,

highlighting its potential role in regulating cellular development

and its promise as a therapeutic target. Further investigations have

revealed that CircHIPK3 acts as a sponge for miRNAs, influencing

various aspects of tumor growth, including heterogeneity,

proliferation, invasiveness, and metastasis. Additionally,
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TABLE 1 List of exosomal ncRNAs, including details on their sources, methods for diagnostic assessment, corresponding tumor types, expression patterns, area under curve, and source study.

Exosomal ncRNA Source Diagnostic methods Tumor type Expression Characteristics AUC score Reference
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Exosomal ncRNA Source Diagnostic methods Tumor type Expression Characteristics AUC score Reference
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CircHIPK3 was found to be downregulated in bone cancer,

correlating with decreased overall survival. Its expression levels

were also linked to the progression of musculoskeletal tumors, as

indicated by the Enneking stage, and to pulmonary involvement.

ROC analysis indicated that CircHIPK3 could be a potential

diagnostic marker for bone cancer, with an AUC score of 0.784

(118, 119). CircSHKBP1 promotes GC development by elevating

HUR and VEGF expression through the suppression of HSP90 and

the sponging of miR-582-3p, thereby disrupting STUB’s activity

(117). Exosomal circ-0000735 was shown to be overexpressed in

patients with NSCLC, facilitating tumorigenesis and metastatic

progression by sequestering miR-21 and targeting ADAM19

(120). Overexpression of plasma exosomal circ-ATP8A1 in GC

patients has been linked to cancer Immune evasion, advanced

tumor stage, metastasis, poor clinical outcome. circ-ATP8A1 also

trigger M2 macrophage polarization via circATP8A1–miR-1-3p–

STAT6 cascade, thereby enhancing GC migration (121).

While individual circRNAs have proven reliable for cancer

detection, sets of circRNA markers have demonstrated even

greater potential in enhancing diagnostic accuracy and outcomes.

A panel of two circRNAs (circ-0058124 and circ-RAPGEF5) were

used to diagnose individuals with papillary thyroid cancer (PTC).

To evaluate the clinical utility of this group in greater detail for

discriminating between PTC and non-malignant individuals, the

results demonstrated its effectiveness in distinguishing PTC from

lymphadenopathy, goiter, and neck lumps. The group attained an

AUC score of 0.806, with sensitivity and specificity of 81.2% and

64.1%, respectively, for PTC (122). A set of three circRNAs,

comprising circABCC2, circCCDC66, and circPVT1, exhibited

substantial downregulation in CRC patients. The findings also

suggest that circABCC2 and circPVT1 are useful for identifying

dysplasia, non-cancerous hyperkeratosis, surgical intervention, and

grading CRC (123, 124). A Panel of serum circRNA (circ-CDR1as

and circCCDC66) demonstrated greater diagnostic accuracy for

AFP-tive HCC and AFP-tive early-phase HCC. The panel also

exhibited an AUC score of 0.763 for HCC, whereas the AUC score

for AFP was 0.791. When integrated two circRNA marker dataset

with AFP, the AUC score can be raised to 0.864. For diagnosing

small HCC, the circRNA dataset exhibited an AUC score of 0.861,

whereas the integrated panel achieved an AUC score of 0.874 (125).

The upregulation of circ-0034398 in esophageal squamous cell

carcinoma (ESCC) was found to be associated with anaplastic

features, tumor staging, and TNM score, as reported by (124).

Their findings also showed that patients with high-grade, poorly

differentiated tumors had higher levels of circ-0067934.

Additionally, patients with early-stage TNM (I-II) cancer

exhibited higher circ-0067934 expression compared to those with

advanced stages (III-IV) (126). CircRNA-100290 was found to be

suppressed in GC tissues, expression patterns were markedly

correlated tumor staging, metastatic spread, gender, and age

group in BC. CircRNA-100290 has an AUC score of 0.729, 70%

specificity, and 70% sensitivity, rendering it a viable marker for

BC detection.

Depending on the presence or absence of target molecules such

as androgen receptors, PGRMC1, and the PI3K/AKT/mTOR
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pathway, breast cancer is most commonly classified into three

categories: estrogen receptor (ER)-positive/ERBB2-positive,

ERBB2-negative, and triple-negative breast cancer. Few tumor-

associated circRNAs were frequently observed in BC subgroups,

while others exhibited distinct molecular signatures. The studies

indicated that the ER-stimulated BC subgroups have a greater

number of circRNAs in the paraneoplastic lesions compared to

oncogenic tissues (126). These findings highlight that circRNAs

exhibits exceptional selectivity, sensitivity, and reliability, making

them as promising candidates for early cancer detection.
3.4 Other exosomal ncRNAs

Some exosomal ncRNAs, along with the well-known miRNAs,

lncRNAs, and circRNAs, also have significant impacts on tumor

characteristics. For example, tRNA-derived fragments (tRFs) are a

subset of ncRNAs formed when endoribonucleases cleave tRNA

precursors. Previous studies suggest that tRFs may act as post-

transcriptional modulators, functioning similarly to miRNAs or

interacting with RNA-binding proteins. tRFs also influence

translational activity by inhibiting ribosome biogenesis and

initiation, thereby impacting the overall efficiency of protein

synthesis. tRFs have been identified as aberrantly expressed in

tumor tissues, playing a crucial role in cancer development,

metastasis, invasion, and neovascularization through various

signaling pathways. As a result, these extracellular tRFs are

considered promising markers for cancer diagnosis and outcome

prediction, particularly in liquid biopsy-based evaluations (127).

The saliva of patients with ESCC exhibited an overexpression of

exosomal 5’-tRNA-GlyGCC and an unidentified ncRNA sRESE,

both of which were linked to metastasis, migration, and cell

proliferation. The AUC score for the two ncRNAs were 0.877 and

0.872, respectively, and 0.934 when used in combination,

demonstrating their viability for ESCC diagnostics (87, 128).

Research has shown that plasma exosomal levels of tRNA-

GluCTC-5, tRNA-GlyTCC-5, and tRNA-ValTac-3 were

substantially increase in patients with hepatic cancer. This

highlights the potential of circulating exosomal tsRNA as a

valuable marker for the preliminary screening of hepatic cancer,

distinguishing it from non-benign conditions such as cirrhosis,

primary sclerosing cholangitis (PSC), and drug-induced liver injury

(DILI), offering a significant opportunity for improved diagnosis

and patient outcomes (129).

It has been observed that Ser-TGA-001, tRF-Gly-CCC-008,

tRF-Glu-CTC-003, tRF-Ser-TGA-002, and tRF-Leu-CAA-003

were found to be markedly suppressed in plasma isolates of

patients with pre-invasive BC (130, 131). In another study,

NSCLC patients exhibited significantly lower levels of tRF-Lys-

CTT-049, tRF-Leu-TAA-005, tRF-Trp-CCA-057, and tRF-Ala-

AGC-036 in plasma exosomes compared to non-exosomal

supernatants. Downregulation of exosomal tRF-Ala-AGC-036 is

closely linked to the T/N stage, providing a crucial means to

differentiate between patients with preliminary stage and those

with late-stage NSCLC (132).
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The differential expression of tRFs in early and late-stage

cancers, such as NSCLC, highlights their potential utility in

disease stratification and monitoring progression. These findings

pave the way for developing multi-marker sets, such as bi-ncRNA

combinations, for more precise and personalized cancer

diagnostics. Collectively, these insights establish exosomal tRNAs

and tsRFs as powerful tools for advancing liquid biopsy-based

approaches, offering a minimally invasive, highly accurate, and

practical avenue for cancer management and patient care. A

comprehensive list of available exosomal ncRNAs is presented

in Table 1.
4 Clinical application, and challenges

4.1 Clinical applications

For many reasons, exosomal ncRNAs hold exceptional

capability as diagnostic and prognostic markers in cancer. Firstly,

numerous investigations have shown that exosomal ncRNAs are

often dysregulated in various types of malignancies. Secondly, they

reflect the molecular signatures of the cells from which they are

derived. Thirdly, they have ability to represent the molecular

contents and genetic alterations present not only in the primary

tumor but also in metastatic sites. Currently, they are being

explored to provide real-time insights into tumor progression. For

example, lncRNA PC antigen-3 (PCA-3), approved by the FDA in

2012 as the PROGENSA PCA-3 assay, serves as a urine-based

marker for Prostate Cancer (PC) by measuring the ratio of PCA3 to

prostate-specific antigen (PSA) levels (161). Exosomal PCA-3
TABLE 2 Clinical research exploring the diagnostic significance of
exosomes derived ncRNAs.

Clinical Trail Research
status

Tumor
type

ID
Number

Exosome-derived liquid
Biopsy for Primary liver
cancer (ELUCIDATE)

Recruiting
since 2024

HCC NCT06342414

Colorectal Cancer diagnosis in
early stage
(ENCODE)

Recruiting
since 2024

CRC NCT06342401

Exosomal miRNA Profiling for
Evaluating Prostate
Cancer Aggression

Completed
2021

PC NCT03911999

Adenomatous Polyps and
Colorectal Cancer (AACRC)

Recruiting
since 2024

AA/CRC NCT06342440

Exosomal miRNA in serum for
Therapeutical interventions

Recruiting
since 2024

SCC NCT05854030

LNM diagnosis in Intrahepatic
Cholangiocarcinoma (LyMIC)

Recruiting
since 2024

ICC NCT06381648

Serum exosomal lncRNAs as
Potential
markers for pulmonary
Tumor characterization

Completed
2021

LC NCT03830619
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showed significant upregulation following a physical rectal

evaluation, with diagnostic effectiveness surpassing that of PCA-3

obtained from cellular pellets, highlighting its potential as an

exceptionally reliable marker (162). Additionally, exosomal

lncUEGC1 demonstrates superior diagnostic value compared to

conventional serum CEA in early-stage gastric cancer patients.

While PCA3 and lncUEGC1 have successfully transitioned into

clinical application due to their robust validation, ease of

implementation, and regulatory approval, exosomal ncRNAs face

substantial challenges, including regulatory uncertainty, validation
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bottlenecks, and significant barriers to real-world integration.

Addressing these obstacles will require the development of

standardized protocols, further comprehensive clinical trials to

solidify their clinical utility, and the establishment of clear

regulatory frameworks to enable the widespread adoption of

exosomal ncRNAs as reliable cancer biomarkers, as summarized

in Table 2. Additional characteristics, such as the high stability of

exosomal ncRNAs in bodily fluids, further enhance their reliability

as markers. Enclosed within the protective lipid bilayer of exosomes,

they are shielded from enzymatic degradation, allowing them to
IGURE 3F

Methodological framework for investigating ncRNAs as markers and therapeutic targets in cancer. Initially, hallmark phenotypic characteristics,
including sustained proliferative signaling, angiogenesis, and metastatic potential, are evaluated. ncRNA cargoes, such as miRNAs, lncRNAs, circRNAs,
and tsRFs are isolated from EVs present in various body fluids using liquid biopsy techniques. qPCR, qRT-PCR is employed for transcriptomic
profiling, followed by functional characterization of ncRNAs by siRNA/shRNA Knockdown, RNA-seq/Microarrays and CRISPR/Cas9. The diagnostic
utility is evaluated through metrics such as AUC scores and ROC curve analysis to determine sensitivity and specificity, alongside assessments of
recurrence rates and overall survival (OS) outcomes. Finally, ncRNAs with established roles are prioritized for therapeutic interventions through
strategies such as antisense oligonucleotides (ASOs) and RNA-based therapeutics.
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endure cryogenic temperature shifts and thermal robustness at −25°

C for up to five years. This durability ensures that exosomes can

serve as a consistent and dependable source of ncRNAs, enabling

long-term preservation and recovery for diagnostic applications.

Figure 3 illustrate a comprehensive approach to target ncRNAs as

both cancer biomarkers therapeutic agents.
4.2 Challenges

Exosomal ncRNAs face several significant challenges that

hinder their clinical application, particularly in the areas of

biology, technical execution, and regulation. Biologically, the

intricate roles of exosomal ncRNAs in various cellular pathways

complicate their functional evaluation. The differential expression

of these ncRNAs across different organs further reduces their

specificity as reliable diagnostic markers. For instance, exosomal

lncRNA SNHG15 is elevated in multiple tumor types, but its

expression is also observed in normal cells, reducing its diagnostic

exclusivity. Similarly, miR-425-5p exhibits higher expression in

PDAC patients compared to adjacent tissues, but its predictive

value varies across different cancer types, complicating its role in

cancer diagnostics. Additional variability is seen with miR-20b-5p,

which is downregulated in early NSCLC but upregulated in prostate

cancer patients’ ejaculate. This kind of contextual variability, along

with the inherent heterogeneity of tumors and the lack of symptoms

before metastasis, further complicates the accurate early diagnosis

of cancer.

Technically, a major challenge in utilizing exosomal ncRNAs as

diagnostic markers lies in the limited understanding of how

ncRNAs are packaged into exosomes. The mechanisms behind

the selective packaging of ncRNAs into exosomes remain poorly

understood, making it difficult to standardize and reproduce results

for diagnostic purposes. Furthermore, while exosomes containing

ncRNAs are often tested in controlled environments, it remains

uncertain whether the levels of ncRNAs in these exosomes reflect

actual physiological conditions in vivo. Another critical technical

barrier is the small sample sizes commonly used in many studies,

which restrict the generalizability of the findings and hinder the

establishment of reliable diagnostic thresholds. Additionally, some

exosomal ncRNAs show limited diagnostic effectiveness due to low

sensitivity and specificity. For example, the sensitivity of saliva-

derived exosomal miR-517a-3p and miR-486-3p in detecting head

and neck squamous cell carcinoma (HNSCC) was found to be only

18% and 44%, respectively, severely limiting their practical utility

in diagnostics.

Regulatory challenges also pose significant obstacles to the

clinical use of exosomal ncRNAs. The absence of standardized

methods for isolating exosomes and profiling ncRNAs leads to

variability in exosome populations, which affects the reliability and

reproducibility of results. Moreover, there are currently no

universally accepted guidelines for the normalization of exosomal

ncRNA data, complicating cross-study comparisons and validation

efforts. The regulatory framework for exosome-based diagnostic
Frontiers in Oncology 14
assays is still unclear, with no established criteria for assay

validation or clinical utility. This regulatory uncertainty slows

down the approval process and impedes the adoption of

exosomal ncRNAs as clinically validated diagnostic markers.

Therefore, there is a pressing need for clear regulatory guidelines

and standardized protocols to facilitate the integration of these

biomarkers into clinical practice.
5 Conclusion

Exosomal ncRNAs hold promising potential as diagnostic and

prognostic markers for cancer, thanks to their unique properties,

such as stability, specificity, and ability to reflect the molecular

characteristics of primary and metastatic cancers. Their

encapsulation in exosomes protects them from enzymatic

degradation, making them a valuable resource for liquid biopsy-

based diagnostics. However, several challenges must be addressed

before their clinical integration. The intricate roles of exosomal

ncRNAs in cellular pathways, along with their differential

expression across various organs, complicate both their functional

evaluation and diagnostic utility. To overcome these obstacles, there

are key next steps required. Clinical standardization is essential,

including the development of standardized protocols for exosome

isolation, ncRNA profiling, and data normalization to ensure

consistency and reproducibility across studies and clinical

settings. Additionally, deeper functional studies are necessary to

understand the specific roles of exosomal ncRNAs in cancer

progression and their differential expression across different

cancer types and tissues, improving their specificity and accuracy

as biomarkers. Lastly, bioinformatics integration will play a critical

role by applying advanced data analysis tools to integrate multi-

omics information, improving the identification and validation of

exosomal ncRNA signatures. By addressing these challenges,

exosomal ncRNAs have the potential to revolutionize cancer

diagnostics, enabling early detection and personalized treatment

through non-invasive and highly accurate biomarker systems.
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