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Metabolome profiling by
untargeted metabolomics
and biomarker panel selection
using machine-learning for
patients in different stages of
peripheral neuropathy induced
by oxaliplatin
Yu-jiao Hua1,2,3†, Ying Zhang4†, Rui-Rong Wu4†, Juan Lv1,
Yan Zhang1, Yan-yan Chen5*, Yong-juan Ding3*

and Jing-hua Chen1,2*

1School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu, China, 2School of
Chemical & Material Engineering, Jiangnan University, Wuxi, Jiangsu, China, 3Department of Clinical
Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China, 4Department of Medical
Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China, 5Cancer Institute, Institute
of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi,
Jiangsu, China
Background: Oxaliplatin-induced peripheral neuropathy (OIPN) poses a

significant challenge for patients with colorectal tumor, often resulting in

treatment interruption or discontinuation and subsequent treatment failure.

Herein, a longitudinal untargeted metabolomic study to reveal the metabolomic

profiles and biomarkers associated with the progression of OIPN.

Methods: A prospective cohort of 129 colorectal cancer patients receiving

oxaliplatin-based chemotherapy was stratified into four OIPN severity grades

(Level 0-3). Serum samples underwent untargeted LC-MS/MS metabolomic

analysis, detecting 521 metabolites. Multivariate statistical models and SHAP-

guided random forest algorithms were employed to prioritize biomarkers.

Machine learning validation included six classifiers assessed via ROC-AUC.

Results: The cumulative dose of Oxaliplatin chemotherapy plays an important

role in OIPN. At the same time, our findings implied that the occurrence of OIPN

may be associated with the progression of the disease and the patients’ tumor

markers (CEA, CA19-9, CA72-4), as well as immune response and inflammation

(ANC, PLT), and metabolic and liver function abnormalities (GGT and UA)

(P<0.05).Multivariate statistical analysis combined with SHAP-guided machine

learning identified six biomarkers, including thiabendazole, 1-methylxanthine,

imidazol-5-yl-pyruvate, 5-hydroxypentanoic acid, spermidine, and 4’-

oxolividamine that consistently distinguished OIPN patients (Level 1-3) from

non-OIPN controls (Level 0). Machine learning models, validated across six

classifiers, demonstrated near-perfect discrimination for early-stage OIPN

(AUC nearly 1). However, differentiation between intermediate OIPN grades

(Level 1 vs 2, Level 1 vs 3, Level 2 vs 3) yielded lower predictive accuracy (AUC:

0.549–0.843), likely due to cohort size limitations and reliance on subjective

sensory-based grading. Pathway enrichment analysis highlighted dysregulation
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Abbreviations: ABC, Absolute Basophil Count; AFP, A

Albumin; ALT, Alanine Aminotransferase; ALC, Absolu

ANC, Absolute Neutrophil Count; CA-125, Carbohydrat

Carbohydrate Antigen 19-9; CA72-4, Carbohydrate

Carcinoembryonic Antigen; CHE, Cholinesterase; Cr, C

Bilirubin; DEMs, differentially expressed metabolites; EO

Count; FC, fold change; Fe, Iron; GDH, Glutamate

Gamma-Glutamyl Transpeptidase; GLU, Glucose;

Lipoprotein Cholesterol; HGB, Hemoglobin; KEGG, K

Genes and Genomes; LDL-C, Low-density Lipoprotei

Liquid chromatography-mass spectrometry; L-OHP,

tandem mass spectrometry; OIPN, Oxapliplatin

neuropathy; OPLS-DA, orthogonal partial least squares

PA, Prealbumin; PCA, principal components analysis; PL

RBC, Red Blood Cell Count; RBP, Retinol-Binding P

operator characteristic; RT, retention time; TBIL, Tot

Cholesterol; TG, Triglyceride; UA, Uric Acid; VIP, v

projection; WBC, White Blood Cell.
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in ABC transporters, central carbon metabolism in cancer, amino acid

metabolism, and linoleic acid metabolism, suggesting potential roles in

OIPN pathogenesis.

Conclusions: These findings suggest that the selected biomarkers could serve as

a foundation for the prediction and management of OIPN in colorectal

cancer patients.
KEYWORDS

oxaliplatin-induced peripheral neuropathy, biomarkers, untargeted metabolomics,
machine-learning, colorectal cancer
1 Introduction

In 2004, the U.S. Food and Drug Administration authorized the

use of oxaliplatin, a platinum-based chemotherapy, for the

management of metastatic colorectal cancer (mCRC) (1). Despite

its efficacy, oxaliplatin’s side effect profile includes a significant issue

known as oxaliplatin-induced peripheral neurotoxicity (OIPN),

which can be a critical factor limiting the dosage and may

necessitate a pause in therapy. OIPN affects over 85% of patients

following treatment with oxaliplatin (2, 3). This condition is a

notable adverse effect that can result in a reduction of the

administered dose or the discontinuation of treatment altogether.

A hallmark of OIPN is sensory peripheral neuropathy, which

manifests as symptoms like dysesthesias, paresthesia, and sensory

deficits, typically in a pattern resembling the distribution of a

stocking or glove (4). These symptoms are often accompanied by

neuropathic pain and, less commonly, involve motor and/or

autonomic nerve damage. There are two primary forms of OIPN:

an acute peripheral sensory and motor toxicity that often develops

during or shortly after the drug infusion. This type of neuropathy

tends to resolve quickly. In contrast, some patients may develop
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peripheral sensory neuropathy as a cumulative effect of the drug’s

cumulative dose. This form of neuropathy is generally more

persistent, with a gradual resolution after ceasing treatment (5).

Metabolomics, a branch of omics technologies, offers a thorough

profiling of the internal metabolites within living organisms. This

approach has demonstrated its significance across various domains,

including aiding in the diagnosis of diseases, unraveling the

complexities of disease processes, pinpointing potential drug targets,

and tailoring therapeutic interventions to individual patients (6). In

contrast to genomics and proteomics, which typically track changes

over periods of days or weeks, metabolomics can offer a snapshot of

alterations that occur within seconds or minutes following an event.

Untargeted metabolomics, which involves the qualitative and

quantitative analysis of all low-molecular-weight metabolites, has

become a powerful tool for uncovering novel biomarkers and

elucidating complex pathophysiological pathways (7). Our team

conducted previous studies on biomarkers of OIPN caused by

oxaliplatin and found that racemethionine, stearolic acid, 5-

aminopentanoic acid, erythritol, aminoadipic acid, and all-trans-

retinoic acid were pinpointed as promising biomarkers for OIPN (8).

Nevertheless, OIPN is a progressive process, we have not focused on

the pattern of metabolites in different stages of OIPN. Given the

dynamic nature of metabolites, it is crucial to investigate the differences

and alterations in metabolites throughout the OIPN progress and

identify stable biomarkers associated with progression of OIPN.

In this study, we aimed to elucidate the metabolomic profiles and

the patterns of metabolite changes of OIPN progression using

traditional statistical and machine learning methods. Identification of

stable biomarkers associated with the progression of OIPN would

enhance our understanding of the mechanisms of OIPN, also provided

new insights and targets for the prevention and treatment of OIPN.
2 Materials and methods

2.1 Study population and data collection

This study was based on an ongoing prospective study

conducted in the Affiliated Hospital of Jiangnan University. A
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total of 129 colorectal cancer patient receiving oxaliplatin

chemotherapy twice were enrolled from August 2022 and July

2023. The criteria for patient selection are as follows: 1)

histopathological confirmation of colorectal cancer diagnosis; 2)

TNM staging ranging from I to IV; 3) chemotherapy involving

oxaliplatin-containing regimens; 4) good general condition; 5)

Karnofsky Performance Status (KPS) score greater than 60; 6)

absence of other diseases causing peripheral neuropathy, such as

diabetes; 7) no current use of medications affecting peripheral

nerves; 8) age between 18 and 85 years, irrespective of gender; 9)

PS score ≤ 2 points; 10)) expected survival period of more than 3

months; 11) normal liver, kidney, heart, bone marrow, and other

functionalities; 12) patients with intact consciousness and the ability

to clearly articulate their physical sensations. The study was

conducted according to the guidelines under the Declaration of

Helsinki and approved by Ethics Committee of the Affiliated

Hospital of Jiangnan University (LS2022080). All the participants

signed consent forms.

The OIPN was graded by physicians according to the National

Cancer Institute (NCI) Common Adverse Reaction Evaluation

Criteria (NCI-CTCAE V3.0) for grading peripheral nerve injury.

OIPN can be classified into four severity levels: Level 0: patients

with no OIPN; Level I: involves the disappearance of deep tendon

reflexes or sensory abnormalities that do not impede physical

function, manifesting as asymptomatic or detectable solely

through examination; Level II: encompasses mild sensory changes

or abnormalities (including needle-pricking sensations) that affect

physical performance but do not disrupt daily life; Level III:

presents with more severe abnormal sensory changes, requiring

assistive devices such as canes or wheelchairs for mobility; Level IV:

represents a disability or life-threatening condition. The

demographic data including white blood cells (WBC), eosinophil

(EOS), lymphocyte (LYM), alanine aminotransferase (ALT),

aspartate aminotransferase (AST), total bilirubin (TBIL), direct

bilirubin (DBIL), tumor markers, oxaliplatin dosage, and

concomitant medication were collected by reviewing electronic

medical records.
2.2 Sample pretreatment

A cohort of 129 serum samples, stored at -80 °C, underwent

preparation for untargeted metabolomic analysis. Samples were

thawed on ice and vortexed for 1 minute. Subsequently, 400 μL of

methanol was dispensed into a 96-well plate, followed by the

addition of 100 μL aliquots of each serum sample. The mixtures

were subjected to vigorous vortex mixing for 5 minutes to ensure

homogeneity. Sample plates were then transferred to an A200

pressurized nitrogen evaporator, where they underwent complete

solvent evaporation under a controlled nitrogen stream for 10

minutes. The dried residues were reconstituted with 150 μL of a 4

ppm 2-chlorophenylalanine solution (prepared in 80% methanol)

(CAS 103616-89-3; Aladdin Reagent Co.), followed by 5 minutes of
Frontiers in Oncology 03
vortex mixing to ensure complete dissolution. Finally, the

reconstituted samples were membrane-sealed in preparation for

subsequent LC-MS analysis.
2.3 LC-MS/MS analysis

The LC analysis was performed on a Vanquish UHPLC System

(Thermo Fisher Scientific, USA). Chromatography was carried out

with an ACQUITY UPLC ® HSS T3 (2.1×100 mm, 1.8 μm)

(Waters, Milford, MA, USA). For LC-ESI (+)-MS analysis, the

mobile phases consisted of (B2) 0.1% formic acid in acetonitrile (v/

v) and (A2) 0.1% formic acid in water (v/v). Separation was

conducted under the following gradient: 0~1 min, 8% B2; 1~8

min, 8%~98% B2; 8~10 min, 98% B2; 10~10.1 min, 98%~8% B2;

10.1~12 min, 8% B2. For LC-ESI (-)-MS analysis, the analytes was

carried out with (B3) acetonitrile and (A3) ammonium formate

(5mM). Separation was conducted under the following gradient:

0~1 min, 8% B3; 1~8 min, 8%~98% B3; 8~10 min, 98% B3; 10~10.1

min, 98%~8% B3; 10.1~12 min, 8% B3. Mass spectrometric

detection of metabolites was performed on Orbitrap Exploris 120

(Thermo Fisher Scientific, USA) with ESI ion source. Simultaneous

MS1 and MS/MS acquisition was used. The parameters were as

follows: sheath gas pressure, 40 arb; aux gas flow, 10 arb; spray

voltage, 3.50 kV and -2.50 kV for ESI(+) and ESI(-), respectively;

capillary temperature, 325 °C; MS1 range, m/z 100-1000; MS1

resolving power, 60000 FWHM; number of data dependant scans

per cycle, 4; MS/MS resolving power, 15000 FWHM; normalized

collision energy, 30%; dynamic exclusion time, automatic.
2.4 Data processing

The raw data were firstly converted to mzXML format by

MSConvert in ProteoWizard software package (v3.0.8789) (9) and

processed using R XCMS (v3.12.0) for feature detection (10),

retention time correction and alignment. Key parameters settings

were set as follows: ppm=15, peakwidth=c (5, 30), mzdiff=0.01,

method=centWave. The batch effect was then eliminated by

correcting the data based on QC samples. Metabolites with RSD

> 30% in QC samples were filtered and then used for subsequent

data analysis. The metabolites were identified by accuracy mass and

MS/MS data which were matched with HMDB, massbank, KEGG,

LipidMaps, mzcloud and the metabolite database build by Panomix

Biomedical Tech Co., Ltd. (Shuzhou, China). The molecular weight

of metabolites was determined according to the m/z (mass-to-

charge ratio) of parent ions in MS data. Molecular formula was

predicted by ppm (parts per million) and adduct ion, and then

matched with the database to realize MS identification of

metabolites. At the same time, the MS/MS data from quantitative

table of MS/MS data, were matched with the fragment ions and

other information of each metabolite in the database, so as to realize

the MS/MS identification of metabolites.
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2.5 Statistical analysis

Two different multivariate statistical analysis models,

unsupervised and supervised, were applied to discriminate the

groups, including pareto-scaled principal component analysis

(PCA) and orthogonal partial least-squares discriminant analysis

(OPLS-DA) by R ropls (v1.22.0) package (11). Furthermore,

permutation test (200 times) and CV-ANOVA were performed to

validate the generated models. The statistical significance of P-value

was obtained by statistical test between groups. The variable

importance in the projection (VIP) value of each variable in the

OPLS-DA model was calculated to indicate its contribution to the

classification. Finally, combined with P-value, VIP, and fold change

(FC) (multiple of difference between groups) to screen biomarker

metabolites. By default, when P value < 0.05 and VIP value > 1,

metabolites were considered to have significant differential

expression. Differential expressed metabolites (DEMs) were

subjected to pathway analysis by MetaboAnalyst (12), which

combines results from powerful pathway enrichment analysis

with the pathway topology analysis. The identified metabolites in

metabolomics were then mapped to the KEGG pathway for

biological interpretation of higher-level systemic functions. The

metabolites and corresponding pathways were visualized using

KEGG Mapper tool.
2.6 Machine learning method for
biomarker selection

Traditional statistical analyses do not consider interactive or

modifying effects among different metabolites, which may lead to

false positive results (13). SHAP, a cutting-edge technique for

enhancing the interpretability of tree-based models, employs a

game-theoretic approach to combine the local effects of each

feature, thereby elucidating the model’s functioning across the

entire dataset. This method is regarded as superior to other global
Frontiers in Oncology 04
approximation techniques. The SHAP algorithm not only quantifies

the importance of features within the model but also delves into the

specific influence of each feature on individual predictions (14).

Therefore, we subsequently employed SHAP analysis workflow to

identify biomarkers stably associated with OIPN.

Through the analysis of the random forest model, we have

derived the Shapley values for every individual DEM. Following

this, we have meticulously chosen the 20 DEMs with the most

substantial Shapley values for inclusion in predictive models. These

selected DEMs are now being applied across a spectrum of six

machine learning algorithms (including K-Nearest Neighbors,

Random Forest, Support Vector Machines, Gaussian Naive Bayes,

Logistic Regression, and Decision Trees). To evaluate their

predictive capabilities, we have also generated ROC curves,

providing a graphical representation of the performance of each

method. Data analysis was performed with the statistical software

package R (v4.4.1).
3 Results

3.1 Demographic and clinical
characteristics with OIPN

To profile the metabolic features in the serum of participants

with different stages of OIPN, we performed a serum metabolomics

study in a cohort of 33 participants with no OIPN (Level 0), 22 with

Level 1 OIPN, 54 with Level 2 OIPN, and 20 with Level 3 OIPN

(Figure 1). Detailed clinical parameters across the four OIPN

severity groups are presented in Table 1. Specifically, the

cumulative oxaliplatin (L-OHP) dose was 444.85±327.78 mg in

Level 0, 448.86±268.83 mg in Level 1, 584.76±303.52 mg in Level 2,

and 604±338.07 mg in Level 3, with significantly higher doses in

Level 2 and Level 3 compared to Level 0 (p=0.034 and p=0.038,

respectively), indicating a dose-dependent association with OIPN

progression. On the other hand, across all OIPN severity levels
FIGURE 1

Schematic diagram of the study design. 33 participants with no OIPN, 22 participants with Level 1 OIPN, 54 participants with Level 2 OIPN, and 20
participants with Level 3 OIPN were used to perform untargeted metabolomics analysis to profile metabolic alterations in metabolic network
analysis. SHAP analysis and six machine learning were employed to select potential metabolite biomarkers to predict the different stages of OPIN.
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TABLE 1 Demographic and clinical characteristics of participants.

Level 0
(n=33)

Level 1
(n=22)

Level 2
(n=54)

Level 3
(n=20)

p-value

level0
vs
level1

level0
vs
level2

level0
vs
level3

level1
vs
level2

level1
vs
level3

level2
vs
level3

Age (year) 61.27±8.73 62.91±7.79 59.78±8.95 64.75±9.37 0.50 0.45 0.17 0.16 0.50 0.034

Female (n, %) 11 (33.33%) 6 (27.28%) 12 (22.22%) 7 (35%)

Cancer stage (I,
II, III, IV) (n)

1, 2, 7, 11
(3.03%, 6.06%,
21.21%, 33.33%)

0, 2, 11, 9
(0%. 9.09%,
50%, 40.91%)

1, 17, 18, 18
(18.52%, 31.48%,
33.33%, 33.33%)

0, 7, 9, 14
(0%, 35%,
45%, 70%)

Treatment type
(XELOX,
FOLFOX) (n,
%)

22 (66.67%), 11
(33.33%)

13 (59.09%), 9
(40.91%)

38 (70.37%), 16
(29.63%)

18 (90%), 2
(10%)

L-OHP dose,
mg

444.85±327.78 448.86±268.83 584.76±303.52 604±338.07 0.91 0.034 0.038 0.083 0.071 0.65

WBC, 109/L 5.75±1.20 5.85±2.24 5.21±2.62 4.33±1.22 0.99 0.69 0.12 0.67 0.13 0.44

ANC, 109/L 3.61±1.72 3.38±1.71 3.11±2.42 2.15±0.90 0.68 0.26 0.010 0.59 0.044 0.061

ALC, 109/L 1.56±0.45 1.89±1.43 1.47±0.41 1.63±0.47 0.099 0.56 0.74 0.022 0.24 0.40

EOS,109/L 0.12±0.10 0.14±0.085 0.14±0.11 0.13±0.09 0.54 0.36 0.84 0.89 0.72 0.58

ABC,109/L 0.015±0.036 0.032±0.048 0.011±0.032 0.0050±0.02 0.086 0.60 0.31 0.021 0.014 0.51

RBC, 10¹²/L 3.95±0.7404 4.11±0.52 3.79±0.77 3.79±0.52 0.40 0.30 0.41 0.071 0.14 0.99

HGB, g/L 115.67±27.00 123.77±15.87 116.25±25.21 121.5±13.98 0.20 0.91 0.37 0.20 0.75 0.38

PLT,109/L 213.39±76.22 188.91±72.39 171.54±71.12 134.90
±48.27

0.21 0.0080 0 0.33 0.013 0.047

AFP, ng/mL 3.62±3.27 20.22±69.93 2.62±1.39 2.85±1.16 0.039 0.88 0.92 0.018 0.053 0.97

CEA, ng/mL 146.14±243.13 72.62±149.56 15.16±27.59 31.21±81.01 0.084 0 0.010 0.14 0.38 0.69

CA19-9, U/mL 312.62±469.038 35.23±97.16 53.80±92.19 43.18±78.14 0 0 0.0010 0.79 0.93 0.89

CA72-4, U/mL 33.66±68.76 6.57±5.38 9.39±16.045 5.65±8.63 0.02 0.012 0.023 0.79 0.94 0.74

CA-125, U/mL 21.36±26.95 22.71±71.69 13.51±12.83 11.66±13.75 0.89 0.31 0.32 0.29 0.30 0.84

TBIL, mmol/L 13.36±6.45 12.98±4.24 12.27±6.073 13.92±9.93 0.84 0.46 0.76 0.67 0.65 0.34

DBIL, mmol/L 2.75±1.76 2.46±0.84 2.82±3.48 2.36±1.19 0.68 0.80 0.59 0.57 0.90 0.48

ALB, g/L 38.015±4.61 39.95±2.87 38.21±3.87 37.89±2.25 0.063 0.82 0.90 0.069 0.077 0.74

PA, mg/L 233.91±71.66 254.81±43.23 219.27±71.94
210.96
±41.02 0.24 0.30 0.21 0.030 0.028 0.62

ALT, U/L 26.97±16.95 38.41±46.63 30.13±23.96 21.15±9.73 0.12 0.59 0.44 0.22 0.036 0.20

GDH, U/L 10.35±13.89 46.38±188.51 36.92±202.98 5.11±2.99 0.33 0.43 0.90 0.81 0.38 0.43

GGT, U/L 85.39±110.37 38.2±28.00 58.87±70.11 28.4±11.82 0.021 0.10 0.0070 0.27 0.66 0.11

CHE, U/L 6014.27±1934.31
7269.45
±1513.00 6251.35±2085.66

6879.75
±1362.088 0.016 0.57 0.10 0.033 0.50 0.20

Fe, mmol/L 10.86±6.43 14.66±5.84 12.47±7.093 13.83±6.23 0.039 0.27 0.12 0.19 0.69 0.43

GLU, mmol/L 4.93±0.68 5.49±1.30 5.21±1.036 4.91±0.51 0.033 0.18 0.92 0.24 0.047 0.22

Cr, mmol/L 64.50±19.08 66.54±13.93 66.74±18.17 61.81±7.69 0.66 0.54 0.57 0.96 0.38 0.26

UA, mmol/L 347.55±100.62 387.01±84.70 336.52±88.05
317.81
±58.83 0.10 0.57 0.23 0.024 0.011 0.42

(Continued)
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(Level 0 to Level 3), the proportion of male patients was consistently

higher than that of female patients. With respect to cancer staging,

the majority of patients were classified as having stage III or IV

colorectal cancer. Regarding treatment regimens, two main

oxaliplatin-based chemotherapy protocols were administered:

XELOX (capecitabine plus oxal iplat in) and FOLFOX

(fluorouracil, leucovorin, plus oxaliplatin), with the XELOX

regimen accounting for the larger proportion across all OIPN

severity levels.

For hematological indices, white blood cell (WBC) counts were

5.75±1.99×109/L (Level 0), 5.85±2.24×109/L (Level 1), 5.21

±2.62×109/L (Level 2), and 4.33±1.22×109/L (Level 3), with no

significant intergroup differences. Absolute lymphocyte counts

(ALC) were 1.56±0.45×109/L (Level 0), 1.89±1.43×109/L (Level 1),

1.47±0.41×109/L (Level 2), and 1.63±0.47×109/L (Level 3), with a

significant difference between Level 1 and Level 2 (p=0.022).
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Eosinophil counts (EOS) exhibited no significant differences

across groups: 0.12±0.10×109/L (Level 0), 0.14±0.085×109/L

(Level 1), 0.14±0.11×109/L (Level 2), and 0.13±0.09×109/L (Level

3). Red blood cell (RBC) counts (3.95±0.74×10¹²/L, 4.11±0.52×10¹²/

L, 3.79±0.77×10¹²/L, 3.79±0.52×10¹²/L for Levels 0–3) and

hemoglobin (HGB) levels (115.67±27.00 g/L, 123.77±15.87 g/L,

116.25±25.21 g/L, 121.5±13.98 g/L) also did not differ

significantly between groups.

Regarding liver function and metabolic indices, total bilirubin

(TBIL: 13.36±6.45 mmol/L, 12.98±4.24 mmol/L, 12.27±6.07 mmol/L,

13.92±9.93 mmol/L), direct bilirubin (DBIL: 2.75±1.76 mmol/L, 2.46

±0.84 mmol/L, 2.82±3.48 mmol/L, 2.36±1.19 mmol/L), albumin

(ALB: 38.015±4.61 g/L, 39.95±2.87 g/L, 38.21±3.87 g/L, 37.89

±2.25 g/L), and glutamate dehydrogenase (GDH: 10.35±13.89 U/

L, 46.38±188.51 U/L, 36.92±202.98 U/L, 5.11±2.99 U/L) showed no

significant intergroup differences. Total cholesterol (TC: 5.11±1.08
FIGURE 2

The number proportion of identified metabolites in each chemical classification.
TABLE 1 Continued

Level 0
(n=33)

Level 1
(n=22)

Level 2
(n=54)

Level 3
(n=20)

p-value

level0
vs
level1

level0
vs
level2

level0
vs
level3

level1
vs
level2

level1
vs
level3

level2
vs
level3

RBP, mg/L 36.55±13.076 40.57±7.94 34.40±11.35 33.28±8.42 0.19 0.38 0.31 0.029 0.038 0.71

TC, mmol/L 5.11±1.079 4.63±0.71 4.74±1.075 4.86±0.52 0.085 0.094 0.37 0.68 0.46 0.64

TG, mmol/L 2.00±1.20 1.94±1.32 1.78±1.013 1.59±0.72 0.84 0.39 0.20 0.60 0.32 0.51

HDL-C, mmol/L 1.19±0.34 1.13±0.26 1.12±0.32 1.21±0.24 0.51 0.33 0.84 0.90 0.45 0.32

LDL-C, mmol/L 3.21±0.62 2.90±0.50 3.072±0.81 3.056±0.44 0.13 0.40 0.48 0.35 0.51 0.94
fron
Values are given as mean ± SD.WBC, White Blood Cell; ANC, Absolute Neutrophil Count; ALC, Absolute Lymphocyte Count; EOS, Eosinophil Absolute Count; ABC, Absolute Basophil Count;
RBC, Red Blood Cell Count; HGB, Hemoglobin; PLT, Total Platelet Count; AFP, Alpha fetoprotein; CEA, Carcinoembryonic Antigen; CA19-9, Carbohydrate Antigen 19-9; CA72-4,
Carbohydrate Antigen 72-4; CA-125, Carbohydrate Antigen 125; TBIL, Total Bilirubin; DBIL, Direct Bilirubi; ALB, Albumin; PA, Prealbumin; ALT, Alanine Aminotransferase; GDH, Glutamate
Dehydrogenase; GGT, Gamma-Glutamyl Transpeptidase; CHE, Cholinesterase; Fe, Iron; GLU, Glucose; Cr, Creatinine; UA, Uric Acid; RBP, Retinol-Binding Protein; TC, Total Cholesterol; TG,
Triglyceride; HDL-C, High - density Lipoprotein Cholesterol; LDL-C, Low - density Lipoprotein Cholesterol.
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mmol/L, 4.63±0.71 mmol/L, 4.74±1.08 mmol/L, 4.86±0.52 mmol/L)

also did not differ significantly across groups.

Tumor markers exhibited notable variations: carcinoembryonic

antigen (CEA) levels were 146.14±243.13 ng/mL (Level 0), 72.62

±149.56 ng/mL (Level 1), 15.16±27.59 ng/mL (Level 2), and 31.21

±81.01 ng/mL (Level 3), with Level 0 showing significantly higher

levels than Level 2 (p<0.001) and Level 3 (p=0.010). Carbohydrate

antigen 19-9 (CA19-9) was 312.62±469.04 U/mL (Level 0), 35.23

±97.16 U/mL (Level 1), 53.80±92.19 U/mL (Level 2), and 43.18

±78.14 U/mL (Level 3), with Level 0 significantly higher than all

other groups (p<0.001). Carbohydrate antigen 72-4 (CA72-4) was

33.66±68.76 U/mL (Level 0), 6.57±5.38 U/mL (Level 1), 9.39±16.05

U/mL (Level 2), and 5.65±8.63 U/mL (Level 3), with Level 0

significantly higher than Levels 1–3 (p=0.020, 0.012, 0.023).

Immune and inflammatory indices showed significant

differences: absolute neutrophil counts (ANC) were 3.61

±1.72×109/L (Level 0), 3.38±1.71×109/L (Level 1), 3.11±2.42×109/

L (Level 2), and 2.15±0.90×109/L (Level 3), with Level 0 higher than

Level 3 (p=0.010) and Level 1 higher than Level 3 (p=0.044). Platelet

(PLT) counts were 213.39±76.22×109/L (Level 0), 188.91

±72.39×109/L (Level 1), 171.54±71.12×109/L (Level 2), and 134.90

±48.27×109/L (Level 3), with progressive decreases showing
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significant differences between Level 0 vs Level 2 (p=0.008), Level

0 vs Level 3 (p<0.001), Level 1 vs Level 3 (p=0.013), and Level 2 vs

Level 3 (p=0.047). Uric acid (UA) levels were 347.55±100.62 mmol/

L (Level 0), 387.01±84.70 mmol/L (Level 1), 336.52±88.05 mmol/L

(Level 2), and 317.81±58.83 mmol/L (Level 3), with Level 1 higher

than Level 2 (p=0.024) and Level 3 (p=0.011). All p-values <0.05

indicate statistically significant differences between the

corresponding groups (Table 1).
3.2 Detection of endogenous metabolites
in plasma

The total ion chromatogram (TIC) profiles exhibited substantial

overlap between technical replicates, with consistent retention times

and peak intensities across analyses, demonstrating high

reproducibility and stability of the chromatographic signals

throughout the analytical sequence (Supplementary Figures S1A,

B). Concurrently, the tight clustering of quality control (QC)

sample data points observed in the principal component analysis

(PCA) score plots generated in both positive (Supplementary Figure

S1C) and negative (Supplementary Figure S1D) ionization modes
FIGURE 3

Distinct separations in metabolic profiles using OPLS-DA. (A, C, E, G, I, K): OPLS-DA model in the Level 1vs Level 0, Level 2vs Level 0, Level 3vs Level
0, Level 2vs Level 1, Level 3vs Level 1, and Level 3vs Level 2 in the positive mode. (B, D, F, H, J, L): OPLS-DA model in the Level 1vs Level 0, Level 2vs
Level 0, Level 3vs Level 0, Level 2vs Level 1, Level 3vs Level 1, and Level 3vs Level 2 in the negative mode.
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verifies stable instrumental performance and good analytical

reproducibility throughout the experimental process, thereby

ensuring the reliability of subsequent biological differences

identified based on this dataset. LC-MS/MS-based metabolomic

profiling identified 521 distinct metabolites, comprising 315

compounds in positive ionization mode and 206 in negative

mode. These detected metabolites were categorized into 22

distinct biochemical classes based on their chemical taxonomy,

with proportional distribution across categories illustrated in

Figure 2. As shown in Figure 2, lipids and lipid-like molecules,

which constitute the largest proportion at 20.73%, primarily include
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Fatty acids and conjugates lipids, and Steroids and steroid

derivatives (e.g., dodecanoic acid, stearic acid, linoleic acid),

supporting our claim of their predominance. Amino acids and

derivatives account for 14.4%, encompassing compounds such as L-

phenylalanine, 1-methylhistidine, and L-tyrosine. Benzene and

substituted derivatives make up 8.45%, including benzaldehyde,

methoxamine, and neostigmine, while alcohols and polyols

represent 6.33% with examples like dihydrocortisol, smilagenin,

and hecogenin. Organic acids and derivatives constitute 5.76%,

featuring methylmalonic acid, 12-hydroxydodecanoic acid, and

isocitric acid, and carbohydrates account for 4.99%, including D-
FIGURE 4

(A) Multi-group volcano map. DEMs: meet P value < 0.05 and VIP value > 1 are shown in red. (B) The classification of DEMs among six different
groups.
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mannose, mannitol, and fructose 1,6-bisphosphate. Nucleotide and

derivatives make up 4.22%, with compounds such as uridine,

deoxycytidine, and thymidine; Amines and phenols each account

for 2.88%, including spermine, anandamide, tryptophanamide

(amines) and m-cresol, chavicol, gingerol (phenols). Indoles and

derivatives (2.11%, e.g., indole, indole-3-acetate) and terpenoids
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(2.11%, e.g., lanosterin, zingiberene) follow, while flavonoids

(1.73%, e.g., quercetin, formononetin) and pyridines and

derivatives (1.73%, e.g., pyridoxine, pirbuterol) are also present.

Carbonyl compounds (1.54%, e.g., hydroxykynurenine) and

purines and purine derivatives (1.54%, e.g., paraxanthine) are

included, along with alkaloids (0.96%, e.g., anabasine), cinnamic
FIGURE 5

(A, C, E): Top 20 DEMs Bee Swarm Plot in the Level 1vs Level 0, Level 2vs Level 0, Level 3vs Level 0; (B, D, F): Multi-model ROC predictive curve in
the Level 1vs Level 0, Level 2vs Level 0, Level 3vs Level 0.
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acids and derivatives (0.77%, e.g., caffeic acid), and coumarins and

derivatives (0.58%, e.g., ostruthin). The “others” category,

comprising 16.31%, includes compounds such as zonisamide,

bilirubin, and biotin, which do not fit into the aforementioned

categories due to their unique structures or functions.
3.3 Identification of DEMs and its
functional analysis in different stages of
OIPN groups

PCA initially displayed partial separations in both positive and

negative modes in different stages of OIPN groups (Supplementary

Figure S2). Furthermore, the OPLS-DA plots illustrated distinct

separations in metabolic profiles in different stages of OIPN groups,

which can be well distinguished in both positive and negative modes

(Figure 3). The 200-permulation test of LC-MS data was shown in

Supplementary Figure S3. All the values were lower than their

corresponding original ones and the intercepted value of Q2 in the

vertical axis was below 0.5 (15), suggesting the model was not

overfitted. Therefore, the model produced goodness of prediction in

different stages of OIPN groups.

To further explore the differential metabolite molecules with

biological significance, we screened DEMs based on both VIP>1

and P-value < 0.05 in OPLS-DA. Specifically, we observed 187
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DEMs in Level 1 vs Level 0 (including 97 up-regulated and 90

down-regulated), 182 in Level 2 vs Level 0 (including 78 up-

regulated and 104 down-regulated), 202 in Level 3 vs Level 0

(including 99 up-regulated and 103down-regulated), 51 in Level 2

vs Level 1 (including 21 up-regulated and 30 down-regulated), 63 in

Level 3 vs Level 1 (including 31 up-regulated and 32 down-

regulated), and 27 in Level 3 vs Level 2 (including 7 up-regulated

and 20 down-regulated) comparisons (Figure 4A). The top three

most significantly regulated metabolites in each comparison group,

ranked by absolute log2FC values, are explicitly labeled. Positive

log2FC values denote upregulation, while negative values indicate

downregulation. The complete dataset of DEMs with corresponding

annotation details and quantitative measurements is provided in

Supplementary Table S1. The result of screening for DEMs was

visualized in histogram, with different colors to distinguish the

classification of DEMs in different groups, which indicated that the

DEMs across all groups were primarily concentrated in the

categories of amino acids and derivatives, benzene and substituted

derivatives, and fatty acids and conjugates (Figure 4B).

Enriched pathway analysis was performed for the screened

metabolites by using KEGG database, related pathways could be

classified into ABC transporters, central carbon metabolism in

cancer, amino acid metabolism (including D-amino acid

metabolism, arginine biosynthesis, arginine and proline

metabolism), linoleic acid metabolism (Supplementary Figure S4).
FIGURE 6

The relative contents of the seven important biomarkers in Level 0, Level 1, Level 2, and Level 3. **p<0.01, ****p<0.0001, ns indicated that there was
no significant difference between two groups.
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3.4 Identification of biomarkers using
machine learning method

SHAP analysis, grounded in the principles of game theory and local

explanations, falls under the category of established post hoc interpretive

methods. This approach enables the computation of Shapley values,

which in turn are employed to quantify the individual contributions of

each feature. Versatile and adaptable, SHAP is compatible with a wide

range of machine learning algorithms. In our research, we applied

SHAP analysis to a set of DEMs in different OIPN groups, using a

Random Forest model to ascertain their Shapley values, which serve as a

measure of their significance. As depicted in (Figures 5A, C, E), these

Shapley values are presented for each sample. The importance of the

metabolites is ranked based on the absolute average Shapley value,

which is then used to normalize the quantitative data for each

metabolite within the samples. This normalization helps illustrate
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how the importance of each feature data point influences the model’s

outcomes. The vertical axis in the figure lists the top 20metabolites with

shapely values that exhibit differential effects, while the horizontal axis

displays the Shapley scores predicted by the Random Forest model for

the test set samples. These scores represent the contribution of each

metabolite to the classification prediction of the sample. The magnitude

of these scores indicates the relative contribution of the metabolite to

the classification results, with higher absolute values suggesting greater

importance. The color gradient in the visualization corresponds to the

standardized (scaled) characteristic values (quantitative metabolite

values) across different samples, with red denoting higher values and

blue indicating lower values.

The ROC (Receiver Operating Characteristic) curve can reveal

the ability of a machine learning classifier to identify samples at a

certain threshold (16). The closer the ROC curve is to the upper-left

corner, the higher the TPR (True Positive Rate) and the lower the
FIGURE 7

Person correlation analysis between six important biomarkers and clinical features in OIPN (red: positive; blue: negative; higher absolute values
indicate stronger correlations).
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FPR (False Positive Rate) in the model, indicating higher sensitivity

and lower misjudgment rate, and thus better performance of the

diagnostic method. The closer the area under the ROC curve is to 1,

the better the model’s sensitivity and specificity indicators, and the

more ideal the evaluation indicators are, indicating that the selected

biomarkers have excellent classification ability and effect. The top

20 DEMs in terms of contribution from SHAP analysis were

selected (Supplementary Table S2), and classification prediction

verification was carried out through six machine learning

algorithms, including K-Nearest Neighbor, Random Forest,

Support Vector Machine, Gaussian Naive Bayes, Logistic

Regression, and Decision Tree. It was found that in the

comparisons of Level 1 vs Level 0, Level 2 vs Level 0, and Level 3

vs Level 0, the AUC (Area Under the Curve) values were all

relatively high (all AUC values nearly 1) (Figures 5B, D, F). These

results indicated that the 20 metabolites selected through SHAP

analysis in these three groups of analyses had high classification

value. It also suggested that the model’s predictive results were not

accidental and possess a certain degree of robustness. In the three

groups, the relative abundance profiles of seven biomarkers were

consistent between subjects with and without OIPN. Notably, as

shown in Figure 6, except for adipic acid, six biomarkers—

thiabendazole, 1-methylxanthine, imidazol-5-yl-pyruvate, 5-

hydroxypentanoic acid, spermidine, and 4’-oxolividamine

exhibited statistically significant differences (p < 0.0001) when

comparing Level 0 (non-OIPN) with Levels 1, 2, and 3 (graded

severity of OIPN), highlighting their potential as discriminative

markers for distinguishing the presence from the absence of OIPN.

These findings suggest metabolic perturbations associated with the

development of OIPN, these six metabolites were identified as key

differential biomarkers that distinguish patients with OIPN from

those without OIPN manifestations, and their distinct metabolic

profiles demonstrate significant discriminatory potential in

characterizing the pathophysiology of OIPN.

In contrast, among the Level 2 vs Level 1, Level 3 vs Level 1, and

Level 3 vs Level 2 comparison groups, the top 20 differential

metabolites with the highest contributions were identified through

SHAP analysis (Supplementary Table S3). Subsequent validation

using six machine learning models revealed AUC values ranging

between 0.696–0.804, 0.607–0.762, and 0.549–0.843 for these

groups, respectively (Supplementary Figure S5). These results

indicated that these DEMs cannot effectively predict the

differences between Level 1, Level 2, and Level 3 (17). This may

be attributed to the relatively small sample size in our experiment,

and the fact that patients were graded for OIPN based on their

sensations, which might have led to the failure in identifying clear

differentiating compounds.
3.5 Association of six biomarkers with
clinical characteristics

The results of Pearson correlation analysis between six

important biomarkers (including spermidine, thiabendazole, 1-

methylxanthine, imidazol-5-yl-pyruvate, 5-hydroxypentanoic acid,
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and 4’-oxolividamine) and clinical features related to OIPN

(including L-OHP dose, ANC, PLT, AFP, CEA, CA19-9, CA72-4,

GGT, CHE, Fe, GLU) were shown in Figure 7. Red indicates a

positive correlation and blue indicates a negative correlation. The

absolute value of the correlation coefficient reflects the strength of

the correlation (the larger the absolute value, the stronger the

correlation). Specifically, the correlations between various

biomarkers and clinical features showed different trends. For

example, thiabendazole had a relatively certain positive

correlation with PLT (correlation coefficient 0.296), and 1-

methylxanthine also had a certain positive correlation with PLT

(0.295); CEA had a certain positive correlation with Imidazol-5-yl-

pyruvate (0.258); CA19–9 had a certain positive correlation with

Imidazol-5-yl-pyruvate (0.241); Spermidine had a certain positive

correlation with GLU (0.222); However, there were weak negative

correlations between some indicators, such as the correlation

coefficient between PLT and spermidine was -0.262, the

correlation coefficient between CEA and spermidine was -0.211,

and the correlation coefficient between GGT and 1-methylxanthine

was -0.209. Overall, the absolute values of most correlation

coefficients were small, suggesting that the association between

these biomarkers and the listed clinical features is mainly weak,

but this analysis provides basic data for exploring the potential

clinical association of biomarkers in OIPN.
4 Discussion

OIPN emerges as a frequent side-effect among colorectal cancer

patients. Early detection and management are essential to minimize

the risk of discontinuing OIPN, enhance treatment adherence, and

ultimately improve the prognosis for OIPN patients undergoing

OIPN therapy. In this research, untargeted metabolomics was used

to investigate OIPN in colorectal cancer patients. We found that

there were significant differences in plasma metabolic profiles in

different stages of OIPN. ABC transporters, central carbon

metabolism in cancer, amino acid metabolism, and linoleic acid

metabolism were significantly affected during the onset of OIPN.

SHAP-guided random forest algorithms and six machine learning

algorithms further validated thiabendazole, 1-methylxanthine,

imidazol-5-yl-pyruvate, 5-hydroxypentanoic acid, spermidine, and

4’-oxolividamine which were associated with OIPN patients (Level

1-3) from non-OIPN controls (Level 0) (Figures 5, 6). However,

differentiation between intermediate OIPN grades (Level 1 vs 2,

Level 1 vs 3, Level 2 vs 3) yielded lower predictive accuracy (AUC:

0.549–0.843) (Supplementary Figure S5). These metabolic features

may provide useful clues for future mechanism exploration and

identification of therapeutic targets of OIPN.

Previous study has indicated that the incidence of OIPN is dose-

dependent, when the cumulative dose reaches 780–850 mg/m2, 15%

of patients may experience symptoms such as persistent numbness;

when the cumulative dose reaches 1170 mg/m2, the incidence rate is

50%, and when the cumulative dose reaches 1560 mg/m2, the

incidence rate is 75% (18). Aligned with prior researches, we

found that the doses of L-OHP used by patients with Level 2 and
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Level 3 OIPN were significantly higher than those without OIPN,

indicating that the cumulative dose of L-OHP chemotherapy plays

an important role in OIPN. At the same time, our findings implied

that the occurrence of OIPNmay be associated with the progression

of the disease and the patients’ tumor markers (CEA, CA19-9,

CA72-4), as well as immune response and inflammation (ANC,

PLT), and metabolic and liver function abnormalities (GGT and

UA) (Table 1).

Our findings revealed that patients with OIPN exhibited

significantly elevated serum levels of 1-methylxanthine (1-MX),

suggesting its potential role as a biomarker for nerve injury (19). Key

mechanistic insights include: Oxaliplatin directly binds to voltage-gated

sodium channels (Nav1.6/1.8), inducing neuronal hyperexcitability and

aberrant action potentials (20). As an adenosine A2A receptor

antagonist, 1-MX may exacerbate sodium channel dysfunction by

inhibiting adenosine-mediated neuroprotective effects. This synergy

could explain the higher incidence of acute cold allodynia and chronic

sensory dysfunction in patients with elevated 1-MX levels. Oxaliplatin

triggers mitochondrial oxidative stress (mtROS accumulation) and

DNA damage, central mechanisms underlying its chronic

neurotoxicity (21). 1-MX amplifies these effects by inhibiting

phosphodiesterase (PDE), elevating intracellular cAMP levels, and

activating the PKA pathway, thereby promoting mitochondrial

permeability transition pore (mPTP) opening and enhancing

apoptotic signaling. Furthermore, oxaliplatin may disrupt purine

metabolic enzymes, leading to abnormal 1-MX accumulation (22).

This study demonstrates a positive correlation between serum

spermidine levels and the risk of OIPN. Spermidine synergistically

exacerbates neuronal hyperexcitability by enhancing TRPV1 and

Nav1.8 channel activity in conjunction with oxaliplatin (23).

Experimental data reveal that spermidine significantly increases

calcium oscillation frequency in dorsal root ganglion neurons. Single-

cell sequencing confirms elevated expression of inflammatory

cytokines (IL-6, TNF-a) in peripheral blood monocytes of OIPN

patients, which correlates positively with serum spermidine levels

(24). Additionally, spermidine may impair the clearance efficiency of

oxaliplatin metabolites, leading to neurotoxic substance accumulation

and accelerated axonal transport dysfunction. In colorectal cancer

patients treated with oxaliplatin, individuals who developed OIPN

exhibited significantly higher serum levels of 4’-oxolividamine

compared to those without neurotoxicity, with its concentration

positively correlated to OIPN severity in our study. 4’-oxolividamine,

an oxidized metabolite of polyphenolic compounds, is jointly catalyzed

by gut microbiota and hepatic CYP450 enzyme systems (25). Its a,b-
unsaturated ketone structure enables covalent modification of cellular

proteins, thereby inhibiting the Nrf2/ARE antioxidant pathway and

leading to reduced ROS scavenging capacity. Oxaliplatin accumulates

in the dorsal root ganglia (DRG), inhibits mitochondrial electron

transport chain complexes I/III, and induces mitochondrial DNA

damage and reactive oxygen species (ROS) overproduction (26).

Consequently, elevated 4’-oxolividamine in OIPN patients may

exacerbate oxaliplatin-induced oxidative stress, creating a vicious

cycle of “ROS-mitochondrial damage-neuronal apoptosis”.

This study found that the level of Imidazol-5-yl-Pyruvate (I5P) is

negatively correlated with OIPN. As an intermediate in histidine
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metabolism, I5P may enhance mitochondrial function by regulating

pyruvate metabolism (27, 28). I5P inhibits the activity of lysosomal

cathepsin Cathepsin L, blocks the degradation of IkB-a, thereby
reducing the release of NF-kB-mediated inflammatory factors (such

as IL-6 and TNF-a) and alleviating neuroinflammation (29). The levels

of inflammatory factors in OIPN patients are significantly higher than

those in non-OIPN patients. I5P may alleviate the severity of OIPN by

reducing the release of inflammatory factors. Our study revealed a

significant inverse correlation between serum levels of 5-

hydroxypentanoic acid (5-HPA) and the incidence of OIPN. 5-HPA,

a hydroxylated fatty acid derivative, may participate in mitochondrial

energy metabolism (30). Previous studies have shown that

intermediates of fatty acid oxidation (acetyl-CoA and ketone bodies)

can mitigate oxidative stress by enhancing ATP synthesis and

scavenging ROS (31, 32). Oxaliplatin is known to impair

mitochondrial complex I/II activity, leading to ROS accumulation and

subsequent axonal damage (33, 34). We hypothesize that higher 5-HPA

levels may compensate for this deficit by supporting alternative energy

pathways or directly neutralizing ROS. This is supported by the

structural similarity of 5-HPA to g-hydroxybutyrate (GHB), a

neuroprotective metabolite shown to reduce ROS in dorsal root

ganglia neurons. Our study revealed a significant negative correlation

between serum thiabendazole levels and the incidence of OIPN.

Oxaliplatin induces axonal damage in DRG neurons by inhibiting

mitochondrial complexes I/II activity, leading to excessive accumulation

of ROS (35). Notably, thiabendazole, as a benzimidazole compound,

possesses strong electron-donating capabilities through its benzene and

imidazole moieties, potentially exerting antioxidant effects by directly

neutralizing hydroxyl radicals (·OH) or superoxide anions (O2−).

Furthermore, oxaliplatin disrupts gut microbiota homeostasis (36),

promoting pathobionts (e.g., Escherichia coli) to release

lipopolysaccharide (LPS), which exacerbates neuroinflammation via

the TLR4/NF-kB pathway. Interestingly, thiabendazole, as a broad-

spectrum antiparasitic agent (37), may reduce LPS leakage by

suppressing the overproliferation of specific microbiota components.

This study and our previously published research (8) both

focused on the discovery of metabolomic biomarkers for OIPN, but

they exhibit key differences in design and objectives. The prior study

successfully identified six stable biomarkers distinguishing OIPN

patients from non-OIPN controls based on untargeted

metabolomics, including racemethionine, stearic acid, 5-

aminopentanoic acid, erythritol, aminoadipic acid, and all-trans-

retinoic acid. In contrast, the current work represents the first

longitudinal analysis specifically targeting OIPN severity grading

(Levels 0-3). It revealed significant associations between OIPN

occurrence and cumulative oxaliplatin dose, tumor progression

(CEA/CA19-9), and immune-inflammatory indicators (ANC/PLT).

Furthermore, employing SHAP-guided machine learning, this study

identified six novel biomarkers, including thiabendazole, 1-

methylxanthine, imidazol-5-yl-pyruvate, 5-hydroxypentanoic acid,

spermidine, and 4’-oxolividamine that demonstrated high accuracy

in discriminating the presence of OIPN (Level 0 vs. Levels 1-3, AUC

≈ 1) (Figure 5). While pathway-level dysregulation overlapped

partially with the previous findings (e.g., disturbances in amino

acid metabolism), there was no direct overlap in the specific
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metabolites identified, potentially reflecting biological differences

between OIPN onset and progression stages. Notably, the current

study highlighted abnormalities in pathways including ABC

transporters and central carbon metabolism in cancer, whereas the

prior study emphasized arginine biosynthesis, beta-alanine

metabolism, and linoleic acid metabolism. Critically, this study did

not identify specific biomarkers capable of effectively differentiating

intermediate OIPN severity grades: AUC values were 0.696–0.804 for

Level 2 vs. Level 1, 0.607–0.762 for Level 3 vs. Level 1, and 0.549–

0.843 for Level 3 vs. Level 2 (Supplementary Figure S5). This

limitation is likely attributable to the subjective sensory-based

grading system, cohort size constraints, and the continuous nature

of metabolic changes during OIPN progression. Future validation

incorporating objective neurophysiological measures within larger

cohorts is warranted.

Regarding the possible reasons for the low predictive accuracy of

the six identified metabolites among intermediate OIPN grades (e.g.,

Level 1 vs 2, Level 1 vs 3, Level 2 vs 3), the main points are as follows:

First, the sample size of this study is relatively limited, especially the

uneven distribution of samples across different grades (e.g., only 20

cases in Level 3), which may make it difficult for the model to capture

subtle metabolic differences between grades. Second, OIPN grading is

based on the NCI-CTCAE V3.0 criteria, mainly relying on physicians’

evaluation of patients’ subjective sensations. Such subjective scoring

may have individual differences and ambiguous boundaries, resulting in

insufficient objectivity of the grading itself. In addition, as a progressive

process, OIPN may exhibit continuous characteristics in metabolic

changes, and the differences in metabolite abundance between

intermediate grades may be subtle. However, the currently screened

biomarkers are more inclined to distinguish the presence or absence of

OIPN (Level 0 vs 1-3) and have low sensitivity to such continuous and

subtle grading differences. Finally, metabolic disorders between

intermediate grades may involve more complex pathway interactions,

and relying solely on the six metabolites may not fully reflect the

biological differences between grades. It is necessary to combine multi-

dimensional indicators (such as neuroelectrophysiological parameters)

to further optimize the model.
5 Conclusions

In this study, untargeted metabolomics coupled with SHAP-

guided random forest algorithms, and machine-learning were

employed to identify differentially expressed metabolites

associated with OIPN in colorectal cancer patients. Our results

suggest that L-OHP doses, tumor progression, immune response

and inflammation may underlie OIPN. We speculate thiabendazole,

1-methylxanthine, imidazol-5-yl-pyruvate, 5-hydroxypentanoic

acid, spermidine, and 4’-oxolividamine show significant promise

in understanding the occurrence of OIPN. The metabolite signature

discovered may provide a foundation for the management of OIPN.

However, the further researches, including larger cohort studies and

in-depth investigations into underlying mechanisms, are necessary

to validate these differential metabolites and confirm abnormalities

in metabolomic pathways.
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