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Background: Oxaliplatin-induced peripheral neuropathy (OIPN) poses a
significant challenge for patients with colorectal tumor, often resulting in
treatment interruption or discontinuation and subsequent treatment failure.
Herein, a longitudinal untargeted metabolomic study to reveal the metabolomic
profiles and biomarkers associated with the progression of OIPN.

Methods: A prospective cohort of 129 colorectal cancer patients receiving
oxaliplatin-based chemotherapy was stratified into four OIPN severity grades
(Level 0-3). Serum samples underwent untargeted LC-MS/MS metabolomic
analysis, detecting 521 metabolites. Multivariate statistical models and SHAP-
guided random forest algorithms were employed to prioritize biomarkers.
Machine learning validation included six classifiers assessed via ROC-AUC.
Results: The cumulative dose of Oxaliplatin chemotherapy plays an important
role in OIPN. At the same time, our findings implied that the occurrence of OIPN
may be associated with the progression of the disease and the patients’ tumor
markers (CEA, CA19-9, CA72-4), as well as immune response and inflammation
(ANC, PLT), and metabolic and liver function abnormalities (GGT and UA)
(P<0.05).Multivariate statistical analysis combined with SHAP-guided machine
learning identified six biomarkers, including thiabendazole, 1-methylxanthine,
imidazol-5-yl-pyruvate, 5-hydroxypentanoic acid, spermidine, and 4'-
oxolividamine that consistently distinguished OIPN patients (Level 1-3) from
non-OIPN controls (Level 0). Machine learning models, validated across six
classifiers, demonstrated near-perfect discrimination for early-stage OIPN
(AUC nearly 1). However, differentiation between intermediate OIPN grades
(Level 1 vs 2, Level 1 vs 3, Level 2 vs 3) yielded lower predictive accuracy (AUC:
0.549-0.843), likely due to cohort size limitations and reliance on subjective
sensory-based grading. Pathway enrichment analysis highlighted dysregulation
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in ABC transporters, central carbon metabolism in cancer, amino acid
metabolism, and linoleic acid metabolism, suggesting potential roles in

OIPN pathogenesis.

Conclusions: These findings suggest that the selected biomarkers could serve as
a foundation for the prediction and management of OIPN in colorectal

cancer patients.

oxaliplatin-induced peripheral neuropathy, biomarkers, untargeted metabolomics,
machine-learning, colorectal cancer

1 Introduction

In 2004, the U.S. Food and Drug Administration authorized the
use of oxaliplatin, a platinum-based chemotherapy, for the
management of metastatic colorectal cancer (mCRC) (1). Despite
its efficacy, oxaliplatin’s side effect profile includes a significant issue
known as oxaliplatin-induced peripheral neurotoxicity (OIPN),
which can be a critical factor limiting the dosage and may
necessitate a pause in therapy. OIPN affects over 85% of patients
following treatment with oxaliplatin (2, 3). This condition is a
notable adverse effect that can result in a reduction of the
administered dose or the discontinuation of treatment altogether.
A hallmark of OIPN is sensory peripheral neuropathy, which
manifests as symptoms like dysesthesias, paresthesia, and sensory
deficits, typically in a pattern resembling the distribution of a
stocking or glove (4). These symptoms are often accompanied by
neuropathic pain and, less commonly, involve motor and/or
autonomic nerve damage. There are two primary forms of OIPN:
an acute peripheral sensory and motor toxicity that often develops
during or shortly after the drug infusion. This type of neuropathy
tends to resolve quickly. In contrast, some patients may develop

Abbreviations: ABC, Absolute Basophil Count; AFP, Alpha fetoprotein; ALB,
Albumin; ALT, Alanine Aminotransferase; ALC, Absolute Lymphocyte Count;
ANC, Absolute Neutrophil Count; CA-125, Carbohydrate Antigen 125; CA19-9,
Carbohydrate Antigen 19-9; CA72-4, Carbohydrate Antigen 72-4; CEA,
Carcinoembryonic Antigen; CHE, Cholinesterase; Cr, Creatinine; DBIL, Direct
Bilirubin; DEMs, differentially expressed metabolites; EOS, Eosinophil Absolute
Count; FC, fold change; Fe, Iron; GDH, Glutamate Dehydrogenase; GGT,
Gamma-Glutamyl Transpeptidase; GLU, Glucose; HDL-C, High-density
Lipoprotein Cholesterol; HGB, Hemoglobin; KEGG, Kyoto Encyclopedia of
Genes and Genomes; LDL-C, Low-density Lipoprotein Cholesterol; LC-MS,
Liquid chromatography-mass spectrometry; L-OHP, Oxaliplatin; MS/MS,
tandem mass spectrometry; OIPN, Oxapliplatin-induced peripheral
neuropathy; OPLS-DA, orthogonal partial least squares discrimination analysis;
PA, Prealbumin; PCA, principal components analysis; PLT, Total Platelet Count;
RBC, Red Blood Cell Count; RBP, Retinol-Binding Protein; ROC, receiver
operator characteristic; RT, retention time; TBIL, Total Bilirubin; TC, Total
Cholesterol; TG, Triglyceride; UA, Uric Acid; VIP, variable importance in
projection; WBC, White Blood Cell.
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peripheral sensory neuropathy as a cumulative effect of the drug’s
cumulative dose. This form of neuropathy is generally more
persistent, with a gradual resolution after ceasing treatment (5).

Metabolomics, a branch of omics technologies, offers a thorough
profiling of the internal metabolites within living organisms. This
approach has demonstrated its significance across various domains,
including aiding in the diagnosis of diseases, unraveling the
complexities of disease processes, pinpointing potential drug targets,
and tailoring therapeutic interventions to individual patients (6). In
contrast to genomics and proteomics, which typically track changes
over periods of days or weeks, metabolomics can offer a snapshot of
alterations that occur within seconds or minutes following an event.
Untargeted metabolomics, which involves the qualitative and
quantitative analysis of all low-molecular-weight metabolites, has
become a powerful tool for uncovering novel biomarkers and
elucidating complex pathophysiological pathways (7). Our team
conducted previous studies on biomarkers of OIPN caused by
oxaliplatin and found that racemethionine, stearolic acid, 5-
aminopentanoic acid, erythritol, aminoadipic acid, and all-trans-
retinoic acid were pinpointed as promising biomarkers for OIPN (8).
Nevertheless, OIPN is a progressive process, we have not focused on
the pattern of metabolites in different stages of OIPN. Given the
dynamic nature of metabolites, it is crucial to investigate the differences
and alterations in metabolites throughout the OIPN progress and
identify stable biomarkers associated with progression of OIPN.

In this study, we aimed to elucidate the metabolomic profiles and
the patterns of metabolite changes of OIPN progression using
traditional statistical and machine learning methods. Identification of
stable biomarkers associated with the progression of OIPN would
enhance our understanding of the mechanisms of OIPN, also provided
new insights and targets for the prevention and treatment of OIPN.

2 Materials and methods
2.1 Study population and data collection

This study was based on an ongoing prospective study
conducted in the Affiliated Hospital of Jiangnan University. A
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total of 129 colorectal cancer patient receiving oxaliplatin
chemotherapy twice were enrolled from August 2022 and July
2023. The criteria for patient selection are as follows: 1)
histopathological confirmation of colorectal cancer diagnosis; 2)
TNM staging ranging from I to IV; 3) chemotherapy involving
oxaliplatin-containing regimens; 4) good general condition; 5)
Karnofsky Performance Status (KPS) score greater than 60; 6)
absence of other diseases causing peripheral neuropathy, such as
diabetes; 7) no current use of medications affecting peripheral
nerves; 8) age between 18 and 85 years, irrespective of gender; 9)
PS score < 2 points; 10)) expected survival period of more than 3
months; 11) normal liver, kidney, heart, bone marrow, and other
functionalities; 12) patients with intact consciousness and the ability
to clearly articulate their physical sensations. The study was
conducted according to the guidelines under the Declaration of
Helsinki and approved by Ethics Committee of the Affiliated
Hospital of Jiangnan University (LS2022080). All the participants
signed consent forms.

The OIPN was graded by physicians according to the National
Cancer Institute (NCI) Common Adverse Reaction Evaluation
Criteria (NCI-CTCAE V3.0) for grading peripheral nerve injury.
OIPN can be classified into four severity levels: Level 0: patients
with no OIPN; Level I: involves the disappearance of deep tendon
reflexes or sensory abnormalities that do not impede physical
function, manifesting as asymptomatic or detectable solely
through examination; Level II: encompasses mild sensory changes
or abnormalities (including needle-pricking sensations) that affect
physical performance but do not disrupt daily life; Level III:
presents with more severe abnormal sensory changes, requiring
assistive devices such as canes or wheelchairs for mobility; Level IV:
represents a disability or life-threatening condition. The
demographic data including white blood cells (WBC), eosinophil
(EOS), lymphocyte (LYM), alanine aminotransferase (ALT),
aspartate aminotransferase (AST), total bilirubin (TBIL), direct
bilirubin (DBIL), tumor markers, oxaliplatin dosage, and
concomitant medication were collected by reviewing electronic
medical records.

2.2 Sample pretreatment

A cohort of 129 serum samples, stored at -80 °C, underwent
preparation for untargeted metabolomic analysis. Samples were
thawed on ice and vortexed for 1 minute. Subsequently, 400 pL of
methanol was dispensed into a 96-well plate, followed by the
addition of 100 uL aliquots of each serum sample. The mixtures
were subjected to vigorous vortex mixing for 5 minutes to ensure
homogeneity. Sample plates were then transferred to an A200
pressurized nitrogen evaporator, where they underwent complete
solvent evaporation under a controlled nitrogen stream for 10
minutes. The dried residues were reconstituted with 150 pL of a 4
ppm 2-chlorophenylalanine solution (prepared in 80% methanol)
(CAS 103616-89-3; Aladdin Reagent Co.), followed by 5 minutes of
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vortex mixing to ensure complete dissolution. Finally, the
reconstituted samples were membrane-sealed in preparation for
subsequent LC-MS analysis.

2.3 LC-MS/MS analysis

The LC analysis was performed on a Vanquish UHPLC System
(Thermo Fisher Scientific, USA). Chromatography was carried out
with an ACQUITY UPLC ® HSS T3 (2.1x100 mm, 1.8 pm)
(Waters, Milford, MA, USA). For LC-ESI (+)-MS analysis, the
mobile phases consisted of (B2) 0.1% formic acid in acetonitrile (v/
v) and (A2) 0.1% formic acid in water (v/v). Separation was
conducted under the following gradient: 0~1 min, 8% B2; 1~8
min, 8%~98% B2; 8~10 min, 98% B2; 10~10.1 min, 98%~8% B2;
10.1~12 min, 8% B2. For LC-ESI (-)-MS analysis, the analytes was
carried out with (B3) acetonitrile and (A3) ammonium formate
(5mM). Separation was conducted under the following gradient:
0~1 min, 8% B3; 1~8 min, 8%~98% B3; 8~10 min, 98% B3; 10~10.1
min, 98%~8% B3; 10.1~12 min, 8% B3. Mass spectrometric
detection of metabolites was performed on Orbitrap Exploris 120
(Thermo Fisher Scientific, USA) with ESI ion source. Simultaneous
MS1 and MS/MS acquisition was used. The parameters were as
follows: sheath gas pressure, 40 arb; aux gas flow, 10 arb; spray
voltage, 3.50 kV and -2.50 kV for ESI(+) and ESI(-), respectively;
capillary temperature, 325 °C; MS1 range, m/z 100-1000; MS1
resolving power, 60000 FWHM; number of data dependant scans
per cycle, 4, MS/MS resolving power, 15000 FWHM; normalized
collision energy, 30%; dynamic exclusion time, automatic.

2.4 Data processing

The raw data were firstly converted to mzXML format by
MSConvert in ProteoWizard software package (v3.0.8789) (9) and
processed using R XCMS (v3.12.0) for feature detection (10),
retention time correction and alignment. Key parameters settings
were set as follows: ppm=15, peakwidth=c (5, 30), mzdift=0.01,
method=centWave. The batch effect was then eliminated by
correcting the data based on QC samples. Metabolites with RSD
> 30% in QC samples were filtered and then used for subsequent
data analysis. The metabolites were identified by accuracy mass and
MS/MS data which were matched with HMDB, massbank, KEGG,
LipidMaps, mzcloud and the metabolite database build by Panomix
Biomedical Tech Co., Ltd. (Shuzhou, China). The molecular weight
of metabolites was determined according to the m/z (mass-to-
charge ratio) of parent ions in MS data. Molecular formula was
predicted by ppm (parts per million) and adduct ion, and then
matched with the database to realize MS identification of
metabolites. At the same time, the MS/MS data from quantitative
table of MS/MS data, were matched with the fragment ions and
other information of each metabolite in the database, so as to realize
the MS/MS identification of metabolites.
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Schematic diagram of the study design. 33 participants with no OIPN, 22 participants with Level 1 OIPN, 54 participants with Level 2 OIPN, and 20
participants with Level 3 OIPN were used to perform untargeted metabolomics analysis to profile metabolic alterations in metabolic network
analysis. SHAP analysis and six machine learning were employed to select potential metabolite biomarkers to predict the different stages of OPIN.

2.5 Statistical analysis

Two different multivariate statistical analysis models,
unsupervised and supervised, were applied to discriminate the
groups, including pareto-scaled principal component analysis
(PCA) and orthogonal partial least-squares discriminant analysis
(OPLS-DA) by R ropls (v1.22.0) package (11). Furthermore,
permutation test (200 times) and CV-ANOVA were performed to
validate the generated models. The statistical significance of P-value
was obtained by statistical test between groups. The variable
importance in the projection (VIP) value of each variable in the
OPLS-DA model was calculated to indicate its contribution to the
classification. Finally, combined with P-value, VIP, and fold change
(FC) (multiple of difference between groups) to screen biomarker
metabolites. By default, when P value < 0.05 and VIP value > 1,
metabolites were considered to have significant differential
expression. Differential expressed metabolites (DEMs) were
subjected to pathway analysis by MetaboAnalyst (12), which
combines results from powerful pathway enrichment analysis
with the pathway topology analysis. The identified metabolites in
metabolomics were then mapped to the KEGG pathway for
biological interpretation of higher-level systemic functions. The
metabolites and corresponding pathways were visualized using
KEGG Mapper tool.

2.6 Machine learning method for
biomarker selection

Traditional statistical analyses do not consider interactive or
modifying effects among different metabolites, which may lead to
false positive results (13). SHAP, a cutting-edge technique for
enhancing the interpretability of tree-based models, employs a
game-theoretic approach to combine the local effects of each
feature, thereby elucidating the model’s functioning across the
entire dataset. This method is regarded as superior to other global

Frontiers in Oncology

approximation techniques. The SHAP algorithm not only quantifies
the importance of features within the model but also delves into the
specific influence of each feature on individual predictions (14).
Therefore, we subsequently employed SHAP analysis workflow to
identify biomarkers stably associated with OIPN.

Through the analysis of the random forest model, we have
derived the Shapley values for every individual DEM. Following
this, we have meticulously chosen the 20 DEMs with the most
substantial Shapley values for inclusion in predictive models. These
selected DEMs are now being applied across a spectrum of six
machine learning algorithms (including K-Nearest Neighbors,
Random Forest, Support Vector Machines, Gaussian Naive Bayes,
Logistic Regression, and Decision Trees). To evaluate their
predictive capabilities, we have also generated ROC curves,
providing a graphical representation of the performance of each
method. Data analysis was performed with the statistical software
package R (v4.4.1).

3 Results

3.1 Demographic and clinical
characteristics with OIPN

To profile the metabolic features in the serum of participants
with different stages of OIPN, we performed a serum metabolomics
study in a cohort of 33 participants with no OIPN (Level 0), 22 with
Level 1 OIPN, 54 with Level 2 OIPN, and 20 with Level 3 OIPN
(Figure 1). Detailed clinical parameters across the four OIPN
severity groups are presented in Table 1. Specifically, the
cumulative oxaliplatin (L-OHP) dose was 444.85+327.78 mg in
Level 0, 448.86+268.83 mg in Level 1, 584.76+303.52 mg in Level 2,
and 604+338.07 mg in Level 3, with significantly higher doses in
Level 2 and Level 3 compared to Level 0 (p=0.034 and p=0.038,
respectively), indicating a dose-dependent association with OIPN
progression. On the other hand, across all OIPN severity levels
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TABLE 1 Demographic and clinical characteristics of participants.

p-value
:.evglzil :.eng)Z level0 level0 level0 levell levell level2
= = Vs VS VS VS VS VS
levell level2 level3 level2 level3 level3
Age (year) 61.27+8.73 62.91+7.79 59.78+8.95 64.7529.37 | 0.50 0.45 0.17 0.16 0.50 0.034
Female (n, %) 11 (33.33%) 6 (27.28%) 12 (22.22%) 7 (35%)
Cancer stage (I, 1,2,7,11 0,2,11,9 1,17, 18, 18 0,7,9, 14
11, 111, IV) (n) (3.03%, 6.06%, (0%. 9.09%, (18.52%, 31.48%, (0%, 35%,
21.21%, 33.33%)  50%, 40.91%)  33.33%, 33.33%) 45%, 70%)
Treatment type | 22 (66.67%), 11 13 (59.09%),9 38 (70.37%), 16 18 (90%), 2
(XELOX, (33.33%) (40.91%) (29.63%) (10%)
FOLFOX) (n,
%)
L-OHP dose, 444,85+327.78 448.86+268.83  584.76+303.52 604+338.07 091 0.034 0.038 0.083 0.071 0.65
mg
WBC, 10°/L 5.75+1.20 5.85+2.24 5.2142.62 4.33+1.22 0.99 0.69 0.12 0.67 0.13 0.44
ANC, 10°/L 3.61+1.72 3.38+1.71 3.1142.42 2.15+0.90 0.68 0.26 0.010 0.59 0.044 0.061
ALC, 10°/L 1.56+0.45 1.89+1.43 1.47+0.41 1.63+0.47 0.099 0.56 0.74 0.022 0.24 0.40
EOS,10°/L 0.12+0.10 0.14+0.085 0.14%0.11 0.13+0.09 0.54 0.36 0.84 0.89 0.72 0.58
ABC,10°/L 0.015+0.036 0.032+0.048 0.011+0.032 0.0050£0.02  0.086 0.60 031 0.021 0.014 0.51
RBC, 10'%/L 3.95+0.7404 4.11+0.52 3.79+0.77 3.79+0.52 0.40 0.30 0.41 0.071 0.14 0.99
HGB, g/L 115.67+27.00 123.77+15.87  116.25%+25.21 121.5+13.98 | 0.20 0.91 0.37 0.20 0.75 0.38
PLT,10°/L 213.39+76.22 188.91£7239  171.54+71.12 134.90 0.21 0.0080 0 0.33 0.013 0.047
+48.27
AFP, ng/mL 3.62+3.27 20.22+69.93 2.62+1.39 2.85+1.16 0.039 0.88 0.92 0.018 0.053 0.97
CEA, ng/mL 146.14+243.13 72.62+149.56  15.16+27.59 31.21481.01 | 0.084 0 0.010 0.14 0.38 0.69
CA19-9, U/mL | 312.624469.038  35.23+97.16 53.80+92.19 43.18+78.14 0 0 0.0010 0.79 0.93 0.89
CA72-4, U/mL | 33.66+68.76 6.57+5.38 9.39+16.045 5.65+8.63 0.02 0.012 0.023 0.79 0.94 0.74
CA-125, U/mL  21.36+26.95 22.71+71.69 13.51+12.83 11.66+13.75 | 0.89 0.31 0.32 0.29 0.30 0.84
TBIL, ptmol/L 13.36+6.45 12.98+4.24 12.2746.073 13.9249.93 0.84 0.46 0.76 0.67 0.65 0.34
DBIL, pmol/L 2.75+1.76 2.46+0.84 2.82+3.48 2.36+1.19 0.68 0.80 0.59 0.57 0.90 0.48
ALB, g/L 38.015+4.61 39.95+2.87 38.21+3.87 37.89+2.25 0.063 0.82 0.90 0.069 0.077 0.74
210.96
PA, mg/L 233.91+71.66 254.81+4323  219.27+71.94 +41.02 0.24 0.30 0.21 0.030 0.028 0.62
ALT, U/L 26.97+16.95 38.41+46.63 30.13+23.96 21.15+9.73 0.12 0.59 0.44 0.22 0.036 0.20
GDH, U/L 10.35+13.89 46.38+188.51  36.92+202.98 5.11+2.99 0.33 0.43 0.90 0.81 0.38 0.43
GGT, U/L 85.39+110.37 38.2428.00 58.87+70.11 28.4+11.82 0.021 0.10 0.0070 0.27 0.66 0.11
7269.45 6879.75
CHE, U/L 6014.27+1934.31 = +1513.00 6251.35+2085.66 +1362.088 0.016 0.57 0.10 0.033 0.50 0.20
Fe, umol/L 10.86+6.43 14.66+5.84 12.47+7.093 13.83+6.23 0.039 0.27 0.12 0.19 0.69 0.43
GLU, mmol/L 4.93+0.68 5.49+1.30 5.21+1.036 4.9140.51 0.033 0.18 0.92 0.24 0.047 0.22
Cr, umol/L 64.50+19.08 66.54+13.93 66.74+18.17 61.81+7.69 0.66 0.54 0.57 0.96 0.38 0.26
317.81
UA, umol/L 347.55+100.62 387.01+84.70  336.52+88.05 +58.83 0.10 0.57 0.23 0.024 0.011 0.42
(Continued)
Frontiers in Oncology 05 frontiersin.org
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TABLE 1 Continued
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p-value

levelO level0 level0 levell levell level2

S S S S S S

levell level2 level3 level2 level3 level3
RBP, mg/L 36.55+13.076 40.57+7.94 34.40+11.35 33.28+8.42 0.19 038 0.31 0.029 0.038 071
TC, mmol/L 5.11+1.079 4.63+0.71 4.74+1.075 4.86+0.52 0.085 0.094 0.37 0.68 0.46 0.64
TG, mmol/L 2.00+1.20 1.94+1.32 1.78+1.013 1.59+0.72 0.84 0.39 0.20 0.60 0.32 051
HDL-C, mmol/L = 1.19+0.34 1.13%0.26 1.12+0.32 1.2120.24 0.51 0.33 0.84 0.90 0.45 0.32
LDL-C, mmol/L = 3.21%0.62 2.90+0.50 3.072+0.81 3.056+0.44 0.13 0.40 0.48 0.35 051 0.94

Values are given as mean + SD. WBC, White Blood Cell; ANC, Absolute Neutrophil Count; ALC, Absolute Lymphocyte Count; EOS, Eosinophil Absolute Count; ABC, Absolute Basophil Count;
RBC, Red Blood Cell Count; HGB, Hemoglobin; PLT, Total Platelet Count; AFP, Alpha fetoprotein; CEA, Carcinoembryonic Antigen; CA19-9, Carbohydrate Antigen 19-9; CA72-4,
Carbohydrate Antigen 72-4; CA-125, Carbohydrate Antigen 125; TBIL, Total Bilirubin; DBIL, Direct Bilirubi; ALB, Albumin; PA, Prealbumin; ALT, Alanine Aminotransferase; GDH, Glutamate
Dehydrogenase; GGT, Gamma-Glutamyl Transpeptidase; CHE, Cholinesterase; Fe, Iron; GLU, Glucose; Cr, Creatinine; UA, Uric Acid; RBP, Retinol-Binding Protein; TC, Total Cholesterol; TG,
Triglyceride; HDL-C, High - density Lipoprotein Cholesterol; LDL-C, Low - density Lipoprotein Cholesterol.

(Level 0 to Level 3), the proportion of male patients was consistently
higher than that of female patients. With respect to cancer staging,
the majority of patients were classified as having stage III or IV
colorectal cancer. Regarding treatment regimens, two main
oxaliplatin-based chemotherapy protocols were administered:
XELOX (capecitabine plus oxaliplatin) and FOLFOX
(fluorouracil, leucovorin, plus oxaliplatin), with the XELOX
regimen accounting for the larger proportion across all OIPN
severity levels.

For hematological indices, white blood cell (WBC) counts were
5.75+1.99x10°/L (Level 0), 5.85+2.24x10°/L (Level 1), 5.21
+2.62x10°/L (Level 2), and 4.33+1.22x10°/L (Level 3), with no
significant intergroup differences. Absolute lymphocyte counts
(ALC) were 1.56+0.45x10°/L (Level 0), 1.89+1.43x10°/L (Level 1),
1.474+0.41x10°/L (Level 2), and 1.63+0.47x10°/L (Level 3), with a
significant difference between Level 1 and Level 2 (p=0.022).

Eosinophil counts (EOS) exhibited no significant differences
across groups: 0.12+0.10x10°/L (Level 0), 0.14+0.085x10°/L
(Level 1), 0.14+0.11x10°/L (Level 2), and 0.13+0.09x10°/L (Level
3). Red blood cell (RBC) counts (3.95+0.74x10"%/L, 4.11+0.52x10'%/
L, 3.79+0.77x10"?/L, 3.79+0.52x10'?/L for Levels 0-3) and
hemoglobin (HGB) levels (115.67+27.00 g/L, 123.77+15.87 g/L,
116.25+25.21 g/L, 121.5+13.98 g/L) also did not differ
significantly between groups.

Regarding liver function and metabolic indices, total bilirubin
(TBIL: 13.36+6.45 mol/L, 12.98+4.24 tmol/L, 12.27+6.07 ptmol/L,
13.9249.93 umol/L), direct bilirubin (DBIL: 2.75+1.76 umol/L, 2.46
+0.84 umol/L, 2.82+3.48 pmol/L, 2.36+£1.19 umol/L), albumin
(ALB: 38.015+4.61 g/L, 39.95+2.87 g/L, 38.21+3.87 g/L, 37.89
+2.25 g/L), and glutamate dehydrogenase (GDH: 10.35+13.89 U/
L, 46.38+188.51 U/L, 36.92+202.98 U/L, 5.11+2.99 U/L) showed no
significant intergroup differences. Total cholesterol (TC: 5.11+1.08

Total=521

ORN0000NNNNOORERCODE

FIGURE 2

The number proportion of identified metabolites in each chemical classification.
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20.73% lipids and lipid-like molecules
14.40% Amino acids and derivatives
8.45% Benzene and substituted derivatives
6.33% Alcohols and polyols

5.76% Organic acids and derivatives
4.99% Carbohydrates

4.22% Nucleotide and derivatives
2.88% Amines

2.88% Phenols

2.11% Indoles and derivatives

2.11% Terpenoids

1.73% Flavonoids

1.73% Pyridines and derivatives
1.54% Carbonyl compounds

1.54% Purines and purine derivatives
0.96% Alkaloids

0.77% Cinnamic acids and derivatives
0.58% Coumarins and derivatives
16.31% Others
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FIGURE 3

Distinct separations in metabolic profiles using OPLS-DA. (A, C, E, G, |, K): OPLS-DA model in the Level 1vs Level O, Level 2vs Level O, Level 3vs Level
0, Level 2vs Level 1, Level 3vs Level 1, and Level 3vs Level 2 in the positive mode. (B, D, F, H, J, L): OPLS-DA model in the Level 1vs Level O, Level 2vs
Level O, Level 3vs Level O, Level 2vs Level 1, Level 3vs Level 1, and Level 3vs Level 2 in the negative mode.

mmol/L, 4.63+0.71 mmol/L, 4.74+1.08 mmol/L, 4.86+0.52 mmol/L)
also did not differ significantly across groups.

Tumor markers exhibited notable variations: carcinoembryonic
antigen (CEA) levels were 146.14+243.13 ng/mL (Level 0), 72.62
+149.56 ng/mL (Level 1), 15.16+27.59 ng/mL (Level 2), and 31.21
+81.01 ng/mL (Level 3), with Level 0 showing significantly higher
levels than Level 2 (p<0.001) and Level 3 (p=0.010). Carbohydrate
antigen 19-9 (CA19-9) was 312.62+469.04 U/mL (Level 0), 35.23
+97.16 U/mL (Level 1), 53.80+92.19 U/mL (Level 2), and 43.18
+78.14 U/mL (Level 3), with Level 0 significantly higher than all
other groups (p<0.001). Carbohydrate antigen 72-4 (CA72-4) was
33.66+68.76 U/mL (Level 0), 6.57+5.38 U/mL (Level 1), 9.39+16.05
U/mL (Level 2), and 5.65+8.63 U/mL (Level 3), with Level 0
significantly higher than Levels 1-3 (p=0.020, 0.012, 0.023).

Immune and inflammatory indices showed significant
differences: absolute neutrophil counts (ANC) were 3.61
+1.72x10°/L (Level 0), 3.38+1.71x10°/L (Level 1), 3.11+2.42x10°/
L (Level 2), and 2.15+0.90x10°/L (Level 3), with Level 0 higher than
Level 3 (p=0.010) and Level 1 higher than Level 3 (p=0.044). Platelet
(PLT) counts were 213.39+76.22x10°/L (Level 0), 188.91
+72.39x10°/L (Level 1), 171.54+71.12x10°/L (Level 2), and 134.90
+48.27x10°/L (Level 3), with progressive decreases showing
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significant differences between Level 0 vs Level 2 (p=0.008), Level
0 vs Level 3 (p<0.001), Level 1 vs Level 3 (p=0.013), and Level 2 vs
Level 3 (p=0.047). Uric acid (UA) levels were 347.55+100.62 pmol/
L (Level 0), 387.01+£84.70 umol/L (Level 1), 336.52+88.05 wmol/L
(Level 2), and 317.81£58.83 umol/L (Level 3), with Level 1 higher
than Level 2 (p=0.024) and Level 3 (p=0.011). All p-values <0.05
indicate statistically significant differences between the
corresponding groups (Table 1).

3.2 Detection of endogenous metabolites
in plasma

The total ion chromatogram (TIC) profiles exhibited substantial
overlap between technical replicates, with consistent retention times
and peak intensities across analyses, demonstrating high
reproducibility and stability of the chromatographic signals
throughout the analytical sequence (Supplementary Figures SI1A,
B). Concurrently, the tight clustering of quality control (QC)
sample data points observed in the principal component analysis
(PCA) score plots generated in both positive (Supplementary Figure
S1C) and negative (Supplementary Figure S1D) ionization modes
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FIGURE 4
(A) Multi-group volcano map. DEMs: meet P value < 0.05 and VIP value > 1 are shown in red. (B) The classification of DEMs among six different
groups.

verifies stable instrumental performance and good analytical
reproducibility throughout the experimental process, thereby
ensuring the reliability of subsequent biological differences
identified based on this dataset. LC-MS/MS-based metabolomic
profiling identified 521 distinct metabolites, comprising 315
compounds in positive ionization mode and 206 in negative
mode. These detected metabolites were categorized into 22
distinct biochemical classes based on their chemical taxonomy,
with proportional distribution across categories illustrated in
Figure 2. As shown in Figure 2, lipids and lipid-like molecules,
which constitute the largest proportion at 20.73%, primarily include
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Fatty acids and conjugates lipids, and Steroids and steroid
derivatives (e.g., dodecanoic acid, stearic acid, linoleic acid),
supporting our claim of their predominance. Amino acids and
derivatives account for 14.4%, encompassing compounds such as L-
phenylalanine, 1-methylhistidine, and L-tyrosine. Benzene and
substituted derivatives make up 8.45%, including benzaldehyde,
methoxamine, and neostigmine, while alcohols and polyols
represent 6.33% with examples like dihydrocortisol, smilagenin,
and hecogenin. Organic acids and derivatives constitute 5.76%,
featuring methylmalonic acid, 12-hydroxydodecanoic acid, and
isocitric acid, and carbohydrates account for 4.99%, including D-
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(A, C, E): Top 20 DEMs Bee Swarm Plot in the Level 1vs Level 0, Level 2vs Level 0, Level 3vs Level O; (B, D, F): Multi-model ROC predictive curve in

the Level 1vs Level O, Level 2vs Level O, Level 3vs Level 0.

mannose, mannitol, and fructose 1,6-bisphosphate. Nucleotide and
derivatives make up 4.22%, with compounds such as uridine,
deoxycytidine, and thymidine; Amines and phenols each account
for 2.88%, including spermine, anandamide, tryptophanamide
(amines) and m-cresol, chavicol, gingerol (phenols). Indoles and
derivatives (2.11%, e.g., indole, indole-3-acetate) and terpenoids
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(2.11%, e.g., lanosterin, zingiberene) follow, while flavonoids
(1.73%, e.g., quercetin, formononetin) and pyridines and
derivatives (1.73%, e.g., pyridoxine, pirbuterol) are also present.
Carbonyl compounds (1.54%, e.g., hydroxykynurenine) and
purines and purine derivatives (1.54%, e.g., paraxanthine) are
included, along with alkaloids (0.96%, e.g., anabasine), cinnamic

frontiersin.org


https://doi.org/10.3389/fonc.2025.1617207
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Hua et al. 10.3389/fonc.2025.1617207
Thiabendazole Imidazol-5-yl-pyruvate 5-hydroxypentanoic acid
1-methylxanthine [ R
*kkk — —
*kkk
*okokok Kok
ool - 1 1
- %% %k k 8x106 %%k %k k
7000000 5000000 4ypx . —
o
60000004 ? 4000000 _
> =
z £ 3000000 . 3 2
£ 5000000 g A § g
£ . ? ? %, £ 2000000 . £ £
- - Yy
4000000 . v
v 1000000 ‘ ‘- -w!
T T T T 0-
O N &l O N &l
DA DAY
AR N (SR N AN
Group Group Group
Spermidine 4'-oxolividamine
%k kK %%k %k ok
1
*kKK Fokok ok
—
%%k %k k ok kok
1500000 FX*E 1.5%107
* v
n 1 .
‘ v
4 " 4
2 2 1000000 i z
] @ * w 7]
c c 5
£ 2 . & e | E
= <= 500000 ’ oA § =
o
O N &l
DA
RN N
Group
FIGURE 6

The relative contents of the seven important biomarkers in Level O, Level 1, Level 2, and Level 3. **p<0.01, ****p<0.0001, ns indicated that there was

no significant difference between two groups.

acids and derivatives (0.77%, e.g., caffeic acid), and coumarins and
derivatives (0.58%, e.g., ostruthin). The “others” category,
comprising 16.31%, includes compounds such as zonisamide,
bilirubin, and biotin, which do not fit into the aforementioned
categories due to their unique structures or functions.

3.3 ldentification of DEMs and its
functional analysis in different stages of
OIPN groups

PCA initially displayed partial separations in both positive and
negative modes in different stages of OIPN groups (Supplementary
Figure S2). Furthermore, the OPLS-DA plots illustrated distinct
separations in metabolic profiles in different stages of OIPN groups,
which can be well distinguished in both positive and negative modes
(Figure 3). The 200-permulation test of LC-MS data was shown in
Supplementary Figure S3. All the values were lower than their
corresponding original ones and the intercepted value of Q* in the
vertical axis was below 0.5 (15), suggesting the model was not
overfitted. Therefore, the model produced goodness of prediction in
different stages of OIPN groups.

To further explore the differential metabolite molecules with
biological significance, we screened DEMs based on both VIP>1
and P-value < 0.05 in OPLS-DA. Specifically, we observed 187

Frontiers in Oncology

10

DEMs in Level 1 vs Level 0 (including 97 up-regulated and 90
down-regulated), 182 in Level 2 vs Level 0 (including 78 up-
regulated and 104 down-regulated), 202 in Level 3 vs Level 0
(including 99 up-regulated and 103down-regulated), 51 in Level 2
vs Level 1 (including 21 up-regulated and 30 down-regulated), 63 in
Level 3 vs Level 1 (including 31 up-regulated and 32 down-
regulated), and 27 in Level 3 vs Level 2 (including 7 up-regulated
and 20 down-regulated) comparisons (Figure 4A). The top three
most significantly regulated metabolites in each comparison group,
ranked by absolute log,FC values, are explicitly labeled. Positive
log,FC values denote upregulation, while negative values indicate
downregulation. The complete dataset of DEMs with corresponding
annotation details and quantitative measurements is provided in
Supplementary Table S1. The result of screening for DEMs was
visualized in histogram, with different colors to distinguish the
classification of DEMs in different groups, which indicated that the
DEMs across all groups were primarily concentrated in the
categories of amino acids and derivatives, benzene and substituted
derivatives, and fatty acids and conjugates (Figure 4B).

Enriched pathway analysis was performed for the screened
metabolites by using KEGG database, related pathways could be
classified into ABC transporters, central carbon metabolism in
cancer, amino acid metabolism (including D-amino acid
metabolism, arginine biosynthesis, arginine and proline
metabolism), linoleic acid metabolism (Supplementary Figure S4).
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FIGURE 7

Person correlation analysis between six important biomarkers and clinical features in OIPN (red: positive; blue: negative; higher absolute values

indicate stronger correlations).

3.4 |dentification of biomarkers using
machine learning method

SHAP analysis, grounded in the principles of game theory and local
explanations, falls under the category of established post hoc interpretive
methods. This approach enables the computation of Shapley values,
which in turn are employed to quantify the individual contributions of
each feature. Versatile and adaptable, SHAP is compatible with a wide
range of machine learning algorithms. In our research, we applied
SHAP analysis to a set of DEMs in different OIPN groups, using a
Random Forest model to ascertain their Shapley values, which serve as a
measure of their significance. As depicted in (Figures 5A, C, E), these
Shapley values are presented for each sample. The importance of the
metabolites is ranked based on the absolute average Shapley value,
which is then used to normalize the quantitative data for each
metabolite within the samples. This normalization helps illustrate
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how the importance of each feature data point influences the model’s
outcomes. The vertical axis in the figure lists the top 20 metabolites with
shapely values that exhibit differential effects, while the horizontal axis
displays the Shapley scores predicted by the Random Forest model for
the test set samples. These scores represent the contribution of each
metabolite to the classification prediction of the sample. The magnitude
of these scores indicates the relative contribution of the metabolite to
the classification results, with higher absolute values suggesting greater
importance. The color gradient in the visualization corresponds to the
standardized (scaled) characteristic values (quantitative metabolite
values) across different samples, with red denoting higher values and
blue indicating lower values.

The ROC (Receiver Operating Characteristic) curve can reveal
the ability of a machine learning classifier to identify samples at a
certain threshold (16). The closer the ROC curve is to the upper-left
corner, the higher the TPR (True Positive Rate) and the lower the
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FPR (False Positive Rate) in the model, indicating higher sensitivity
and lower misjudgment rate, and thus better performance of the
diagnostic method. The closer the area under the ROC curve is to 1,
the better the model’s sensitivity and specificity indicators, and the
more ideal the evaluation indicators are, indicating that the selected
biomarkers have excellent classification ability and effect. The top
20 DEMs in terms of contribution from SHAP analysis were
selected (Supplementary Table S2), and classification prediction
verification was carried out through six machine learning
algorithms, including K-Nearest Neighbor, Random Forest,
Support Vector Machine, Gaussian Naive Bayes, Logistic
Regression, and Decision Tree. It was found that in the
comparisons of Level 1 vs Level 0, Level 2 vs Level 0, and Level 3
vs Level 0, the AUC (Area Under the Curve) values were all
relatively high (all AUC values nearly 1) (Figures 5B, D, F). These
results indicated that the 20 metabolites selected through SHAP
analysis in these three groups of analyses had high classification
value. It also suggested that the model’s predictive results were not
accidental and possess a certain degree of robustness. In the three
groups, the relative abundance profiles of seven biomarkers were
consistent between subjects with and without OIPN. Notably, as
shown in Figure 6, except for adipic acid, six biomarkers—
thiabendazole, 1-methylxanthine, imidazol-5-yl-pyruvate, 5-
hydroxypentanoic acid, spermidine, and 4’-oxolividamine
exhibited statistically significant differences (p < 0.0001) when
comparing Level 0 (non-OIPN) with Levels 1, 2, and 3 (graded
severity of OIPN), highlighting their potential as discriminative
markers for distinguishing the presence from the absence of OIPN.
These findings suggest metabolic perturbations associated with the
development of OIPN, these six metabolites were identified as key
differential biomarkers that distinguish patients with OIPN from
those without OIPN manifestations, and their distinct metabolic
profiles demonstrate significant discriminatory potential in
characterizing the pathophysiology of OIPN.

In contrast, among the Level 2 vs Level 1, Level 3 vs Level 1, and
Level 3 vs Level 2 comparison groups, the top 20 differential
metabolites with the highest contributions were identified through
SHAP analysis (Supplementary Table S3). Subsequent validation
using six machine learning models revealed AUC values ranging
between 0.696-0.804, 0.607-0.762, and 0.549-0.843 for these
groups, respectively (Supplementary Figure S5). These results
indicated that these DEMs cannot effectively predict the
differences between Level 1, Level 2, and Level 3 (17). This may
be attributed to the relatively small sample size in our experiment,
and the fact that patients were graded for OIPN based on their
sensations, which might have led to the failure in identifying clear
differentiating compounds.

3.5 Association of six biomarkers with
clinical characteristics

The results of Pearson correlation analysis between six

important biomarkers (including spermidine, thiabendazole, 1-
methylxanthine, imidazol-5-yl-pyruvate, 5-hydroxypentanoic acid,
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and 4’-oxolividamine) and clinical features related to OIPN
(including L-OHP dose, ANC, PLT, AFP, CEA, CA19-9, CA72-4,
GGT, CHE, Fe, GLU) were shown in Figure 7. Red indicates a
positive correlation and blue indicates a negative correlation. The
absolute value of the correlation coefficient reflects the strength of
the correlation (the larger the absolute value, the stronger the
correlation). Specifically, the correlations between various
biomarkers and clinical features showed different trends. For
example, thiabendazole had a relatively certain positive
correlation with PLT (correlation coefficient 0.296), and 1-
methylxanthine also had a certain positive correlation with PLT
(0.295); CEA had a certain positive correlation with Imidazol-5-yl-
pyruvate (0.258); CA19-9 had a certain positive correlation with
Imidazol-5-yl-pyruvate (0.241); Spermidine had a certain positive
correlation with GLU (0.222); However, there were weak negative
correlations between some indicators, such as the correlation
coefficient between PLT and spermidine was -0.262, the
correlation coefficient between CEA and spermidine was -0.211,
and the correlation coefficient between GGT and 1-methylxanthine
was -0.209. Overall, the absolute values of most correlation
coefficients were small, suggesting that the association between
these biomarkers and the listed clinical features is mainly weak,
but this analysis provides basic data for exploring the potential
clinical association of biomarkers in OIPN.

4 Discussion

OIPN emerges as a frequent side-effect among colorectal cancer
patients. Early detection and management are essential to minimize
the risk of discontinuing OIPN, enhance treatment adherence, and
ultimately improve the prognosis for OIPN patients undergoing
OIPN therapy. In this research, untargeted metabolomics was used
to investigate OIPN in colorectal cancer patients. We found that
there were significant differences in plasma metabolic profiles in
different stages of OIPN. ABC transporters, central carbon
metabolism in cancer, amino acid metabolism, and linoleic acid
metabolism were significantly affected during the onset of OIPN.
SHAP-guided random forest algorithms and six machine learning
algorithms further validated thiabendazole, 1-methylxanthine,
imidazol-5-yl-pyruvate, 5-hydroxypentanoic acid, spermidine, and
4’-oxolividamine which were associated with OIPN patients (Level
1-3) from non-OIPN controls (Level 0) (Figures 5, 6). However,
differentiation between intermediate OIPN grades (Level 1 vs 2,
Level 1 vs 3, Level 2 vs 3) yielded lower predictive accuracy (AUC:
0.549-0.843) (Supplementary Figure S5). These metabolic features
may provide useful clues for future mechanism exploration and
identification of therapeutic targets of OIPN.

Previous study has indicated that the incidence of OIPN is dose-
dependent, when the cumulative dose reaches 780-850 mg/ m?, 15%
of patients may experience symptoms such as persistent numbness;
when the cumulative dose reaches 1170 mg/mz, the incidence rate is
50%, and when the cumulative dose reaches 1560 mg/mz, the
incidence rate is 75% (18). Aligned with prior researches, we
found that the doses of L-OHP used by patients with Level 2 and
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Level 3 OIPN were significantly higher than those without OIPN,
indicating that the cumulative dose of L-OHP chemotherapy plays
an important role in OIPN. At the same time, our findings implied
that the occurrence of OIPN may be associated with the progression
of the disease and the patients’ tumor markers (CEA, CA19-9,
CA72-4), as well as immune response and inflammation (ANC,
PLT), and metabolic and liver function abnormalities (GGT and
UA) (Table 1).

Our findings revealed that patients with OIPN exhibited
significantly elevated serum levels of 1-methylxanthine (1-MX),
suggesting its potential role as a biomarker for nerve injury (19). Key
mechanistic insights include: Oxaliplatin directly binds to voltage-gated
sodium channels (Nav1.6/1.8), inducing neuronal hyperexcitability and
aberrant action potentials (20). As an adenosine A,A receptor
antagonist, 1-MX may exacerbate sodium channel dysfunction by
inhibiting adenosine-mediated neuroprotective effects. This synergy
could explain the higher incidence of acute cold allodynia and chronic
sensory dysfunction in patients with elevated 1-MX levels. Oxaliplatin
triggers mitochondrial oxidative stress (mtROS accumulation) and
DNA damage, central mechanisms underlying its chronic
neurotoxicity (21). 1-MX amplifies these effects by inhibiting
phosphodiesterase (PDE), elevating intracellular cAMP levels, and
activating the PKA pathway, thereby promoting mitochondrial
permeability transition pore (mPTP) opening and enhancing
apoptotic signaling. Furthermore, oxaliplatin may disrupt purine
metabolic enzymes, leading to abnormal 1-MX accumulation (22).
This study demonstrates a positive correlation between serum
spermidine levels and the risk of OIPN. Spermidine synergistically
exacerbates neuronal hyperexcitability by enhancing TRPV1 and
Navl.8 channel activity in conjunction with oxaliplatin (23).
Experimental data reveal that spermidine significantly increases
calcium oscillation frequency in dorsal root ganglion neurons. Single-
cell sequencing confirms elevated expression of inflammatory
cytokines (IL-6, TNF-o) in peripheral blood monocytes of OIPN
patients, which correlates positively with serum spermidine levels
(24). Additionally, spermidine may impair the clearance efficiency of
oxaliplatin metabolites, leading to neurotoxic substance accumulation
and accelerated axonal transport dysfunction. In colorectal cancer
patients treated with oxaliplatin, individuals who developed OIPN
exhibited significantly higher serum levels of 4’-oxolividamine
compared to those without neurotoxicity, with its concentration
positively correlated to OIPN severity in our study. 4-oxolividamine,
an oxidized metabolite of polyphenolic compounds, is jointly catalyzed
by gut microbiota and hepatic CYP450 enzyme systems (25). Its o,B-
unsaturated ketone structure enables covalent modification of cellular
proteins, thereby inhibiting the Nrf2/ARE antioxidant pathway and
leading to reduced ROS scavenging capacity. Oxaliplatin accumulates
in the dorsal root ganglia (DRG), inhibits mitochondrial electron
transport chain complexes I/IIl, and induces mitochondrial DNA
damage and reactive oxygen species (ROS) overproduction (26).
Consequently, elevated 4’-oxolividamine in OIPN patients may
exacerbate oxaliplatin-induced oxidative stress, creating a vicious
cycle of “ROS-mitochondrial damage-neuronal apoptosis”.

This study found that the level of Imidazol-5-yl-Pyruvate (I5P) is
negatively correlated with OIPN. As an intermediate in histidine
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metabolism, I5P may enhance mitochondrial function by regulating
pyruvate metabolism (27, 28). I5P inhibits the activity of lysosomal
cathepsin Cathepsin L, blocks the degradation of IxB-o., thereby
reducing the release of NF-kB-mediated inflammatory factors (such
as IL-6 and TNF-o) and alleviating neuroinflammation (29). The levels
of inflammatory factors in OIPN patients are significantly higher than
those in non-OIPN patients. I5P may alleviate the severity of OIPN by
reducing the release of inflammatory factors. Our study revealed a
significant inverse correlation between serum levels of 5-
hydroxypentanoic acid (5-HPA) and the incidence of OIPN. 5-HPA,
a hydroxylated fatty acid derivative, may participate in mitochondrial
energy metabolism (30). Previous studies have shown that
intermediates of fatty acid oxidation (acetyl-CoA and ketone bodies)
can mitigate oxidative stress by enhancing ATP synthesis and
scavenging ROS (31, 32). Oxaliplatin is known to impair
mitochondrial complex I/II activity, leading to ROS accumulation and
subsequent axonal damage (33, 34). We hypothesize that higher 5-HPA
levels may compensate for this deficit by supporting alternative energy
pathways or directly neutralizing ROS. This is supported by the
structural similarity of 5-HPA to y-hydroxybutyrate (GHB), a
neuroprotective metabolite shown to reduce ROS in dorsal root
ganglia neurons. Our study revealed a significant negative correlation
between serum thiabendazole levels and the incidence of OIPN.
Oxaliplatin induces axonal damage in DRG neurons by inhibiting
mitochondrial complexes I/II activity, leading to excessive accumulation
of ROS (35). Notably, thiabendazole, as a benzimidazole compound,
possesses strong electron-donating capabilities through its benzene and
imidazole moieties, potentially exerting antioxidant effects by directly
neutralizing hydroxyl radicals ((OH) or superoxide anions (O27).
Furthermore, oxaliplatin disrupts gut microbiota homeostasis (36),
promoting pathobionts (e.g., Escherichia coli) to release
lipopolysaccharide (LPS), which exacerbates neuroinflammation via
the TLR4/NF-kB pathway. Interestingly, thiabendazole, as a broad-
spectrum antiparasitic agent (37), may reduce LPS leakage by
suppressing the overproliferation of specific microbiota components.
This study and our previously published research (8) both
focused on the discovery of metabolomic biomarkers for OIPN, but
they exhibit key differences in design and objectives. The prior study
successfully identified six stable biomarkers distinguishing OIPN
patients from non-OIPN controls based on untargeted
metabolomics, including racemethionine, stearic acid, 5-
aminopentanoic acid, erythritol, aminoadipic acid, and all-trans-
retinoic acid. In contrast, the current work represents the first
longitudinal analysis specifically targeting OIPN severity grading
(Levels 0-3). It revealed significant associations between OIPN
occurrence and cumulative oxaliplatin dose, tumor progression
(CEA/CA19-9), and immune-inflammatory indicators (ANC/PLT).
Furthermore, employing SHAP-guided machine learning, this study
identified six novel biomarkers, including thiabendazole, 1-
methylxanthine, imidazol-5-yl-pyruvate, 5-hydroxypentanoic acid,
spermidine, and 4’-oxolividamine that demonstrated high accuracy
in discriminating the presence of OIPN (Level 0 vs. Levels 1-3, AUC

1) (Figure 5). While pathway-level dysregulation overlapped
partially with the previous findings (e.g., disturbances in amino

acid metabolism), there was no direct overlap in the specific
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metabolites identified, potentially reflecting biological differences
between OIPN onset and progression stages. Notably, the current
study highlighted abnormalities in pathways including ABC
transporters and central carbon metabolism in cancer, whereas the
prior study emphasized arginine biosynthesis, beta-alanine
metabolism, and linoleic acid metabolism. Critically, this study did
not identify specific biomarkers capable of effectively differentiating
intermediate OIPN severity grades: AUC values were 0.696-0.804 for
Level 2 vs. Level 1, 0.607-0.762 for Level 3 vs. Level 1, and 0.549-
0.843 for Level 3 vs. Level 2 (Supplementary Figure S5). This
limitation is likely attributable to the subjective sensory-based
grading system, cohort size constraints, and the continuous nature
of metabolic changes during OIPN progression. Future validation
incorporating objective neurophysiological measures within larger
cohorts is warranted.

Regarding the possible reasons for the low predictive accuracy of
the six identified metabolites among intermediate OIPN grades (e.g.,
Level 1 vs 2, Level 1 vs 3, Level 2 vs 3), the main points are as follows:
First, the sample size of this study is relatively limited, especially the
uneven distribution of samples across different grades (e.g., only 20
cases in Level 3), which may make it difficult for the model to capture
subtle metabolic differences between grades. Second, OIPN grading is
based on the NCI-CTCAE V3.0 criteria, mainly relying on physicians’
evaluation of patients’ subjective sensations. Such subjective scoring
may have individual differences and ambiguous boundaries, resulting in
insufficient objectivity of the grading itself. In addition, as a progressive
process, OIPN may exhibit continuous characteristics in metabolic
changes, and the differences in metabolite abundance between
intermediate grades may be subtle. However, the currently screened
biomarkers are more inclined to distinguish the presence or absence of
OIPN (Level 0 vs 1-3) and have low sensitivity to such continuous and
subtle grading differences. Finally, metabolic disorders between
intermediate grades may involve more complex pathway interactions,
and relying solely on the six metabolites may not fully reflect the
biological differences between grades. It is necessary to combine multi-
dimensional indicators (such as neuroelectrophysiological parameters)
to further optimize the model.

5 Conclusions

In this study, untargeted metabolomics coupled with SHAP-
guided random forest algorithms, and machine-learning were
employed to identify differentially expressed metabolites
associated with OIPN in colorectal cancer patients. Our results
suggest that L-OHP doses, tumor progression, immune response
and inflammation may underlie OIPN. We speculate thiabendazole,
1-methylxanthine, imidazol-5-yl-pyruvate, 5-hydroxypentanoic
acid, spermidine, and 4’-oxolividamine show significant promise
in understanding the occurrence of OIPN. The metabolite signature
discovered may provide a foundation for the management of OIPN.
However, the further researches, including larger cohort studies and
in-depth investigations into underlying mechanisms, are necessary
to validate these differential metabolites and confirm abnormalities
in metabolomic pathways.
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