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Frontiers in Oncology 
Machine learning-based 
single-sample molecular 
classifier for cancer grading 
Zoia Antysheva † , Nikita Kotlov † , Mariia V. Guryleva, Ivan Valiev, 
Viktor Svekolkin, Anna Belozerova, Sheila T. Yong ‡ , 
Dmitry Tabakov ‡ , Alexander Bagaev and Vladimir Kushnarev* 

Research and Development, BostonGene Corporation, Waltham, MA, United States 
Tumor subtyping based on morphological grade is used in cancer treatment and 
management decision-making and to determine a patient’s prognosis. While 
low- and high-grade tumors are predictive of patient survival for many cancers, 
tumors of intermediate morphological grades are considered unreliable due to 
interobserver variability and thus do not have clear prognostic significance. To 
address this issue, we devised a molecular-based classifier that uses gene 
expression data from RNA sequencing (RNA-seq) or microarray profiling to 
predict high- and low-grade risk groups for breast, lung, and renal cancers. For 
this classifier, we developed a preprocessing procedure that only required 
expression data from a single sample, without the need for any batch 
correction or cohort scaling. This classifier, while trained only on RNA 
sequencing data, achieves highly accurate risk predictions on both RNA-seq 
and microarray data. First, the molecular grades (mGrades) predicted by this 
classifier correlated strongly with the pathologist-assigned histological grades 
and clinical stage. Next, we showed that mGrades were effective in assessing risk 
levels for G2 samples. Finally, we identified common and unique biological and 
genetic features in samples of low and high mGrades across breast, lung, and 
renal cancers. Gene expression patterns as revealed by the classifier can provide 
useful information for both research and diagnostic purposes. 
KEYWORDS 
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Introduction 

Tumor grading assesses the differences between tumor and normal tissues, such as 
tissue de-differentiation and tissue-specific indicators.  These differences  include
combinations of tumor histo- and cytoarchitectonics such as patterns (e.g., solid, 
tubular, cribriform), number of mitoses, and nuclear and nucleoli pleomorphism, to 
name a few (1). The use of separate systems for each tumor type allows for a more 
accurate evaluation of metastatic potential and overall prognosis. 
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Tumor aggressiveness most commonly ranges from the first to 
third grade (in breast cancer [BRCA] and lung adenocarcinoma 
[LUAD]), or, less often, fourth grade (for kidney cancer). Tumors of 
lower grades are more similar to normal tissues than those of higher 
grades are. G1 is considered low-grade, G3 and G4 are considered 
high-grade, and the rest are considered moderate. Tumor grades are 
considered not only as prognostic and predictive factors, but also as 
predictors of treatment response. High grades are usually associated 
with an increased risk to the patient (2–5). The widely accepted 
Nottingham grading system for BRCA is an independent prognostic 
biomarker-based grading system that analyzes the degree of tubular 
formation, mitosis, and nuclear polymorphism (4, 6, 7). It is 
associated with chemotherapy response (8, 9) and  is  widely
incorporated in clinical guidelines for breast cancer such as those 
by the American Society of Clinical Oncology (ASCO) (10), 
National Comprehensive Cancer Network (NCCN) (11), and 
European Society of Medical Oncology (ESMO) (12). 

The newly introduced consensus grading system for LUAD by 
the International Association for the Study of Lung Cancer (IASLC) 
showed a significant prognostic impact on survival (3). Tumor 
pattern has also been reported to affect chemotherapy response 
(13), whereby the combination of KRAS mutation and solid tumor 
pattern may correlate with chemotherapy resistance (13). 

For clear cell renal cell carcinoma (ccRCC), Fuhrman grading 
(14) implemented in clinical models to predict recurrence had been 
the gold standard for tumor grading. After a consensus meeting in 
2012, the International Society of Urological Pathology (ISUP) 
replaced the Fuhrman grading system with a new grading system, 
WHO/ISUP (5). High-grade ccRCC tumors based on the WHO/ 
ISUP grading system (15) showed a correlation not only with poor 
prognosis, but also with non-responders to sunitinib (16). 

Despite the prognostic and predictive importance of tumor 
grading, its application is challenging. First, reproducibility is the 
main concern. Since this analysis is performed by a pathologist, 
there is often substantial variation in the analysis outcome (5, 17, 
18). Thus, despite the use of various criteria to maximize assessment 
objectivity, the definition of tumor grade remains subjective and 
highly dependent on user expertise (19). Moreover, there is a lack of 
statistically significant differences in the survival rate of patients 
with moderate-grade tumors when compared to patients with low-
and high-grade tumors (20). 

Compounding this problem is the fact that pathologists often 
assign samples as G2. As such, it stands to reason that the G2 grade is 
uninformative with regard to clinical decision-making and its 
prognostic value is uncertain (19, 21, 22). Machine-learning 
approaches have been shown to perform better at risk prediction in 
cancer sample analysis than many other existing approaches (23). 
Unfortunately, the development and use of machine-learning 
approaches for grade assessment do not completely resolve the 
issue of reproducibility (4, 18). This is because although deep 
learning and machine learning can render an algorithm or model 
capable of predicting tumor grades, these approaches still require 
validation, often by pathologists (24). Pathologists performing the 
validation steps are often also responsible for annotating the training 
dataset for the model; hence, they are likely to subconsciously 
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incorporate their own biases into the process (25, 26). Therefore, it 
may be technically impossible to eliminate all biases. 

One of the most successful attempts to mitigate this problem 
was the creation of the Genomic Grade Index (GGI) (21). In this 
study, GGI was defined as the difference between the sum of the 
expression of genes with increased expression in G3 and the sum of 
the same parameters in G1. The ability to divide patients with index 
values (above or below zero) into groups of high and low 
malignancy was shown. The resulting separation and index value 
were associated with survival, with a high index value associated 
more strongly with a higher risk of recurrence than a low gene 
expression grade index value, based on pathological analysis 
(hazard ratio = 3.61, 95% confidence interval = 2.25 to 5.78; 
p<.001, log-rank test). Notably, the authors used GGI to divide 
samples of intermediate malignancy (G2) into two groups 
corresponding to low- and high-grade malignancies. Although 
powerful, GGI still requires a cohort of samples belonging to a 
single batch and enriched in both low- and high-grade samples for 
initial scaling before it can be deployed to analyze other clinical/test 
samples belonging to this specific batch. 

Many existing predictors can only use one type of data (RNA 
sequencing [RNA-seq] or microarray data) and can only perform 
cohort analysis (27). This is a serious limitation in the clinical setting 
because in order to make educated decisions concerning treatment 
options and to predict responses, we need to be able to analyze single 
patient samples without the need for a cohort. Currently, most of the 
developed predictors are created for individual nosological cancers 
(28). Despite the active development of predictors in recent years, 
achieving clinically significant predictive accuracy and applicability of 
a predictor in clinical practice remains a challenge. To address this 
challenge, we developed a molecular-based classifier that can use gene 
expression data from either RNA-seq or microarray profiling to 
accurately predict the tumor grades for BRCA, LUAD, and ccRCC. 
This approach aligns with recent efforts to enhance molecular 
stratification across diverse cancer types, including pancreatic 
cancer, where molecular insights into tumor microenvironment and 
signaling pathways are actively shaping therapeutic strategies (29). 
Results 

Development and training of the tumor 
grade predictor 

The tumor grade classifier was developed by training a 
machine-learning algorithm to classify tumors into low (mG1) 
and high (mG3/mG4) molecular grades (mGrades) for each 
cancer type using rank transformation of gene expression data 
from multiple datasets (Figure 1A). We developed this tumor grade 
predictor with three key objectives. First, we aimed to accurately 
differentiate between high- and low-grade tumors. Second, we 
aimed to efficiently stratify samples with intermediate tumor 
grades, such as G2, into either high- or low-risk categories. Lastly, 
we wanted to perform tumor grade prediction for single patient 
samples, without the need for large cohorts or complex procedures. 
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FIGURE 1 

Development pipeline of the tumor grade predictor. (A) The tumor grade predictor was developed by training a machine-learning algorithm to 
classify tumors into categories of low (mG1) and high (mG3/mG4) molecular grades (mGrades) for each cancer type using rank transformation of 
gene expression data from multiple datasets. (B) Scheme for selecting the best split into risk groups of high and low GGI scores using Cox 
regression. (C) Scheme for optimal threshold definition. (D) Rank transformation was used to conserve gene relationships (i.e., GeneA > GeneB) and 
transform geneset values into fixed ranges for a single sample, independent of dataset composition. 
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To achieve these objectives, we used gene expression data for 
BRCA, LUAD, and ccRCC from publicly available datasets (see 
Materials and Methods and Supplementary Table 1) and developed 
a classifier for each cancer type. Each classifier was trained only on 
the RNA-seq data, and then validated using both microarray and 
RNA-seq data. To label a dataset for classifier training (Figure 1B), 
we performed differential expression analysis between high- and 
low-grade samples either on a subset of this dataset or on an 
additional microarray dataset that would subsequently be excluded 
from the validation step. Genesets differentially expressed between 
G3 (or G4) and G1 tumors were used to create a gene expression 
grade index (GGI) for all samples in the training dataset, as 
described by Sotiriou et al. (21) (Supplementary Figure S1A). 
However, unlike the original study, our GGI was not scaled using 
pathologist-labeled grades. Instead, we employed a vector of 
unscaled GGI values in survival analysis using Cox regression. In 
this analysis, the samples were stratified into high- and low-GGI 
groups based on a predetermined threshold. This threshold was 
refined by testing potential cutoffs at 1% intervals of the GGI 
variance and selecting the one that provided the best p-value, 
hazard ratio for grade groups, and overall concordance 
(Figure 1C). This approach enabled threshold optimization 
without relying on external grading, ensuring that the model 
could independently predict risks based on molecular data alone. 

The training dataset for each cancer type was split into high-
and low-risk groups based on GGI values and publicly accessible 
survival data for each cancer type. We defined these risk groups as 
molecular grades (mGrades) and labeled the low-risk group as mG1 
and high-risk groups as mG3 or mG4 depending on the cancer type. 
As expected, most of the high-grade samples clustered in the high-
risk group, whereas most of the low-grade samples clustered in the 
low-risk group. Samples with G2 or other intermediate grades and 
unlabeled samples were split between the two risk groups 
(Supplementary Figures S1A, B). The sample labels were then 
used to train the classifiers. 

To train the respective models for each cancer type, we used 
only the differentially expressed genesets that were used for GGI 
calculations. Rank transformation, as described in the Materials and 
Methods section, was used to conserve gene relationships (i.e., 
GeneA > GeneB) and transform gene values into fixed ranges for 
a single sample, independent of dataset composition (Figure 1D). 
This approach stabilizes the tree classifiers that use rules such as 
GeneA > ValueB, allowing single-sample classification to be 
independent of batch and dataset composition. Therefore, unlike 
conventional batch correction methods (such as ComBat), rank 
transformation does not provide true batch correction because it 
does not deliver continuous values for all genes or large genesets 
(30). Nonetheless, for single-sample corrections performed in this 
study, rank transformation was sufficient to enable batch-
independent sample classification. 

Next, we performed machine-learning feature selection to 
choose the best geneset for mGrade classification. The SHAP 
values of feature importance (31) were used to determine and 
discard the least important genes (see Materials and Methods). 
The rank transformation step was repeated for the expression data. 
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The model was then trained on the refined feature set. This step was 
repeated until 20 features remained, followed by the selection of the 
geneset with the best negative log loss (Supplementary Figure S2A). 
This approach revealed the strongest positive contributors across all 
three cancer-specific models to be BIRC5, TPX2, CTHRC1, SLC7A5, 
and MMP7. The convergence of cell-cycle regulator genes (BIRC5, 
TPX2) with matrix-remodeling and metabolic genes (CTHRC1, 
SLC7A5, MMP7) underscores  the twin biological hallmarks— 
unchecked proliferation and micro-environmental restructuring— 
tha t  dis t ingui sh  high  (mG3/mG4)  f rom  low  (mG1)  
molecular grades. 

Upon selecting the best geneset (Supplementary Figure S2B), we 
repeated the rank transformation step with this geneset and then 
trained a final model with hyperparameters optimized by cross-
validation. Finally, we validated our models using cancer type-
specific microarray and RNA-seq datasets (Supplementary Table 1). 
Model validation and testing 

The validation datasets (Supplementary Table 1) were used to 
assess model performance. Two criteria were used to evaluate model 
quality. The first was the capability of the classifier to discern low 
and high histological grades based on gene expression data, thus 
confirming the association between molecular and histological 
grades. Second was the capability of the mGrades to predict 
survival and to split samples into low- and high-risk categories, 
especially for samples with intermediate histological grades. 

As shown in the area under the receiver operating characteristic 
curves (AUC ROCs) in Figure 2A, our mGrade predictor classified 
BRCA, LUAD, and ccRCC samples into mG1 and mG3/mG4 
groups with high accuracy based on RNA-seq and microarray 
gene expression data. The AUC exceeded 0.8 for all cancer types. 
In particular, BRCA, which had the highest number of samples 
analyzed, demonstrated an AUC ROC value of 0.936. The 
regression concordance values obtained from Cox regression 
survival analysis showed that our predictor performed at least as 
well as histological grades in predicting survival (Figure 2B; 
Supplementary Tables 2–10). Additionally, our predictor could 
split samples with histological grade G2 and other intermediate 
grades into high- and low-risk groups. We also found that mG3 had 
a higher hazard ratio than histological G3 for LUAD and ccRCC 
(Figure 2B), thus allowing our mGrade predictor to classify high-
risk samples and capture high-risk patients more effectively. In 
other words, this predictor can identify high-risk patients more 
precisely than histological grading can. This is an important feature 
of our classifier for addressing the prognostic uncertainty of the G2 
grade, as it has been demonstrated previously that samples with 
intermediate grades could in fact be divided into high- and low-risk 
categories (21). In this regard, the mGrade predictor offers an 
objective and unbiased means to classify these samples into the 
mG1 or mG3/mG4 groups. 

Moreover, Cox models that used mGrades achieved 
concordance indices equal to or higher than those based on 
traditional histological grades in all three cancer types (BRCA, 
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FIGURE 2 

Molecular-based classifiers for predicting tumor grade and survival for BRCA (left, n=1,927), LUAD (middle, n=596), and ccRCC (right, n=718). (A) 
AUC ROCs for pathological classification of the mGrade predictor to demonstrate the accuracy of pathological classification of G1 and G3/G4 
samples into mG1 and mG3/mG4 groups using RNA-seq and microarray data. (B) Cox regression analysis plots for comparing the prognostic 
values of mG1 and mG3 groups (top row) to histological grades (bottom row). Middle row: Cox regression analysis plots showing the prognostic 
value of mGrade samples after the splitting of G2 pathological samples by the classifier. (C) Bar graphs showing the association of mG1 and 
mG3/mG4 groups with clinical stage across all three cancer types. 
Frontiers in Oncology 05 frontiersin.org 

https://doi.org/10.3389/fonc.2025.1617898
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Antysheva et al. 10.3389/fonc.2025.1617898 

 

LUAD, and ccRCC). The integrated Brier score for the mGrade 
model differed from the histology model by no more than 0.002. 
Importantly, when G2 tumors were reclassified into mG1 or mG3, 
the resulting two-class model produced a lower (better) Brier score 
than the original three-grade histology model (Figure 2B; 
Supplementary Tables 2–10). Importantly, our approach 
described herein uses a GGI-like index based on differential gene 
expression and survival data that often reassigns certain 
histologically labeled G1 and G3 samples to different risk groups 
if their molecular profiles diverge from the conventional 
morphological classification. Because these new molecular labels 
do not fully align with the original pathologist-assigned grades, 
complete agreement between our GGI-based labeling and 
traditional histological labels is inherently impossible. It is also 
noteworthy that concordance between pathologists is not absolute 
even when G1 and G3 grades are concerned (32). Since pathological 
label prediction is not absolute and is not a training objective, it is 
not unusual for samples to be assigned a different grade from the 
initial pathological labeling. 

Moreover, our analysis showed a significant association 
between cancer stage and mGrades (mG1 and mG3/mG4) in 
BRCA, LUAD, and ccRCC (p < 0.005). In BRCA and LUAD, an 
increased proportion of mG1 samples was observed in Stage IV, 
marking a shift from the expected trend of the mG1 proportion 
decreasing and the mG3/mG4 proportion increasing with 
advancing stage. In ccRCC, this trend remained consistent across 
all stages, with a decrease in the proportion of mG1 samples and an 
increase in the proportion of mG3/mG4 samples as the disease stage 
progressed (Figure 2C). The different mGrade trends in Stage IV of 
BRCA and LUAD can be explained by the low number of Stage IV 
samples of these two cancers in the validation set (20 and 
6, respectively). 

Models that analyze designated sample batches have also been 
reported (33). Unfortunately, due to the presence of batch effects, 
these models cannot be used to analyze single samples or samples 
from different batches. Therefore, their application is mostly limited 
to research settings and is not easily translatable to clinical practice. 
While there have been attempts to develop single-sample predictor 
models and approaches, they typically focus on only one cancer 
type (27, 28). In contrast, our classifier was developed as a 
generalized method to analyze single samples of multiple cancer 
types, which allows model customization for specific cancer types. 

Using validation datasets and the datasets outlined in 
Supplementary Table 1, we aimed to elucidate the distinct 
features and biological processes that characterize tumor grades 
across various cancer types. This approach allowed us to uncover 
the biological underpinnings of the mGrades, thereby enhancing 
the utility of our mGrade predictor. 
Breast cancer (BRCA) 

To examine the mGrades for BRCA more closely, we split the 
best geneset selected for the classifier into groups of genes 
upregulated in G1 and G3, according to the outcome of our 
Frontiers in Oncology 06
differential gene expression analysis described in the Materials and 
Methods section. Each group was examined for enriched pathways 
(Supplementary Figure S4B and Supplementary Table 11). 

First, we found that the mG3 gene group was highly enriched in 
pathways associated with proliferation and cell cycle regulation. This 
finding is consistent with the definition of high tumor grade in breast 
cancer, which features a high mitotic count and pleomorphic nuclei 
(6). The mG1 group showed enrichment in the angiotensin II receptor 
pathway, indicative of angiogenesis and microenvironmental changes. 

Interestingly, the best geneset selected also included six genes 
associated with cellular morphology, including those involved in 
cell cilium maintenance: WDR19, KIF13B, and IFT88. These cell 
cilium maintenance genes were downregulated in mG3. Cell cilium 
loss has been previously reported as an early event in breast cancer 
progression and is one of several cellular abnormalities defined by a 
high tumor grade (34). Moreover, cell cilia play a role in regulating 
Sonic Hedgehog (SHH) signaling, since their loss reportedly leads to 
reduced SHH signaling in tumorigenesis (35). In agreement with 
these published findings, our ssGSEA (single-sample gene set 
enrichment analysis) scores also revealed a statistically significant 
downregulation of SHH signaling in mG3 samples that showed a 
loss of cell cilia (Figure 3A; Supplementary Figure S4A, and
Supplementary Table 12). 

Moreover, our ssGSEA scores on validation data further 
confirmed the connection between mG3 and high proliferation, 
since Hallmark_G2M_Checkpoint and other pathways associated 
with the cell cycle were significantly upregulated. Another feature of 
interest is the activation of glycolysis in mG3 samples, indicative of 
metabolic changes that switch cells in high-grade breast cancer 
tumors from aerobic to anaerobic respiration. mG1 samples had 
upregulated pathways associated with epithelial-mesenchymal 
transition (EMT) and apical junctions, indicative of abnormalities 
in cellular morphology regulation, cell contact with the extracellular 
matrix (ECM), and cell motility (Figure 3A; Supplementary Figure 
S4A, and Supplementary Table 12). 

Next, we analyzed the TCGA-BRCA cohort to assess the 
transcriptomic, proteomic, and genomic data. Here, we found 
that the PAM50 subtype groups Basal and Her2 consisted almost 
exclusively of mG3 samples (Figure 3B). These subtypes are known 
for their high proliferation rate and aggressiveness (36, 37). As these 
subtypes are highly different from the Luminal and Normal-Like 
subtypes, their presence will confound the analysis of mG3 vs mG1, 
possibly leading to erroneous or loss of definitions of common 
features for mG1 and mG3. Therefore, we excluded them from 
further analysis of mGrade properties for TCGA-BRCA to avoid 
additional confounding factors so that we could capture the 
differences between mG1 and mG3 more clearly. 

Our analysis of the genomic data of TCGA-BRCA revealed that 
the mutation rate of CDH1 was higher in the  mG1 samples.  CDH1 
(encoding E-cadherin) is frequently mutated or lost in cancers, 
including breast cancer (24, 38, 39). Loss of E-cadherin, one of the 
most well-known cell contact components, is associated with EMT in 
tumor cells and metastasis (40). Our data also suggest this to be the 
case for mG1 samples, since the Hallmark_EMT signature was 
significantly upregulated in mG1 samples (Figure 3A). There was 
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also an enrichment of PIK3CA and MAP3K1 mutations in mG1 
samples, indicating the specificity of this mechanism in tumor 
development (Figure 3B; Supplementary Figure S3A, and

Supplementary Table 13). In a recent publication, we reported that 
mG1 tumors are often associated with Luminal A (LumA) breast 
cancers, whereas mG3 tumors are frequently observed among triple-
negative breast cancers (TNBC) and Luminal B subtypes (41). LumA 
Frontiers in Oncology 07 
tumors often show activation of the PI3K/AKT/mTOR and MAPK/ 
ERK signaling pathways, which are associated with PIK3CA and 
MAP3K1 mutations, respectively (42, 43). These observations may 
explain the enrichment of these mutations in mG1 tumors, which 
primarily belong to the LumA subtype. 

We also found that TP53 mutations were more common in 
mG3 tumors. Such mutations may contribute to the high 
FIGURE 3 

Identification of common and unique biological features for each mGrade across BRCA, LUAD, and ccRCC samples. (A) Heatmaps showing the split 
of histological grades into mGrades (mG1 and mG3/mG4), characterized by different pathway activities in BRCA, LUAD, and ccRCC. Blue line: 
model-predicted mGrade probability for each sample (in ascending order). The color key applies to the entire panel (A). (B) Differential mutations, 
CNA regions, protein expression, and molecular subtypes (BRCA) for BRCA (left), LUAD (middle), and ccRCC (right). (C) A list of common biological 
features of mG1 and mG3 samples identified across BRCA, LUAD, and ccRCC samples after evaluating common pathway activities, geneset 
enrichment, mutations, copy number alterations, and differentially expressed proteins. 
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proliferation rate of these tumors, as TP53 encodes p53, a well-
known tumor suppressor that stops the cell cycle at the G1/S phase 
and initiates apoptosis when DNA damage becomes too extensive 
(39, 44). 

Analysis of genome alterations revealed a large number of 
segments that were altered differently among the different 
mGrades. The most significantly altered segments in breast cancer 
included 11q13.3-Amp where mitogene CCND1 is located, and 
8q24.21-Amp where oncogene MYC is located (Figure 3B; 
Supplementary Figure S3B, and Supplementary Table 15). These 
genes promote cell proliferation and survival and are among the 
most commonly amplified genes in breast tumors (39, 45). 

Furthermore, the differential protein expression observed 
also supports the description of mG3 as a highly proliferative 
class. Among the proteins with the highest log-FC, cyclin B1 was 
upregulated in mG3 tumors (Supplementary Table 16). Cyclin 
B1 regulates mitosis as a complex with Cdk1 (46) and is activated 
by c-MYC and inhibited by p53, which is consistent with 
c-MYC amplification and TP53 mutations observed in mG3 
tumors (Figure 3B). 

Based on these findings, we postulate that mG3 breast tumors 
are highly proliferative, and that their proliferation is stimulated 
through mTOR and c-MYC signaling. These cells often suffer from 
p53 loss, which further dysregulates the cell cycle. Other common 
properties of mG3 breast tumors include the loss of normal cell 
morphology, increased aggressiveness, and a switch to anaerobic 
respiration. Conversely, mG1 tumors retain normal-like 
morphology and do not lose cell cilia or SHH pathway activity. 
mG1 cancer cells also seem more prone to EMT, possibly because of 
mutations in CDH1. 
 

Lung adenocarcinoma (LUAD) 

The best geneset selected by the classifier was also examined for 
pathway enrichment in LUAD (Supplementary Figure S4B and 
Supplementary Table 17). The first group of enriched pathways in 
mG3 tumors consisted of those connected to integrins, which are 
involved in regulating cell morphology, contacts, and motility. The 
second group consisted of pathways related to regulation of 
microenvironment and fibrin clotting. Pathways associated with 
proliferation were also enriched. Moreover, the ssGSEA scores 
revealed upregulation of proliferation and glycolysis pathways in 
mG3 tumors (Figure 3A; Supplementary Figure 4A, Supplementary 
Table 18). The upregulation of Cyclin B1, Cyclin E1, and PCNA 
proteins was indicative of increased proliferation in mG3 tumors 
(Figure 3B). In mG1 tumors, the p53 and Notch signaling pathways 
were upregulated, while KRas signaling was downregulated. Notch 
signaling is active in normal lungs, where it influences cellular fate 
during differentiation (47). This is consistent with mG1 being the 
less dedifferentiated class. KRas signaling is one of the driver 
pathways of LUAD. This pathway can also activate the PI3K-
AKT-mTOR signaling axis; indeed, the observed ssGSEA scores 
indicated an upregulation of mTORC signaling in mG3 tumors. 
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To discover other features of mGrades for LUAD, we analyzed 
111 designated holdout samples of TCGA-LUAD and 38 PCAWG 
samples with mutation data. One of the genomic features that differed 
most prominently between mG3 and mG1 was TP53 mutation rate 
(Figure 3B; Supplementary Figure S3A, and  Supplementary 
Table 19). TP53 was more commonly mutated in mG3 samples, 
demonstrating the genomic basis behind the upregulation of 
proliferation and downregulation of the p53 pathway in mG3 
tumors. Meanwhile, analysis of copy number alterations (CNAs) 
revealed a deletion in the 8p23.2 region (the CSMD1 locus) in mG3 
(Figure 3B; Supplementary Figure S3B, and  Supplementary Table 20). 
CSMD1 is a tumor suppressor gene implicated in both EMT 
regulation and cell development, and influences proliferation and 
apoptosis (48). The increase in EMT and pro-metastatic processes is 
in line with the EMT signature upregulation in mG3 tumors. 
Interestingly, 8p23.2 was also more frequently deleted in BRCA 
mG3 tumors although the EMT signature was upregulated in mG1 
(Supplementary Tables 12, 14), suggesting that CDH1 inactivation 
and CSMD1 deletion might be two independent mechanisms for 
tumor metastasis. Another trend, although not significant after FDR 
correction, was the amplification of the 5p15.33 region where TERT 
(encoding telomerase reverse transcriptase) is located. Telomerase 
reverse transcriptase facilitates cancer growth and cell survival and is 
overexpressed in many cancers, including LUAD (49). Our 
observations corroborate previously published findings implicating 
disruption of the RB1/CDKN2A/TP53 axis in the G1/S phase of the 
cell cycle and apoptosis checkpoints as an early tumor-initiating event 
in EGFR-mutant LUADs (50). 

mG3 tumors also demonstrated an inflamed microenvironment 
prone to EMT, as evidenced by enrichment of the best classifier genes 
featuring ECM organization pathways and collagen rearrangement, 
upregulation of the EMT signature, and the aforementioned CSMD1 
deletion. In line with these findings, protein analysis also revealed 
upregulation of PAI1 and fibronectin in mG3 (Figure 3B; 
Supplementary Table 22). PAI1, encoded by SERPINE1, is  an
inhibitor of fibrinolysis. It may play a role in forming a fibrotic and 
inflamed microenvironment as the tumor progresses (51). 

Thus far, our analysis has depicted mG3 LUAD tumors as highly 
proliferative; their proliferation may be activated through Ras 
signaling and the PI3K-AKT-mTOR axes. Mutations in TP53 were 
also consistent with the proliferative qualities of mG3 tumors. mG3 
tumors are prone to microenvironment and cell contact remodeling, 
as indicated by the enrichment of pathways involved in integrin and 
fibrin regulation. They may be predisposed to EMT, as supported by 
CSMD1 deletion and active microenvironment remodeling. 
Meanwhile, mG1 tumors are associated with the activation of 
Notch signaling and pathways related to ROS and xenobiotic 
metabolism, all of which play important roles in normal lung tissues. 
Clear cell renal cell carcinoma (ccRCC) 

Of the pathways enriched in the geneset for mG3 clear cell renal 
tumors, those describing immune system activity are among the most 
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abundant (Supplementary Figure S4B and Supplementary Table 23) 
(52). This suggests the presence of inflammatory processes in these 
tumors. Also abundant are pathways associated with fibrosis and 
ECM remodeling in the microenvironment, including processes 
related to coagulation and the complement system in the immune 
response. These findings suggest the presence of a fibrotic and 
inflamed microenvironment in tumors with high mGrades. 
Notably, inflammation in ccRCC is widely associated with worse 
survival and a lack of therapeutic response (53). 

Both pathway enrichment and ssGSEA scores for mG3 tumors 
demonstrated the activation of Hallmark_EMT in these tumors 
(Figure 3A; Supplementary Figure S4A, and  Supplementary 
Table 24). EMT is associated with metastasis, while fibrosis is 
associated with both EMT and inflammation. Thus, we postulate 
a greater risk of metastasis in mG4 tumors than in mG1 tumors. 

In agreement with previous findings, the Warburg effect in which 
tumor cells switch from cellular respiration to glycolysis as their main 
energy source was also apparent in our analysis of ccRCC cells (54). 
While mG1 cells showed active gluconeogenesis, mG4 cells showed 
hypoxia and glycolysis (Figure 3A; Supplementary Figure S4A, and
Supplementary Table 24). Hypoxia stimulates fibrotization in clear cell 
renal tumors (55), which further supports our classification of mG4 
tumors as fibrotic. Additionally, pathways associated with 
proliferation were enriched in mG4 renal tumors. The increase in 
proliferation and the presence of the Warburg effect were confirmed 
by the ssGSEA scores of the validation data (Figure 3A; 
Supplementary Figure S4A, and  Supplementary Table 24). Similarly, 
the ssGSEA scores confirmed the activity of inflammatory processes in 
these tumors. 

The genes selected for mG1 tumors were enriched in pathways 
related to transmembrane transport and normal kidney function. 
This observation was expected given the resemblance of low-grade 
tumors to normal tissues. Meanwhile, mG4 tumors showed elevated 
levels of phosphorylated Chk1 according to RPPA array analysis 
(Figure 3B; Supplementary Table 28). These findings concur with 
the activation of proliferation pathways in these tumors. We 
observed similar findings in high-grade breast tumors. 

Interestingly, protein levels of the SERPINE1 gene were also 
increased in mG3 ccRCC tumors (Supplementary Table 28). This 
observation supports our earlier findings on pathway activity and 
enrichment, characterizing mG4 tumors as having an inflamed and 
fibrotic microenvironment. Notably, an increase in SERPINE1 
expression was also observed in high-grade LUAD tumors 
(Figure 3A; Supplementary Table 22). Meanwhile, CD31 levels 
were increased in mG1 ccRCC tumors, indicating stronger 
adhesion to the epithelium and a different structure of cellular 
junctions compared to mG4 tumors (Supplementary Table 28). Our 
analysis showed that mG3 clear cell renal tumors were inflamed and 
fibrotic. Pathway enrichment analysis revealed that these tumors 
were prone to EMT activation and were thus more likely to 
metastasize. Moreover, the Warburg effect and hypoxia observed 
in these tumors may promote fibrosis. Additionally, mG4 ccRCC 
tumors showed high proliferation, which was likely promoted by 
the PI3K-AKT-mTOR axis (Figure 3A). In contrast, mG1 tumors 
retained more properties of normal tissue at the molecular level, as 
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evidenced by the high expression of genes typically expressed in 
normal kidneys. 
Discussion 

The current gold standard for tumor grading is pathological 
assessment. The critical nature of tumor grading in the 
management of breast, lung, and kidney cancers is well-
documented, as tumor grading is a fundamental component in 
diagnostic processes and subsequent treatment decision-making. 
This is supported by extensive literature, including studies on the 
future direction of grading invasive breast carcinoma (4), the 
effectiveness of first-line immune checkpoint inhibitors in 
advanced renal cell carcinoma (56), and grading standards for 
renal cell carcinoma (57) and lung cancer (3, 58). 

Unfortunately, this approach depends strongly on the 
observations and expertise of pathologists, rendering it highly 
subjective. As a result, assessment outcomes can vary greatly, 
leading to suboptimal treatment decisions, inaccurate prognoses, 
and unreliable prediction of treatment outcomes. Another 
disadvantage of pathological assessment is the presence of 
intermediate tumor grades, which do not have clear clinical 
significance and are difficult to interpret. 

There are currently several well-known prognostic tests for 
BRCA classification, including Oncotype DX, EndoPredict, and 
GGI (59). Oncotype DX uses an intermediate risk-level to assess 
BRCA samples. The final score (from 0 to 100) is calculated based 
on the expression of 21 genes, and the score is used to predict 
disease recurrence and project benefits from chemotherapy. An 
intermediate level is interpreted as a medium risk of recurrence. 
Regarding the benefits of chemotherapy, the scores are divided into 
two levels. For scores between 16 and 20, Oncotype DX classifies the 
benefits of chemotherapy as unlikely to outweigh the risks of side 
effects. Conversely, for scores between 21 and 25, the benefits are 
likely to outweigh the risks. Regarding risk assessment, intermediate 
tumor grades are difficult to interpret because of their tenuous 
association with treatment outcomes and survival. Similarly, tumors 
of intermediate grades are also challenging to classify based on their 
biological processes because the differences can vary widely, with 
overlapping features with high- and low-grade tumors. This 
phenomenon compounds the analysis of biological processes that 
may contribute to cancer development and progression, rendering 
it difficult to stratify patient samples into high- and low-risk groups. 
EndoPredict analyzes gene expression patterns in breast tumors to 
stratify the risk of distant metastasis into two levels (low and high) 
(60). This test tends to place patients in the high-risk group more 
often than other predictors, possibly due to the limited number of 
genes analyzed (27). Finally, GGI only accounts for the sum of 
expression trends for all analyzed genes rather than the trend for 
individual genes, thereby disregarding the unique contribution of 
individual genes to the observed pathology. This can lead to a lack 
of interpretability and may interfere with our understanding of the 
contribution of each gene to the development and progression of 
aggressive tumors. 
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In this study, we developed a pipeline for training molecular-

based classifiers to determine tumor grades of samples with 
different pathologies. These classifiers use a machine-learning 
approach to predict tumor grades from either RNA-seq or 
microarray profiling data of cancerous tumors. By applying our 
pipeline to BRCA, LUAD, and ccRCC, we demonstrated the 
capability of our algorithm to determine tumor grades regardless 
of data type (from RNA-seq or various microarrays from different 
vendors). Additionally, unlike other models (21, 27), predictions by 
our algorithm were performed independently of sample storage 
types, preparation protocols, and sample processing sites. This 
flexibility resulted in an increased data volume for the 
development and further application of our pipeline. 

Another advantage of our tumor grade predictor over most 
existing predictors that only analyze data from patient cohorts is the 
utilization of rank transformation that enables the analysis of single 
samples, rendering our predictor potentially useful for grading 
tumors in clinical settings. Importantly, the mGrade predictor 
demonstrated greater accuracy than other single-nosology and 
single-sample predictors (27, 28) and could split G2 samples into 
high- and low-risk groups, improving patient stratification. 
Therefore, the use of our tumor grade predictor will enable 
physicians to obtain accurate information concerning tumor 
grade and risk prediction, consequently aiding treatment 
decision-making and improving patient care. Similar to other 
models (61), this tumor grade predictor divides intermediate 
grades into two levels, each associated with prognosis, treatment 
outcomes, and cancer progression. It showed comparable hazard 
ratios to histological grades in predicting survival for BRCA, LUAD, 
and ccRCC (Figure 2B) and effectively stratified G2 samples into 
risk groups. Simplifying the classification of clinical samples into 
two distinct mGrades (low and high) facilitates a clearer prognostic 
and predictive understanding, circumventing the ambiguities and 
challenges posed by intermediate grades. This binary classification 
not only aids in decision-making, but also allows for a focused 
examination of biological features without the discrepancies 
typically introduced by pathological interpretations or the 
uncertain biological significance of intermediate grades (62, 63). 
Additionally, the adoption of AI technologies enhances 
reproducibility and reduces uncertainties in grading assessment, 
further refining diagnostic accuracy (5, 22). Taken together, 
these enhancements in tumor grading may facilitate the 
development of new therapeutic strategies, novel drugs, and 
improved treatment standards. 

Exploration of the molecular characteristics defining tumor 
grades has also revealed the biological complexities of tumors, as 
reflected in their biomarker profiles (Figure 3C). For instance, the 
prediction of Oncotype DX scores (64) of breast cancer samples, 
stratification of RCC patients to appropriate drug therapies (56), 
and surgical interventions for LUAD (65) are directly influenced by 
tumor grade. Such discoveries also extend our understanding of the 
genetic and molecular drivers of tumor progression and 
malignancy, such as the predominance of the Warburg effect in 
high-grade renal cancers (66) or the dissemination patterns of 
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micropapillary components in high-grade LUAD resulting from 
the loss of anchorage molecules (67, 68). 

To this end, we analyzed BRCA, LUAD, and ccRCC multi-omic 
data to demonstrate the utility of mGrades in research, revealing 
features not captured by pathological grading, such as EMT, SHH 
signaling (BRCA), proliferation and Notch signaling (LUAD), and the 
Warburg Effect (ccRCC). High-grade tumors were associated with 
increased proliferation, glycolysis, and activation of the PI3K-AKT-
mTOR axis across all tumor types (Figure 3A) (69). The Warburg 
effect was prevalent in mG3/mG4 tumors, marked by upregulated 
glycolysis and hypoxia signatures (70). Additionally, fibrotic and 
immunosuppressive microenvironments were present, despite the 
abundance of immune cells (71). These findings underscore the 
potential of our tumor grade predictor to enhance grading precision 
and reveal key tumor characteristics for therapeutic targeting. 

Our current models have some limitations. A key limitation of 
the present work is that all validation is retrospective; prospective 
clinical studies are needed to confirm real-world utility. Their 
performance depends on the dataset size, with larger sample 
cohorts yielding better predictions. To address this, one can 
modify the training procedure to include more datasets because 
our models do not require all samples to come from the same 
cohort. As new data become available, models can be retrained for 
other cancer types. A sufficient number of labeled samples (G1 and 
G3/G4) is required to generate accurate feature sets and gene lists. 
Poorly defined grades or high pathologist discordance can reduce 
model effectiveness, which is a challenge shared by other grading 
models. However, our predictor is more flexible and requires only 
the highest and lowest grades for training. 

Despite these limitations, the mGrades depicted by our grade 
predictor reflect a summation of biological processes, including 
proliferation, nuclear organization, and invasiveness into the tumor 
microenvironment. In our pursuit of advanced tumor grade 
prediction, we have seamlessly integrated histopathological data 
with molecular characteristics, harnessing the rich detail offered by 
traditional pathology and the precision of molecular biomarkers. 
The implications of these findings are profound because they pave 
the way for the development of novel therapeutic strategies 
targeting the most suitable patient demographics based on the 
identified characteristics of low and high mGrades. 
Conclusion 

The developed model shows great potential for use in clinical 
practice, both for the cancer types described herein and for additional 
cancer types following model adaptation. The use of this model will 
enable physicians to move away from the uncertainty of intermediate 
grades and achieve operational predictions of disease outcomes. The 
prognostic ability of the mGrades predicted by our classifiers, along 
with their association with clinical stage, demonstrates their capability 
to assess the risk levels for G2 samples, and suggests the potential for 
molecular-based tumor grade classifiers to be used in clinical practice 
and clinical trials. The mGrade classifier can be integrated into 
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current molecular workflows as a single-sample adjunct test 
performed on routine RNA-seq data. Once analytically validated in 
a CLIA/CAP setting, it could be reported alongside conventional 
biomarkers to eliminate the ambiguity of intermediate grades and 
support treatment selection. Prospective interventional trials will be 
required to establish clinical utility and cost-effectiveness. Moreover, 
this model contributes to our fundamental understanding of tumor 
development by evaluating the activity of individual mechanisms and 
the expression of individual proteins in different grades, thus allowing 
us to derive useful information regarding the mechanisms involved in 
carcinogenesis and potential therapeutic targets. 
Materials and methods 

Data collection and processing 

RNA-seq and microarray data for BRCA, LUAD, and ccRCC 
were collected from multiple datasets (Supplementary Table 1). 
RNA-seq data from TCGA and PCAWG datasets were 
downloaded from the Xena data hub (72). Data on somatic 
mutations and proteomes for these datasets were downloaded from 
the Xena data hub. ABSOLUTE (RRID: SCR_005198) segments for 
TCGA [as in supplemental data for TCGA - PanCanAtlas 
Publications (73)] were downloaded from the GDC. The PCAWG 
segment data were downloaded from Xena. Survival data were 
downloaded from the Xena data hub. Original grade labels for 
TCGA-BRCA were obtained from pathological reports on the 
GDC data portal. CPTAC-3 RNA-seq data and survival 
annotations were downloaded from the GDC data portal. 
Additionally, a list of CPTAC kidney carcinomas with clear cell 
histology was curated from the National Institutes of Health 
Proteomic Data Commons. RNA-seq data for GSE96058 and 
GSE68417 were downloaded from the GEO database. All other 
GEO array datasets were downloaded from GEO as raw data (CEL 
files or other formats) and processed using gcrma or oligo followed by 
limma with default settings. Survival and grade annotations were 
curated from GEO annotations. 
   �        

�             �

Rank transformation 

Rank transformation was employed to mitigate batch effects 
while preserving the relationships between genes. For each sample, 
genes were ranked by their expression level and ties were assigned 
the average ranks. Missing values were omitted from the analysis. 
For example, for a geneset of N (where N represents the number of 
genes in the geneset for a particular sample): 

⇒in ascending order ⇒ExpressionGeneset A = ½x1, x2, x3 … xN−1,  xN 

⇒ ½x2, x15, xN−1 … x1,  xN ⇒ ½1, 2, 3 … N − 1, N 

This transformation ensured consistent results across different 
datasets without the need for batch-specific corrections, due to its 
ability to preserve relationships like “Gene A > Gene B” while 
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transforming data into fixed and stable range of values independent 
of cohort composition. The ranked gene expression values were 
subsequently used for further machine-learning analysis. Decision 
trees (and, consequently, gradient-boosted trees) that rely on 
comparisons of Gene A to some value X benefit from  this
approach because value X is now reflective of the position of 
Gene A in the geneset analyzed and is generally preserved by this 
transformation method even when derived from different 
data batches. 
Machine learning 

Gradient boosted trees (LightGBM, version 4.5.0) were trained 
as follows. A five-fold cross-validation procedure was applied using 
stratified sampling to maintain the balance of the mGrade labels 
across the training and test sets (80% training and 20% testing). At 
each step of the iterative refinement, the best classifier 
hyperparameters were selected based on the best negative log-loss 
score, and the quality was assessed for each split. Subsequently, a 
classifier was trained with these selected hyperparameters, and the 
SHAP values were calculated. The two least important genes 
according to the SHAP values were discarded, and the procedure 
was repeated until 20 genes remained. The final geneset was then 
chosen based on the best mean negative log-loss score and its 
deviation recorded during the five-fold cross-validation for each 
step (See Figure 1). The final classifier hyperparameters were 
optimized based on the negative log-loss score during cross-
validation. The following parameters were inherently different for 
each  model .  Parameters  for  the  BRCA  model  were :  
n_esimators=500, reg_alpha=0.3, reg_lambda=0.6, max_depth=-1. 
Parameters for the LUAD model were: n_esimators=500, 
reg_alpha=0, reg_lambda=0.6, max_depth=-1. Parameters for the 
ccRCC  model  were :  n_es imators=200 ,  reg_a lpha=0 ,  
reg_lambda=0.6, max_depth=-1. All other parameters remained 
unchanged and in default settings. 
Differential gene expression analysis 

Differential gene expression analysis was performed using 
limma for the microarray data and edgeR for the RNA-seq data. 
Genes with q-value < 0.05, |logFC| > 1 (logFC > 1.5 or logFC < -1.2 
for LUAD) and a minimum logCPM of 2 (RNA-seq), or average 
expression > 3 (breast microarray), or average expression > 7 
(kidney microarray) were selected for further analysis. The 
analysis compared high-grade tumors (G3/G4) with low-grade 
tumors (G1) across all cancer types. 
Grade labeling 

Validation of mGrades was conducted by comparing the 
predicted grades with the histological grades using datasets from 
TCGA, CPTAC, and GEO. For ccRCC, the Fuhrman grading 
system was used for validation. For BRCA and LUAD, the 
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Nottingham Histological Grade and WHO classification criteria 
were used, respectively. BRCA grade labels were curated from 
pathological reports, whereas grade labels for LUAD and ccRCC 
were assessed from histological images according to established 
guidelines. For consistency in machine-learning labels, we defined 
low-grade = G1 and high-grade = G3 ± G4, treating any available 
G4 cases as part of the high-grade pool. In BRCA and LUAD public 
datasets, true G4 specimens are rare and biologically overlap with 
G3; lumping them with G3 therefore maximizes sample size 
without diluting biological signal. In ccRCC, G4 constitutes a 
recognized aggressive category and was likewise merged with G3 
to form a single “high-grade” class. Following the differential gene 
expression analysis described above, a GGI-like index was 
constructed for each sample. This unscaled index was used in a 
subsequent Cox regression survival analysis to determine the 
optimal threshold that best separated patients into high- and low-
risk groups [similar to the original GGI approach (21)]. 
Pathway analysis 

To identify enriched pathways, we conducted a hypergeometric 
test on selected genes, focusing on the Canonical Pathways MSigDB 
Collections (Hallmark 50 (74), KEGG (RRID: SCR_012773) (75), 
WikiPathways (RRID: SCR_002134) (76), and REACTOME 
(RRID: SCR_003485) (77) as examples of the most prominent 
collections in the list). Additionally, plots of the enriched 
REACTOME  pathways  in  mG3  were  generated  using  
ReactomePA. Pathway activity scores were calculated using 
ssGSEA (GSVA package) (78). 
Survival analysis 

Cox regression analysis was performed to assess the association 
between mGrades and patient survival using Python lifelines package 
v.0.30 (RRID: SCR_024202) (79). The stage (lymph node status for 
BRCA) and cohort characteristics were accounted for, with 
significance determined at p < 0.05. Proportional hazard assumption 
was tested using Python lifelines package v.0.30 for all survival 
variables in the validation sets. The only survival variable presenting 
p-values < 0.05 was GSE25066 in BRCA (p = 0.0058). However, when 
only a subset of G2 samples within the dataset were assessed to 
determine their split into either mG1 or mG3, the p-value became > 
0.05. This deviation within GSE25066 likely resulted from the 
difference in the number of samples tested and thus was deemed 
insignificant. Integrated Brier scores were calculated with scikit-
survival version 0.24.1 between 100 days and 1,700 days post diagnosis. 
Analysis of features correlated with 
mGrades 

Chi-square tests were used to evaluate the correlation between 
mGrades and clinical stages. For the analysis of differential mutations, 
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the following filtering criterion was first applied: Tumor Variant Allele 
Frequency > 0.05. Genetic variants that met this criterion were selected. 
The following variant classifications were then excluded: Intron, 
3’Flank, 5’Flank, and Synonymous_Mutation. Before conducting the 
tests, cutoffs depending on the total number of samples were set to 
retain only highly mutated genes (10–15 genes for BRCA and LUAD; 
five genes for ccRCC due to a lower number of highly mutated genes in 
the test cohort). TTN, MUC16, and  RYR2 were excluded from testing 
because of their high somatic mutation frequencies associated with 
larger lengths. Differential mutation analysis between mGrades was 
conducted using Fisher’s exact test. FDR correction was applied and 
the q-value threshold was set at < 0.05. LogFC for the drawing of 
volcano plots and effect size representation was defined as the log of the 
percentage of mutated samples in mG3 divided by the percentage of 
mutated samples in mG1. 

CNA segments were normalized by subtracting sample ploidy 
from the total copy number and clipped to a range of -2 to 2. 
Segments were then intersected with cytoband annotations using 
bedtools (RRID: SCR_006646). The resulting cytobands were 
considered as deleted or amplified when the normalized copy 
number was -2 or 2, respectively. The deletions and amplifications 
were tested separately. Cytobands with a low number of alterations 
were discarded before testing. Differential cytoband analysis between 
the mGrades was conducted using Fisher’s exact test. FDR correction 
was applied and the q-value threshold was set at < 0.05. LogFC was 
calculated as described for the mutation analysis. 

Differential protein analysis was conducted using the Mann– 
Whitney U test to compare protein expression between groups. The 
p-values were FDR-corrected. 

The Mann–Whitney U test was used to assess differences in 
pathway activities between mGrades. The p-values were also 
FDR-corrected. 
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SUPPLEMENTARY FIGURE 1 

Relabeling of train datasets with mGrades using the GGI index. 1st row: GGI-

like index vs. pathologist-labeled grades. 2nd row: GGI distribution in the 
training datasets with the chosen cutoff between high and low mGrades (in 
red). 3rd row: Cox regression analysis of the training datasets with the chosen 
cutoff between mGrades. 4th row: Cox regression analysis of the training 
datasets with pathologist-labeled grades. 

SUPPLEMENTARY FIGURE 2 

Refinement of the classifier feature set. (A) Feature selection process. Mean 
and standard deviation of negative log loss for each number of features 
remaining in training. (B) The 20 most important features of the final classifier 
and their SHAP values for each sample in the training dataset. 

SUPPLEMENTARY FIGURE 3 

Mutations and CNA analysis in mGrades. (A) Volcano plots depicting 
differential mutations. (B) Volcano plots depicting differential CNA 
cytobands. ccRCC samples are not shown because their results are not 
significant. Right, cytoband deletions; left, cytoband amplifications. 

SUPPLEMENTARY FIGURE 4 

Pathway activity and enrichment in mGrades. (A) Volcano plots depicting 
differential pathway activities. (B) Reactome enrichment of genes upregulated 
in mG3 based on classifier-chosen genesets. 
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