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Background: Laryngeal squamous cell carcinoma is the most commonly

diagnosed neck and head cancer. In contrast, the primary stage of pre-

malignant and laryngeal cancer (LC) has to be handled with early diagnosis and

treated with higher levels of laryngeal protection. Radiological evaluation with

magnetic resonance imaging (MRI) and computed tomography (CT) techniques

offers essential information on the disease in terms of the distance of the

principal cancer and the existence of cervical lymph node metastasis. Recently,

numerous deep learning (DL) and machine learning (ML) models have been

implemented to classify the extracted features as either cancerous or healthy.

Methods: In this study, the Clinical Diagnosis of Laryngeal Cancer via Histology

Images using the Fusion Transfer Learning and the Osprey Optimisation Algorithm

(CDLCHI-FTLOOA) model is proposed. The aim is to improve the LC detection

outcomes using histology image analysis to improve the patient’s life. Initially, the

CDLCHI-FTLOOA model utilizes median filtering (MF)-based noise elimination

during the image pre-processing process. Furthermore, the feature extraction

process is performed by using the fusionmodels, namely AlexNet, SqueezNet, and

CapsNet. The autoencoder (AE) method is employed for classification. To improve

model performance, the Osprey Optimisation Algorithm (OOA)method is used for

hyperparameter tuning to choose the optimal parameters for improved accuracy.

Results: To exhibit the enhanced performance of the CDLCHI-FTLOOAmodel, a

comprehensive experimental analysis is conducted under the laryngeal dataset.

The comparison study of the CDLCHI-FTLOOA model portrayed a superior

accuracy value of 97.16% over existing techniques.

Conclusion: Therefore, the proposed model can be employed for the accurate

detection of the LC using the histopathological images.
KEYWORDS

laryngeal cancer, histology images, fusion transfer learning, clinical diagnosis, Osprey
Optimisation Algorithm
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1 Introduction

Laryngeal cancer accounts for approximately 2% of all cancers

globally and is thought to be one of the most aggressive types of head

and neck cancer. The risk factors for laryngeal tumor growth include

alcohol consumption, smoking, occupational substances, polluted

environment, and heredity (1). The outcome for the Laryngeal tumor

diagnosis is decided based on certain aspects like the cancer’s stage,

grade, the concerned place in the larynx, the patient’s lifestyle, and well-

being after the initial analysis. Both initial and precise analyses are

crucial for initiating appropriate treatment and extending the patient’s

lifespan (2). Radiological analysis with MRI and CT provides significant

information about the cancer level and the occurrence of cervical lymph

node metastasis; however, it fails to recognize the superficial mucosal

irregularities. Currently, white light laryngoscopy with biopsy is

regarded as the gold standard for diagnosing LC and precancerous

lesions. However, it generates poor-quality images and suffers from

problems in classifying minute epithelial variations and distinguishing

benign tumors from malignant ones.

Narrow band imaging (NBI) is an endoscopic imaging

procedure aimed to diagnose mucosal lesions of the larynx which

are invisible in white-light endoscopy, but are distinctive of pre-

tumor and tumor lesions of the larynx (3). NBI endoscopy is an

optical approach which enables in enhancing the detection of

laryngeal lesions, carry out a limited a controlled perioperative

biopsy, and refines the clinical scope. The NBI endoscopy is an

appropriate approach to identify larynx cancerous lesions at the

early state. Recently, the Orbeye™ is commonly utilized in

neurosurgery; but, its likely in traditional open surgery has not

yet been fully used. Because of its magnification capacity, the

Orbeye™ exoscope is a valued tool for assisting surgeons detect

and hold the integrity of the recurring laryngeal nerves and

parathyroids in the thyroid surgery (4).

After diagnosing the patients with initial-phase cancers, organ

preservation-based surgical techniques that require the maximum

tumor removal while preserving normal tissues are carried out so

that the patient can gain health benefits (5). However, it is

challenging to secure a resection margin due to the complex

anatomical larynx structures, while the choices concerning the

amount of resection are also vital in this regard. In general, the

histological changes between the squamous and healthy cell

carcinoma tissues are noticeable. However, it is difficult to

differentiate the tissues by examining them with the naked eye,

even though by visuals like narrow-band imaging, specifically in

cancer limits (6). At present, the typical intraoperative diagnosis by

the Hematoxylin and Eosin (H&E) staining process involves a series

of lengthy steps, namely staining, freezing, and sectioning.

Additionally, the process demands seasoned professionals to

conduct the intraoperative analysis (7).

So, the medical process becomes complicated and produces

inconsistencies in the results generated by different pathologists. In

this background, the imaging devices that create accurate and rapid

descriptions of the usual and neoplastic tissues are essential. In

literature, the authors attempted to measure the LC patient’s
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survival through computer-aided image analysis approaches,

utilizing H&E-stained microscopy images (8). In general,

pathologists require long-term training, while the availability of

skilled histopathologists is limited. On the other hand, in recent

years, the convolutional neural networks (CNNs) method has been

established to have the potential to diagnose diseases with high

accuracy in less time than healthcare professionals. Thus, this

method might support the diagnosis of LC in its early stages (9).

DL, a type of ML technique, functions based on the neural network

(NN) technique across multiple data formats. The DL-aided

methods have been proven to manage both classification and

detection problems. In literature (10), an artificial intelligence

(AI)-based deep CNN (DCNN) model was utilized to diagnose

the Laryngeal tumors through histology images. With this cutting-

edge DL approach, the AI technique may directly provide a precise

analysis using the image data, which will help in identifying the

disease in its early stages and, in turn, increase the survival rate of

the patient. LC pose a critical health hazard due to its aggressive

nature and the threats involved in early and accurate detection.

Conventional imaging techniques often struggle to detect subtle

tissue anomalies that may delay diagnosis and treatment.

Improving diagnostic precision is crucial for tailoring treatment

strategies effectively and improving patient survival rates.

Employing advanced computational methods for analyzing

histology images can provide deeper insights into tumor

characteristics. This can facilitate timely intervention and better

management of the disease, ultimately improving clinical outcomes.

In this study, the Clinical Diagnosis of Laryngeal Cancer via

Histology Images using the Fusion Transfer Learning and the

Osprey Optimisation Algorithm (CDLCHI-FTLOOA) model is

proposed. The aim is to improve the LC detection outcomes

using histology image analysis to improve the patient’s life.

Initially, the CDLCHI-FTLOOA model utilizes median filtering

(MF)-based noise elimination during the image pre-processing

process. Furthermore, the feature extraction process is performed

by using the fusion models, namely AlexNet, SqueezNet, and

CapsNet. The autoencoder (AE) method is employed for

classification. To improve model performance, the Osprey

Optimisat ion Algor i thm (OOA) method is used for

hyperparameter tuning to choose the optimal parameters for

improved accuracy. To exhibit the enhanced performance of the

CDLCHI-FTLOOA model, a comprehensive experimental analysis

is conducted under the laryngeal dataset. The key contribution of

the CDLCHI-FTLOOA model is listed below.
• The CDLCHI-FTLOOA approach integrates an MF-based

image pre-processing stage to suppress salt-and-pepper

noise and improve image quality. This enhances the

visibility of critical structural patterns within throat region

images. Preserving significant anatomical details ensures more

accurate feature extraction. This step significantly contributes to

the robustness of the overall diagnostic process.

• The CDLCHI-FTLOOA technique incorporates AlexNet,

SqueezeNet, and CapsNet in a fusion framework for
frontiersin.org

https://doi.org/10.3389/fonc.2025.1618349
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Al-Kahtani et al. 10.3389/fonc.2025.1618349

Fron
extracting multiscale and diverse features from throat

images. This hybrid extraction improves the capability of

the model in distinguishing subtle discrepancies in tissue

characteristics. The fusion model also strengthens the

representation of both low-level textures and high-level

abstractions. This comprehensive feature set improves

classification accuracy between cancerous and non-

cancerous regions.

• The CDLCHI-FTLOOA methodology combines an AE-

based classifier for effectively compressing and

reconstructing the extracted features, enhancing the

learning process. This model also mitigates feature

dimensionality while retaining critical data, resulting in

more efficient training. It improves the capability of the

technique in generalizing from intrinsic data. The model

also attains a more accurate classification of LC in throat

region images.

• The CDLCHI-FTLOOA model implements the OOA

technique for fine-tuning the hyperparameters of the AE

classifier, improving its overall performance. This

optimization improves model accuracy by effectually

searching the parameter space. It also accelerates

convergence during training, mitigating computational

time. As a result, the model achieves more reliable and

precise LC classification.

• The novelty of the CDLCHI-FTLOOA method is in its

integration of three distinct CNN models, such as AlexNet,

SqueezeNet, and CapsNet, with an AE classifier, creating a

robust and diverse feature representation. This hybrid

approach effectually captures multiscale and intrinsic

features more effectively than single models. Moreover,

the integration of a biologically inspired OOA for tuning

additionally refines the learning capability of the model.

Altogether, these components synergistically improve

classification accuracy and robustness for LC detection.
2 Literature survey

In literature (11), a DL-aided method called SRE-YOLO was

developed to provide instant support for less-skilled workers in

laryngeal diagnosis by spontaneously identifying the lesions using

various measures with Narrow-Band Imaging (NBI) and

endoscopic White Light (WL) images. The existing methods

encounter difficulties in diagnosing new types of lesions. At the

same time, there exists a necessity for accurate classification of the

lesions to follow a suitable disease management protocol.

Traditional diagnostic procedures heavily rely upon endoscopic

analysis that frequently needs seasoned professionals to execute the

diagnosis, and the outcomes may suffer from bias. Meer et al. (12)

developed a complete automatic framework named Self-Attention

CNN and Residual Network information optimizer and fusion. The

expansion procedures were executed during testing and training

examples, while dual progressive deeper methods were also trained.
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Self-attention MobileNet-V2 techniques were introduced in this

study and validated using an augmented dataset. Simultaneously,

the Self-Attention DarkNet-19 methods were taught using similar

datasets, while the hyperparameters were fine-tuned using the

whale optimization algorithm (WOA). Albekairi et al. (13)

suggested the temporal decomposition network (TDN), a fresh

DL approach that enhances the multimodal medical image fusion

process through adversarial learning mechanisms and feature-level

temporal examination. The TDN framework integrates two

essential modules: a productive adversarial system for temporal

feature matching and a salient perception system to discriminate

the feature extraction process. The salient perception system

classifies and identifies different pixel distributions over diverse

imaging modalities, while the adversarial module enables precise

feature mapping and fusion. Joseph et al. (14) devised a primary

laryngeal tumor classification model by integrating handmade and

deep features (DF). By utilizing the handcrafted and transfer

learning (TL) features and by deploying the first-order statistics

(STAT) and local binary patterns (LBP), the DenseNet 201 was

removed in larynx endoscopic narrow-band imaging and fusing,

thus resulting in the production of many illustrative features. After

hybridizing the features, the best ones were selected using recursive

feature elimination with the RF (RFE- RF) model.

Ahmad et al. (15) suggested a fresh, novel attention-based

technique named MANS-Net that used spatial, channel, and

transformer-based attention models for addressing the issues

mentioned earlier. The MANS-Net model effectively studied

rough, spatial, color-based, and granular features and increased

the nuclei segmentation. The DL techniques were suggested to

deliver solutions for the medical tasks. Alrowais et al. (5) presented

a novel Laryngeal Cancer Classification and Detection in which the

Aquila Optimisation Algorithm was deployed along with the DL

(LCDC-AOADL) technique for the classification of neck area

images. This technique aimed at inspecting the histopathologic

images for both classification and recognition of the Laryngeal

tumors. In this approach, the Inceptionv3 method was utilized to

extract the features. Also, the LCDC-AOADL approach used the

DBN technique to identify and classify the LC. Krishna et al. (16)

introduced a different explainable decision-making system utilizing

CNN through an intelligent attention mechanism. This mechanism

leveraged the response-based feed-forward graphical justification

method. In this study, diverse DarkNet19 CNN methods were used

to identify the histopathology images. To enhance visual processing

and improve the performance of the DarkNet19 model, an attention

branch was combined with the DarkNet19 model, thus creating an

attention branch network (ABN). In literature (17), specific DL

approaches are proposed for nuclei segmentation. Nevertheless,

such techniques seldom resolved the issues mentioned earlier.

Further, information regarding the problems encountered in

H&E-stained histology images is available in public space for

reference, while the rest of the data is within the spatial region.

Several issues can be resolved by taking spatial and channel features

simultaneously. Hu et al. (18) evaluated the efficiency of AI

integrated with flexible nasal endoscopy and optical biopsy

techniques such as narrow band imaging (NBI), Storz
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professional image enhancement system (SPIES), and intelligent

spectral imaging color enhancement (ISCAN) for early and accurate

detection of LC. Alzakari et al. (19) introduced an automated

Laryngeal Cancer Diagnosis using the Dandelion Optimiser

Algorithm with Ensemble Learning (LCD-DOAEL) methodology

by integrating Gaussian filtering (GF), MobileNetV2 for feature

extraction, DOA for hyperparameter tuning, and an ensemble of

BiLSTM, extreme learning machine (ELM), and backpropagation

neural network (BPNN) techniques for accurate classification of

throat region images.

Al Khulayf et al. (20) developed a Fusion of Efficient TL Models

with Pelican Optimisation for Accurate Laryngeal Cancer Detection

and Classification (FETLM-POALCDC) methodology for

improving automatic and precise detection of laryngeal cancer

using advanced image pre-processing, DL feature fusion, and

optimized classification. Sachane and Patil (21) proposed a hybrid

Quantum Dilated Convolutional Neural Network–Deep Neuro-

Fuzzy Network (QDCNN-DNFN) technique within a federated

learning (FL) model to enable early and accurate detection of LC

using both image and voice data. Xie et al. (22) proposed a

multiparametric magnetic resonance imaging (MRI) model

integrating radiomics and DL techniques by utilizing ResNet-18

to accurately preoperatively stage laryngeal squamous cell

carcinoma (LSCC) and predict progression-free survival, thereby

improving clinical decision-making. Alazwari et al. (23) presented

an efficient Laryngeal Cancer Detection using Chaotic

Metaheuristics Integration with Deep Learning (LCD-CMDL)

method integrating CLAHE for contrast enhancement, Squeeze-

and-Excitation ResNet (SE-ResNet) for feature extraction, chaotic

adaptive sparrow search algorithm (CSSA) for tuning, and extreme

learning machine (ELM) for accurate classification. Dharani and

Danesh (24) presented an improved DL ensemble method by

incorporating enhanced EfficientNet-B5 with squeeze-and-

excitation and hybrid spatial-channel attention modules and

ResNet50v2, optimized by the tunicate swarm algorithm (TSA)

for improving early and accurate diagnosis of oral cancer using the

ORCHID histopathology image dataset. Majeed et al. (25) enhanced

oral cavity squamous cell carcinoma (OCSCC) diagnosis using TL

integrated with data-level imbalance handling techniques such as

synthetic minority over-sampling technique (SMOTE), Deep

SMOTE, ADASYN, and undersampling methods like Near Miss

and Edited Nearest Neighbours to improve classification accuracy

on imbalanced histopathological datasets. Song et al. (26) reviewed

the role of AI in improving personalized management of head and

neck squamous cell carcinoma (HNSCC) by integrating radiologic,

pathologic, and molecular data for improved diagnosis, prognosis,

treatment planning, and outcome prediction across the HNSCC

care continuum. Kumar et al. (27) presented a Deep Learning

Convolutional Neural Network (DL-CNN) model based on a

modified Inception-ResNet-V2 architecture, using TL for the

automated classification.

The existing studies exhibit various limitations, and a research gap

exists in addressing diagnostic challenges under varied imaging

conditions and lesion types. The NBI or WL are mainly utilized and

fail to utilize multimodal data fusion effectively. Various techniques
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emphasize classification accuracy but lack interpretability, restricting

clinical applicability. Moreover, optimization models such as WOA or

TSA are not explored adequately in handling intrinsic tuning across

hybrid DL techniques. Integration of spatial-channel attention and

sequential learning remains inconsistent, while methods incorporating

image and voice data are still in early experimentation stages. Hence, a

significant research gap is in presenting robust, interpretable, and

multimodal AI systems capable of real-time and accurate LC diagnosis

across diverse clinical scenarios.
3 Methods

The study proposed the CDLCHI-FTLOOA model for

validation. The proposed method aims to improve the detection

accuracy of LC using histology image analysis to increase the

lifespan of the patients and their quality of life. The CDLCHI-

FTLOOA model involves various steps such as the MF-based image

pre-processing, feature extraction and classification, and parameter

tuning. Figure 1 illustrates the entire workflow process of the

CDLCHI-FTLOOA technique.
3.1 MF-based image pre-processing

Initially, the CDLCHI-FTLOOA model utilizes the MF-based

noise elimination for image pre-processing (28). This model is

chosen for its efficiency in eliminating noise while conserving

crucial edge details, making it appropriate for improving medical

and microscopic images. Compared to other techniques like

Gaussian or mean filtering, MF is more robust against salt-and-

pepper noise and avoids blurring critical features. Furthermore, a

3×3 kernel size was used for this method, presenting a good balance

between noise reduction and detail preservation. The application of

MF resulted in noticeable enhancement in image quality,

highlighting improved consistency and clarity. This pre-

processing step contributed to better feature extraction and,

ultimately, improved classification performance.

MF is a nonlinear image processing model applied to eliminate

the noise while preserving the edges, making it an efficient option for

histology image analysis. In terms of the LC detection process, it

improves the quality of the image by smoothening the smaller devices

without blurring critical cellular structures. This pre-processing stage

helps achieve improved visualization and segmentation of the tissue

features. MF is beneficial in removing the salt-and-pepper noise that

influences the outcomes from histological slides. Enhancing image

clarity helps in achieving precise classification and feature extraction.

Finally, this step also improves the consistency of the automated

diagnostic systems for LC.
3.2 Fusion of feature extraction methods

After image pre-processing, the feature extraction process is

performed by the fusion models, namely, AlexNet, SqueezNet, and
frontiersin.org
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CapsNet. The AlexNet model provides robust basic features and is

prevalent for its effective hierarchical feature learning and

robustness in image recognition tasks. SqueezeNet presents a

lightweight model with fewer parameters, ensuring faster

processing and lower computational cost without losing accuracy,

making it ideal for real-time applications. The spatial associations

are effectively captured by the CapsNet model and also preserve
Frontiers in Oncology 05
pose feature information, which is significant for discriminating

subtle differences in medical images like those of the larynx.

Integrating these models allows for multiscale and diverse feature

representation, enhancing discrimination between cancerous and

non-cancerous regions. This hybrid approach overcomes

limitations of individual networks and outperforms conventional

single-model techniques in both accuracy and efficiency.
FIGURE 1

Workflow process of the CDLCHI-FTLOOA model.
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3.2.1 AlexNet approach
AlexNet is a seminal structure in the domain of DL and is vital

in transforming the tasks involved in image classification (29).

AlexNet contains eight layers and presents an advanced procedure

deploying five convolutional layers, injected with three fully
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connected (FC) layers. The input data of the method is designed

in (64, 64, 3) sizes, representing 64 pixels in width and height, using

three color channels. Then, the max-pooling layers using pool

dimensions of 2×2 and a stride of 2 are combined. The 2nd layer

of the convolutional network includes 256 filters using kernel

dimensions of 3×3 size and padding fixed to ‘same’, followed by

other max pooling layers using the identical conditions as the

previous layer. Each layer utilizes the ReLU activation function.

The structure changes to the FC layer from the 6th through the 8th

layers. The 6th layer displays 4096 neurons, all using the ReLU

activation functions, accompanied by a dropout layer using a

standardization rate of 0.5. The 7th layer imitates the 6th

framework. During the 8th layer, the number of neurons is

decreased to 5 using the Softmax activation function to enable

multi-class classification. The method is created using the Adam

optimizer. Categorical cross-entropy acts as the loss function,

whereas accuracy is accepted as the evaluation method.
FIGURE 2

Architecture of the SqueezNet technique.
TABLE 1 Details of the dataset.

Tissue classes No. of images

Hbv 330

He 330

IPCL 330

Le 330

Total Images 1320
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3.2.2 SqueezNet method
SqueezeNet is a special DCNN structure that is specially

designed for effective and low‐power outcome (30). It is tailored

to attain higher precision in image classification tasks while

reducing computational resources and the model’s size. The

structure begins with an input tensor (64, 64, 3) and three color

components (RGB). Then, it upgrades the over-layer sequences that

contain pooling and convolutional processes. Particularly, the

SqueezeNet method combines the distinguishing features named

‘fire modules’. This module includes parallel 1×1 and 3×3

convolutions that are tailored for balancing both model clarity
Frontiers in Oncology 07
and computational complexity. Following the fire units, the system

incorporates additional convolutional layers, a dropout layer for

normalization, a 1×1 convolution layer to improve the attributes,

and a global average pooling layer for reducing the dimensions. This

structure results in a dense layer output using the Softmax

activation function, enabling multi-class classification. Categorical

cross-entropy is applied as the loss function. The performance of

the method is assessed according to accuracy, a metric used to

determine its efficiency in the precise categorization of the images. It

outshines its capability to attain higher accuracy in image

classification tasks, thus making it very important for settings
FIGURE 3

Sample images of (A) Hbv, (B) He, (C) IPCL and (D) Le.
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where effectiveness and lower‐power conclusions are dominant.

Figure 2 shows the architecture of the SqueezNet technique.

3.2.3 CapsNet model
CapsNet is an advanced technology in DL methods and is

specifically suitable for challenges and advantages from the

hierarchical framework of information (31). Here, the capsule is a

kind of neuron whose outputs signify diverse assets of similar

entities. The dissimilar neurons are present in the CNN scalar

output and the output vector of the capsules. At the same time, the

positioning of the assets and the features represents the likelihood of

a feature. The fundamental structure contains basic and digit

capsules, succeeded by dynamic routing mechanisms. The

significant parameter for the CapsNet structure remains the

squashing function, S.

S  =
vj

�� ��2
1 + vj

�� ��2 vj
vj

�� �� (1)

In Equation 1, ·k k is the Euclidean norm function and vj
signifies the output vector of the capsule j. S guarantees the

output vector length between 0 and 1. The squashing function

ensures that the length of all the capsule’s vector output lies between

0 and 1. Here, the length signifies the likelihood of the existence of
Frontiers in Oncology 08
the features. This function upholds the orientation of the vector

encoding significant data about the recognized features, like scale

or rotation.

The central capsule is a primary layer of capsules that carries out

the primary higher‐dimension entity recognition in the images. The

initial capsules produce the basic layer, which promptly connects

with the raw features and is then removed by the primary

convolution layer. These initial capsules acquire the scalar output

from the convolution layer and modify it as the output vector,

which in turn depicts the instantiating parameter of several aspects.

Numerous primary capsules are usually selected based on the

intricacy of the features in the database. In the case of simple

databases, some primary capsules are adequate. However, complex

databases with diverse spatial hierarchies can necessitate a

considerable volume of capsules to acquire the relations

sufficiently. The selection of the initial capsules is frequently

associated with analytical outcomes and directed by the execution

of the system using the benchmark data. It acquires the feature

mapping process formed by classical convolution layers and

modifies them into smaller vectors that transfer precise data. The

vector of prediction Uij by capsule i for capsule j is calculated as

shown below.

Uij = Wijui (2)
FIGURE 4

Confusion matrices of the CDLCHI-FTLOOA model (A–F), Epochs 500-3000.
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In Equation 2, ui is the output of capsule j, andWij specifies the

weighted matrix between capsules i and j. This equation defines the

capsules in a single layer, which is then communicated to the

subsequent layer. The weighted matrix Wij mainly establishes the

transition of the data and its exchange among the layers. It makes

the prediction Uij as input and employs the routing process through

agreement mechanisms for generating the last output.

cij =
exp (bij)

okexp(bik)
(3)

In Equation 3, bij refers to the initial login possibilities in which

the capsule i must be together with capsule j, and k represents the

probable parent capsule counts in the above layer. This procedure

guarantees that the capsules with aligned outputs increase their

connection. The complete input of sj denotes the sum of weighted

prediction vectors as shown in Equation 4:

sij =okcijUij (4)

The output of the jth capsule has only the complete squashed

input as given below.

vj = S(sj) (5)

After adding the inputs from low‐level capsules, the system

integrates the data collected from diverse segments of the image,

thus allowing the high‐level capsules to make additionally accurate

and complex feature models. Equation 5 refers to the vector whose

length signifies the existing features, whereas its orientation encodes

the additional assets, thus preserving the crucial spatial particulars

of the feature. The last phase of this method is the dynamical

routing process.
3.3 AE-based classification process

In general, the AE model is employed for the classification

process (32). This model is chosen for its robust capability in

unsupervised feature learning, which effectively compresses high-

dimensional data into a lower-dimensional representation while

preserving essential data. The redundant features and noise are

mitigated by this model, thus improving the generalization and

robustness. Unlike conventional classifiers, the AE model efficiently

learn complex data patterns through reconstruction, which also

enhances classification accuracy, specifically in intrinsic medical

images. Moreover, the ability of AE to perform dimensionality

reduction minimizes computational costs and overfitting risks

compared to standard deep networks. This makes AE-based

classification particularly appropriate for handling the rich and

complex features extracted from fusion CNN models in

LC detection.

AE is a form of unsupervised DL method that is mainly used for

feature extraction and dimensionality reduction processes. The

basic concept behind the AEs is to learn a compressed format
TABLE 2 LC detection outcomes of the CDLCHI-FTLOOA model under a
distinct number of epochs.

Class labels Accuy Precn Recal F1score AUCscore

Epoch - 500

Hbv 92.20 87.71 80.00 83.68 88.13

He 87.73 72.46 82.12 76.99 85.86

IPCL 92.88 92.45 77.88 84.54 87.88

Le 92.20 80.93 90.00 85.22 91.46

Average 91.25 83.39 82.50 82.61 88.33

Epoch - 1000

Hbv 94.55 89.57 88.48 89.02 92.53

He 91.52 83.03 83.03 83.03 88.69

IPCL 92.58 90.00 79.09 84.19 88.08

Le 94.70 84.76 96.06 90.06 95.15

Average 93.33 86.84 86.67 86.58 91.11

Epoch - 1500

Hbv 95.00 90.24 89.70 89.97 93.23

He 93.11 87.46 84.55 85.98 90.25

IPCL 93.71 90.49 83.64 86.93 90.35

Le 95.15 86.14 96.06 90.83 95.45

Average 94.24 88.58 88.48 88.43 92.32

Epoch - 2000

Hbv 95.61 91.21 91.21 91.21 94.14

He 94.47 89.06 88.79 88.92 92.58

IPCL 94.55 92.43 85.15 88.64 91.41

Le 95.53 87.96 95.15 91.41 95.40

Average 95.04 90.16 90.08 90.05 93.38

Epoch - 2500

Hbv 96.14 92.40 92.12 92.26 94.80

He 96.06 90.88 93.64 92.24 95.25

IPCL 96.21 94.59 90.00 92.24 94.14

Le 97.35 93.77 95.76 94.75 96.82

Average 96.44 92.91 92.88 92.87 95.25

Epoch - 3000

Hbv 96.97 93.67 94.24 93.96 96.06

He 97.20 94.26 94.55 94.40 96.31

IPCL 96.82 95.00 92.12 93.54 95.25

Le 97.65 94.36 96.36 95.35 97.22

Average 97.16 94.32 94.32 94.31 96.21
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(encoder) of the input data, after which a new input is built based on

the condensed representations. The structure of the AE contains

dual basic elements, such as a decoder and an encoder. The

encoding process condenses the input, whereas the decoding

process recreates the input from the encoded information. The

AEs are trained to reduce the change between the input and its

rebuilt form, utilizing the loss function to calculate the

reconstruction error. The structure is explained as follows.

Encoder: The encoder condenses the input data into a low‐

dimensional space by removing the crucial attributes. It maps the

input data XX to the latent area representation, denoted by Z.

Z = f (X) = s(WeX + be) (6)

In Equation 6, We   characterize the weights, be denotes the

biases and s refers to the activation function, such as ReLU

or sigmoid.

Latent Space: The compressed or the encoded representation,

i.e., ZZ, represents the bottleneck in the system. This low-

dimensional representation makes the AEs an efficient candidate

for detecting the anomalies, as it removes the noise and

unrelated characteristics.

Decoder: The decoding process rebuilds the new information

from the condensed latent area. It maps the ZZ and reverts to the

input area, thus making a reconstruction X∧X∧:
Frontiers in Oncology 10
X̂ = g(Z) = s (WdZ + bd) (7)

In Equation 7, bd andWd characterize the biases and weights of

the decoder, correspondingly. The reconstruction error that

estimates the change between the new input XX and its

reconstruction X∧X∧, is reduced during the training process. The

aim is to learn the condensed representation to retain the most

significant data, see Equation 8.

L(X, X̂ ) =
1
no

n
i=1(Xi − X̂ )2 (8)

The learning procedure of the AEs includes the optimization of

the biases and weights to reduce the reconstruction error. The

training procedure is outlined in the succeeding phases.

Encoder Stage: The encoding condenses the input data into

latent area representations as given below in Equation 9.

Z = s(WeX + be) (9)

Decoder Stage: The decoder rebuilds the data from the latent

representations as given below in Equation 10.

X̂ = s (WdZ + bd) (10)

Loss Function: The reconstruction error is reduced during the

training as given below in Equation 11.
FIGURE 5

Average outcomes of the CDLCHI-FTLOOA model (A–C), Epochs 500-1500.
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L =
1
no

n
i=1(Xi − X̂ )2 (11)

Here, Xi embodies the new input, and X̂ refers to the

reconstructed output. Meanwhile, the method is enhanced to

rebuild the typical formats, while some critical changes occur in the

reconstruction error. By taking the inherent architecture of the

standard designs, the AEs may detect subtle anomalies often

overlooked by other methods. Finally, the AEs function as a

powerful and efficient approach to detecting cancer. The ability of

the AEs to reduce the dimensions while preserving the essential

features allows them to distinguish between standard and doubtful

actions, thus making them a beneficial device in the cybersecurity area.
3.4 Parameter tuning using the OOA model

To further optimize the performance of the model, the OOA

model is utilized for hyperparameter tuning to select the best

hyperparameters for enhanced accuracy (33). This model is

chosen for its biologically inspired search mechanism, which also

effectually balances exploration and exploitation to avoid local

optima. The model also shows limitations in conventional
Frontiers in Oncology 11
methods and improves convergence speed and accuracy when

fine-tuning hyperparameters, resulting in an enhanced model

performance. Compared to other metaheuristic algorithms, OOA

illustrate robustness in handling complex, high-dimensional search

spaces, making it appropriate for optimizing DL methods such as

the AE classifier. Its efficiency in finding optimal solutions mitigates

training time and computational cost, thereby improving the overall

efficiency of the LC detection framework.

OOA is a bio‐inspired metaheuristic model that emulates the

Osprey’s approach in searching and carrying fish to an appropriate

position for consumption. Primarily, the intellectual behavior of the

Ospreys is mathematically expressed for resolving the optimization

issues over three phases, such as the exploitation, exploration, and

initialization, as briefed below.

3.4.1 Initialization phase
During OOA, all the Ospreys depict population members that

establish the solutions to the issue depending on their location in

the searching area. A single osprey jointly makes the OOA

population described by the matrix of dimension (N Osprey*X

Position) that is initialized arbitrarily in the searching area, as

shown in Equation 12.
FIGURE 6

Average outcomes of the CDLCHI-FTLOOA model (A–C), Epochs 2000-3000.
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OS

Osprey

Population matrix

=

OS1

⋮

OSi

⋮

OSn

2
666666664

3
777777775

=

OS1,1

⋮

OSi,1

⋮

OSn,1

⋯ OS1,j ⋯ OS1,m

⋱ ⋮ ⋱ ⋮

⋯ OSi,j ⋯ OSi,m

⋱ ⋮ ⋱ ⋮

⋯ OSn,j ⋯ OSn,m

2
666666664

3
777777775 n

Number

of  OS

   �

m

Number of

problem variables

(12)

In Equation 13, OSi represents the i
th location of the OS.

OSi,j

Osprey ith position

and jth dimension

= LBj + randi,j½0, 1� :
UBj

Upper Bound

of  jth dimension

    −    

LBj

Lower Bound

of  jth dimension

0
BB@

1
CCA

(13)
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Every OS in the OOA depicts a candidate solution for the

optimization problem; thus, a fitness evaluation should be

accomplished for every OS, as shown in Equation 14.

FF

Fitness

Function

=

FF1

⋮

FFi

⋮

FFn

2
666666664

3
777777775
n�1

=

FF(OS)1

⋮

FF(OS)i

⋮

FF(OS)n

2
666666664

3
777777775
n�1

(14)

The position of the OSs is upgraded after assessing the worst,

sub-optimal, or best values based on the fitness function (FF).
3.4.1.1 Exploration stage

Ospreys have sharp eyesight that helps them locate

underwater prey. It initiates the attack by segmenting the water

to capture its target. Likewise, the real behavior of the OS threat

on fish in searching areas can be mimicked by upgrading the

location of the OS population, as it can enhance the exploration

approach of OOA. Further, it also helps in establishing the finest

position by avoiding local solutions. The location of the OS in the

searching space holds a superior FF value, equivalent to the

individual OS in OOA, as shown in Equation 15.
FIGURE 7

CDLCHI-FTLOOA technique of (A) Accuracy, (B) Loss, (C) PR curve, and (D) ROC curve.
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F positioni|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Set of  fish position

of  ith OS

= fOSk k ∈ 1, 2,…, nf g∧ FFk < FFij g

∪
OSbest

OS best position

( )
(15)

The OS searches for its prey or underwater fish by arbitrarily

establishing its positions, as shown in Equations 16 and 17.

OSpos1i,j|fflffl{zfflffl}
Updated position of  ith

OS jth dimension in OOA

= OSi,j + randi,j½0, 1� · (
CFi,j

Chosen fish of  ith

OS jth dimension

    − randi,j½1, 2� · oSi,j)

(16)

OSpos1i,j =

OSpos1i,j , LBj ≤ OSpos1i,j ≤ UBj;

LBj,OS
pos1
i,j < LBj;

UBj,OS
pos1
i,j > UBj;

8>>><
>>>: (17)

The novel value gets enhanced by utilizing the FF value in

Equation 18.

OSi =
OSpos1i , FFpos1

i < FFi;

OSi, else

(
(18)
3.4.2 Exploitation phase
After searching, the OS decides the best location for eating the

prey. The position of the OS in the searching space is modified as it

holds the prey in a safe and suitable place. This approach enhances

the local searching exploitation capability and converges to the

finest solution. In this design stage of the OOA, Equation 19

specifies the behavior of the model and establishes its arbitrary

selection location to consume the prey.
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OSpos2i,j|fflffl{zfflffl}
New position of  ith

OS jth dimension 2nd phase of  OOA

= OSi,j +
LBj + randi,j½0, 1�·(UBj − LBj)

k
(19)

OSpos2i,j =

OSpos2i,j , LBj ≤ OSpos2ij ≤ UBj;

LBj,OS
pos2
i,j < LBj;

UBj,OS
pos2
i,j > UBj;

8>>><
>>>: (20)

Here, Equation 20 enhances the calculated value of the FF after

the previous position of the OS is updated. Fitness selection is a

significant feature that prompts the performance of the OOA. The

hyperparameter selection model consists of a solution encoding

model to calculate the effectiveness of the candidate solutions. In

this study, the OOA imitates ‘accuracy’ as the leading standard to

model the FF, as shown below, as shown in Equations 21 and 22.

Fitness   =  max (P) (21)

P =
TP

TP + FP
(22)

Here, TP and FP depict the true and false positive

rates, respectively.
4 Experimental outcomes

This section discusses the experimental outcomes of the

CDLCHI-FTLOOA model under the laryngeal dataset (34). This

dataset comprises 1,320 patches of early-stage and healthy cancerous

laryngeal tissues, classified under four classes, namely, Hypertrophic

Blood Vessels (HBV), Healthy Tissue (He), Abnormal IPCL-like

Vessel (IPCL), and Leukoplakia (Le). The patches (100x100 pixels)

were extracted from 33 narrow-band laryngoscopic images of 33

dissimilar patients, affected by laryngeal spinocellular carcinoma

(analyzed after histopathological inspection). The complete details

of this dataset are shown in Table 1. Figure 3 illustrates a set of

sample images.

Figure 4 shows the confusion matrices generated by the

CDLCHI-FTLOOA method under a diverse number of epochs.

The results infer that the CDLCHI-FTLOOA method successfully

identified and detected all four classes accurately. The LC detection

result of the CDLCHI-FTLOOA approach is defined in terms of

different numbers of epochs in Table 2.

Figure 5 portrays the average outcomes achieved by the CDLCHI-

FTLOOA technique under 500 to 1500 epochs. On 500 epochs, the

CDLCHI-FTLOOA technique achieved the average accuy , precn, recal ,

F1score, and AUCscore of 91.25%, 83.39%, 82.50%, 82.61%, and 88.33%

respectively. Moreover, on 1,000 epochs, the CDLCHI-FTLOOA

technique attained an average accuy , precn, recal , F1score, and AUCscore
TABLE 3 Comparative analysis outcomes of the CDLCHI-FTLOOA model
with existing methodologies.

Methodology Accuy Precn Recal F1score

CDLCHI-FTLOOA 97.16 94.32 94.32 94.31

LCDC-AOADL 96.21 92.31 92.09 92.06

DCNN Algorithm 84.20 89.43 86.12 87.10

LDA Model 90.27 87.79 87.02 86.35

ResNet50 91.22 89.68 85.30 86.65

SVM Model 85.28 86.02 88.37 87.37

VGG16 Method 85.50 90.05 88.28 85.41

AlexNet 87.71 87.51 89.83 86.15
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of 93.33%, 86.84%, 86.67%, 86.58%, 91.11% correspondingly.

Additionally, on 1,500 epochs, the CDLCHI-FTLOOA method

achieved an average accuy , precn, recal , F1score, and AUCscore of

94.24%, 88.58%, 88.48%, 88.43%, 92.32% respectively.

In Table 2 and Figure 6, the average outcomes of the CDLCHI-

FTLOOA technique under 2000 to 3000 epochs are shown. On 2,000

epochs, the CDLCHI-FTLOOAmodel attained an average accuy , precn
, recal , F1score, andAUCscore of 95.04%, 90.16%, 90.08%, 90.05%, 93.38%

respectively. In addition to this, on 2,500 epochs, the CDLCHI-

FTLOOAs model attained an average accuy , precn, recal , F1score, and

AUCscore of 96.44%, 92.91%, 92.88%, 92.87%, 95.25% correspondingly.

Furthermore, on 3,000 epochs, the CDLCHI-FTLOOAs model
Frontiers in Oncology 14
attained an average accuy , precn, recal , F1score, and AUCscore of

97.16%, 94.32%, 94.32%, 94.31%, 96.21%, respectively.

Figure 7 exhibits the classification outcomes of the CDLCHI-

FTLOOA model. Figure 7A depicts the accuracy analysis results attained

by the CDLCHI-FTLOOA model. The figure infers that the CDLCHI-

FTLOOA method achieved increasing values over an increasing number

of epochs. Next, Figure 7B exemplifies the result from the loss analysis of

the CDLCHI-FTLOOA method. The outcomes specify that the proposed

method accomplished closer training and validation loss values. Figure 7C

reveals the PR examination outcome of the CDLCHI-FTLOOA technique.

The findings indicate that the CDLCHI-FTLOOA technique produced an

increase in the PR values. Lastly, Figure 7D portrays the ROC analysis

outcome of the CDLCHI-FTLOOA technique. The figure infers that the

projected system increased the ROC values.

A comparative analysis was conducted between the CDLCHI-

FTLOOA method and other advanced techniques, and the outcomes

are shown in Table 3 and Figure 8 (5, 35). In terms of accuy , the

CDLCHI-FTLOOA method achieved a maximum accuy of 97.16%. In

contrast, the LCDC-AOADL, DCNN, LDA, ResNet50, SVM, VGG16,

and AlexNet models attained lower accuy values such as 96.21%,

84.20%, 90.27%, 91.22%, 85.28%, 85.50%, and 87.71%,

correspondingly. Similarly, in terms of precn, the CDLCHI-FTLOOA

method accomplished a maximum precn of 94.32% while the LCDC-

AOADL, DCNN, LDA, ResNet50, SVM, VGG16, and AlexNet models

achieved the least precn values, such as 92.31%, 89.43%, 87.79%,

89.68%, 86.02%, 90.05%, and 87.51%, respectively. In terms of F1score
, the CDLCHI-FTLOOA technique attained the highest F1score of

94.31% while the LCDC-AOADL, DCNN, LDA, ResNet50, SVM,
FIGURE 8

Comparative analysis outcomes of the CDLCHI-FTLOOA model with existing methodologies.
ABLE 4 Time outcome of the CDLCHI-FTLOOA technique with existing
ethods.

Methodology Time (min)

CDLCHI-FTLOOA 1.90

LCDC-AOADL 3.09

DCNN Algorithm 5.42

LDA Model 6.50

ResNet50 7.77

SVM Model 5.66

VGG16 Method 4.04

AlexNet 7.02
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VGG16, and AlexNet models attained lower F1score values, such as

92.06%, 87.10%, 86.35%, 86.65%, 87.37%, 85.41%, and

86.15%, correspondingly.

Table 4 and Figure 9 demonstrate the comparative analysis

outcomes of the CDLCHI-FTLOOA method and other methods in

terms of execution time. The introduced CDLCHI-FTLOOA

technique consumed the least possible time, i.e., 1.90min, whereas

the LCDC-AOADL, DCNN, LDA, ResNet50, SVM, VGG16, and

AlexNet methods took larger times, such as 3.09min, 5.42min,

6.50min, 7.77min, 5.66min, 4.04min, and 7.02min, respectively.
5 Conclusion

In this study, the CDLCHI-FTLOOA model was proposed. The

model aimed to improve the detection accuracy of LC using

histology image analysis to improve patient outcomes. Initially,

the CDLCHI-FTLOOA model utilized MF-based noise elimination

during the image pre-processing stage. Furthermore, the feature

extraction process was conducted using fusion models, namely

AlexNet, SqueezNet, and CapsNet. The AE model, used for

classificat ion, was further optimized using OOA for

hyperparameter tuning to enhance accuracy by choosing the best

parameters. To exhibit the improved performance of the CDLCHI-

FTLOOA model, a comprehensive experimental analysis was

conducted under the laryngeal dataset. The comparison study of
Frontiers in Oncology 15
the CDLCHI-FTLOOA model portrayed a superior accuracy value

of 97.16% over existing techniques.
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