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Oxidative stress-related genes in
uveal melanoma: the role of
CALM1 in modulating oxidative
stress and apoptosis and its
prognostic significance
Yue Wu, Xiaoyan Cai, Menghan Hu, Runyan Cao
and Yong Wang*

Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical University, Anhui, China
Background: Uveal melanoma (UVM) is a rare yet aggressive form of ocular

cancer with a poor prognosis. This study aims to investigate the role of oxidative

stress-related genes (OSGs) in UVM, focusing on their involvement in key

signaling pathways and immune infiltration and their potential as prognostic

biomarkers and therapeutic targets.

Method: Differential gene expression analysis was conducted using 175 samples

of normal retinal pigmented epithelium-choroid complex samples and 63

samples from UVM. Protein–protein interaction (PPI) networks were

constructed to identify hub genes, and machine learning algorithms were

utilized to screen for diagnostic genes, employing methods such as least

absolute shrinkage and selection operator (LASSO) regression, random forest,

support vector machine (SVM), gradient boosting machine (GBM), neural

network algorithm (NNET), and eXtreme gradient boosting (XGBoost). A risk

signature model was developed using data from The Cancer Genome Atlas

(TCGA) cohort and validated using the International Cancer Genome Consortium

(ICGC), GSE84976 dataset. Clinical samples were used to validate the diagnostic

value. Experimental validation encompassed H2O2-induced oxidative stress

assays and CALM1 overexpression analysis in UVM cells to evaluate its

protective effects.

Results: A total of 2,576 differentially expressed genes (DEGs) were identified,

with 185 overlapping OSGs enriched in pathways such as HIF-1, FoxO, PI3K-Akt,

and apoptosis. Prognostic hub OSGs, including ACACA, CALM1, and DNM2, were

associated with poor survival outcomes in the training set and multiple validation

data. Revalidation using clinically collected samples confirmed that CALM1

exhibits superior diagnostic value. The risk signature model demonstrated

strong predictive accuracy for a 5-year overall survival (AUC = 0.844). Immune

infiltration analysis revealed increased CD4+ memory-activated T cells and mast

resting cells in the high-risk group. Additionally, CALM1 overexpression

attenuated H2O2-induced oxidative stress and apoptosis in UVM cells. CALM1

upregulation also mitigated the inhibitory effects of H2O2 on key cellular

processes, including proliferation, migration, and invasion.
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Conclusion: This study underscores the critical role of OSGs in the progression

of UVM and their potential as prognostic biomarkers and therapeutic targets. The

identified risk signature model and the protective role of CALM1 offer valuable

insights for developing targeted therapies and enhancing patient clinical

outcomes in UVM.
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Introduction

Uveal melanoma (UVM) is the most common primary

intraocular malignancy in adults, accounting for approximately

85% of all ocular melanomas (1). Despite its rarity, UVM presents

significant clinical challenges due to its high metastatic potential and

poor prognosis, particularly when metastasis occurs—most

commonly in the liver (2–4). Unlike cutaneous melanoma, UVM

originates from melanocytes within the uveal tract, which includes

the iris, ciliary body, and choroid (5, 6). Although early diagnosis and

treatment of primary UVM have improved local disease control,

effective systemic therapies for metastatic UVM remain lacking (7, 8),

underscoring the need for a deeper understanding of its underlying

biology and the development of targeted therapeutic approaches. This

review aims to provide an overview of the current knowledge on

UVM, with a focus on its molecular mechanisms, diagnostic

advancements, and emerging treatment strategies.

Oxidative stress—defined by an imbalance between the production

of reactive oxygen species (ROS) and the antioxidant defense system—

plays a dual role in tumorigenesis and cancer progression (9, 10). On

the one hand, excessive ROS can induce DNA damage, genomic

instability, and mutations, contributing to cancer initiation and

promotion (11). ROS are also capable of triggering cell death

through oxidative stress in various cancers (12). On the other hand,

cancer cells often exploit elevated ROS levels to promote proliferation

(13), survival (11, 14), and metastasis (15) by activating oncogenic

signaling pathways such as PI3K/AKT (14), MAPK (16), and NF-kB
(17, 18). Studies have shown that elevated oxidative stress contributes

to the anticancer activity of UVM cell lines (19). Recent research has

also emphasized the complex interaction between oxidative stress and

the tumor microenvironment (TME), wherein ROSmodulate immune

cell function, angiogenesis, and extracellular matrix remodeling,

thereby influencing tumor progression and resistance to therapy. For

instance, studies have demonstrated that reactive oxygen species play

critical roles in enhancing antigen presentation, regulating immune

responses, and preventing immune escape in gastric cancer (20).

Targeting oxidative stress pathways—whether by antioxidants or

ROS-inducing agents—has thus emerged as a promising therapeutic

strategy. However, the context-dependent roles of ROS in cancer

demand a nuanced approach to leveraging oxidative stress

therapeutically without inadvertently promoting tumorigenesis.
02
In the present study, we hypothesized that a comprehensive

oxidative stress-related gene signature could serve as a prognostic

biomarker for patients with UVM. Therefore, differentially expressed

genes and a protein–protein interaction (PPI) network were analyzed,

followed by machine learning approaches to identify oxidative stress-

related prognostic genes. The prognostic efficacy of these genes was

then evaluated through a risk signature model. The correlation

between risk scores and immune cell infiltration, as well as immune

score, was assessed using the Cell-type Identification By Estimating

Relative Subsets Of RNA Transcripts (CIBERSORT) algorithm.

Additionally, the roles of CALM1 in oxidative stress and apoptosis

in UVM cells were validated through cytological experiments.
Methods

Data acquisition and performance

RNA sequencing data from 80 UVM patients, along with

corresponding clinical information, were collected as the training

cohort from The Cancer Genome Atlas (TCGA) database (https://

www.cancer.gov/tcga). Dysregulated gene expression was analyzed

using datasets from the Gene Expression Omnibus (GEO),

including GSE22138 with 63 UVM samples and GSE29801 with

175 normal retinal pigmented epithelium-choroid complex

samples. A validation cohort consisting of 370 UVM patients was

obtained from the International Cancer Genome Consortium

(ICGC) database (https://www.icgc-argo.org). Another validation

GSE84976 database was further used to evaluate the prognostic

analysis of individual genes, including 28 UVM patients.

Additionally, a total of three UVM tumor samples and matched

adjacent normal tissues were collected as clinical validation samples.

RNA sequencing (RNA-seq) of tissue samples was performed on an

Illumina Nova X Plus (Novogene, Beijing, China) using a paired-

end approach with 150-bp reads. The fragments per kilobase of

transcript per million mapped reads (FPKM) of genes in clinical

samples, including three UVM tumor samples and matched

adjacent normal tissues, were provided in Supplementary Table 1.

All human samples used in this study were obtained with written

informed consent from participating patients, in accordance with

the ethical guidelines of The First Affiliated Hospital of Anhui
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Medical University. Specimens were anonymized and handled in

compliance with the Declaration of Helsinki.

All data analyses were performed using R software (version

4.1.0) and associated Bioconductor packages. Additionally, 1,065

oxidative stress-related genes (OSGs) were retrieved from previous

literature for further investigation (see Supplementary Table 2).
Identification of dysregulated OSGs

A total of 63 UVM samples from the GSE22138 dataset and 175

normal retinal pigmented epithelium-choroid complex samples

from GSE29801 (21) were included in the analysis. To minimize

batch effects in the combined RNA sequencing data from GSE22138

and GSE29801, the “normalizeBetweenArrays” function from the

limma R package and the “ComBat” function from the sva R

package were used. Differentially expressed genes (DEGs) between

UVM and normal samples were identified using limma, with a

significance threshold of P <0.01 and |log2(fold change)| >1.5.

Dysregulated OSGs were visualized in a Venn plot using the

VennDiagram R package. Furthermore, Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway enrichment analysis was

performed using the KEGG Orthology Based Annotation System

(KOBAS) database (http://bioinfo.org/kobas/).
Network of protein–protein interactions

A PPI network was constructed using the STRING database

(http://string-db.org/) (22). Subclusters within the PPI network of

OSGs were created to identify candidate hub genes for further

analysis, using a median degree threshold (degree cutoff > 61). The

subclusters were visualized using the Cytoscape software

(version 3.8.2).
Prognostic risk signature model

Multivariate Cox regression analysis was conducted using the

survminer R package to refine the set of OSGs with the best

predictive performance. The formula for the risk signature model

was defined as follows: risk score = ExpDNM2 × 0.133679 + ExpPOMC

× 0.591935 + ExpHSP90B1× + ExpPOMC × 0.591935 + ExpCALM1 ×

0.221127 + ExpACACA × 0.889051. All UVM patients were classified

into high-risk and low-risk groups based on the median risk score

(0.960617). Kaplan–Meier survival curves were generated using the

survminer package. Additionally, a receiver operating characteristic

(ROC) curve was plotted using the survivalROC package to assess

the predictive accuracy of the prognostic model.
Clinical relevance and nomogram
development

Next, we investigated the relationship between OSG-related risk

signature and clinicopathological characteristics, including age,
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gender, race, and stage. The “rms” R package was used to develop

the nomogram to illustrate each patient’s 1-, 3-, and 5-year overall

survival probability, integrating OSG-related risk signature and

clinicopathological features. Calibration curves were used to

confirm the consistency between the predicted and the actual

overall survival.
Immune cell infiltration

To explore the mechanisms underlying the prognostic impact of

OSGs in UVM, immune cell infiltration analysis was conducted

using the Cell-type Identification By Estimating Relative Subsets Of

RNA Transcripts (CIBERSORT) algorithm. Furthermore, the

Estimation of STromal and Immune cells in MAlignant Tumor

tissues using Expression data (ESTIMATE) algorithm was

employed to compute immune and stromal scores based on gene

expression data, using the estimate R package. Correlations between

these scores and either individual risk scores or specific hub genes

were then assessed.
Machine learning analysis

Six machine learning algorithms were applied to identify key

genes with significant predictive power. The least absolute

shrinkage and selection operator (LASSO) method, implemented

via the glmnet R package, performed sparse regularization to select

crucial genes. Random forest analysis was carried out using the

randomForest package to determine gene importance via ensemble

learning with decision trees. Support vector machine (SVM)

regression, implemented with the e1071 package, contributed to

gene selection. Gradient boosting machine (GBM), using the gbm

package, applied a sequential ensemble method to screen for

predictive genes. Extreme gradient boosting (XGBoost), accessed

through the xgboost package, employed advanced tree penalization

to refine gene selection. A neural network (NNET) model was

constructed using the nnet package. All models were built using 10-

fold cross-validation. Model performance on the validation set was

evaluated using the mlr3 package, with predictive accuracy

quantified by the area under the ROC curve (AUC), calculated

using the pROC R package.
Cell culture and transfection

The UVM cell lines (MP65, MM28) were provided by the Stem

Cell Bank, Chinese Academy of Sciences. All cells were cultured in

Roswell Park Memorial Institute (RPMI)-1640 medium

supplemented with 20% fetal bovine serum (FBS, #C0226,

Beyotime Biotechnology, China) and 1% penicillin/streptomycin

(#C0222, Beyotime Biotechnology, China) at 37°C in a humidified

atmosphere containing 5% CO2. UVM cells were treated with

hydrogen peroxide (H2O2) at concentrations of 50, 100, and

200 µmol/L (Merck KGaA, Darmstadt, Germany) in serum-free
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RPMI-1640 medium for 24 h. The CALM1 overexpression vector

(oeCALM1) and a negative control vector were synthesized by

GenePharma (Shanghai, China). Transfection was performed using

Lipofectamine™ 2000 (Invitrogen, Carlsbad, USA) according to the

manufacturer’s instructions. The medium was replaced three times

per week, and cells were passaged upon reaching confluence.
Protein extraction and Western blot

Cells were harvested and washed twice with ice-cold phosphate-

buffered saline (PBS) to remove residual medium. They were then

lysed in radioimmunoprecipitation assay (RIPA) buffer containing

1% protease inhibitor cocktail. The supernatant containing total

protein was collected, and protein concentration was determined

using a bicinchoninic acid (BCA) protein assay kit (#P0012,

Beyotime Biotechnology, China). Equal amounts of protein (20

µg) were mixed with 4× Laemmli buffer and loaded onto a 10%

SDS-polyacrylamide gel (SDS-PAGE). After electrophoresis,

proteins were transferred to a polyvinylidene difluoride (PVDF)

membrane using a wet transfer system. The membrane was blocked

in 5% non-fat dry milk diluted in Tris-buffered saline with Tween-

20 (TBST; 20 mM of Tris, 150 mM of NaCl, 0.1% Tween-20, pH

7.6) for 1 h at room temperature. The membrane was then

incubated overnight at 4°C with primary antibodies diluted in

blocking buffer at the following concentrations: 1:1,000 for anti-

GAPDH, 1:2,000 for anti-SOD2, 1:2,000 for anti-CAT, 1:3,000 for

anti-CASP3, 1:3,000 for anti-BAX, and 1:2,000 for anti-CALM1.

Afterward, the membrane was washed three times for 10 min each

with TBST to remove unbound primary antibodies. It was then

incubated with horseradish peroxidase (HRP)-conjugated

secondary antibodies (anti-rabbit IgG, #A0208, Beyotime

Biotechnology, China) diluted 1:200 in blocking buffer for 1 h at

room temperature. The membrane was washed three times again

with TBST, and protein bands were visualized using an enhanced

chemiluminescence (ECL) substrate (#P0018S, Beyotime

Biotechnology, China) and detected with a GeneGnome XRQ

chemiluminescence imaging system.
Cell viability assay and ELISA

Cell viability was assessed using the CCK-8 assay (#C0038,

Beyotime Biotechnology, China). All UVM cells (MP65 or MM28)

were seeded at a density of 5 × 104 cells per well in 96-well plates

and transfected with oeCALM1 or the control vector for 24 h. After

transfection, 10 µL of CCK-8 reagent was added to each well, and

the plates were incubated for 2 h at 37°C in 5% CO2. The optical

density (OD) at 450 nm was measured using a microplate reader

(Thermo Fisher Scientific, USA).

Additionally, the concentrations of superoxide dismutase (SOD,

#S0101S), malondialdehyde (MDA, #S0131S), and lactate

dehydrogenase (LDH, #P0393S) were measured using ELISA kits

(all from Beyotime Biotechnology, China), following the

manufacturer’s protocols.
Frontiers in Oncology 04
Transwell for migration and invasion

For migration, we obtained harvest cells (e.g., MP65 or MM28)

and resuspended them in serum-free medium and seeded 2 × 105

cells in the upper chamber. The complete medium (with 10% FBS)

was added to the lower chamber as a chemoattractant. For oxidative

stress conditions, cells were treated with 200 mmol/L of H2O2 in the

upper chamber. For CALM1 overexpression groups, the

overexpressing vector and the control negative vector were

transfected into cells prior to seeding. Then, all cells were

incubated for 48 h at 37°C with 5% CO2. Next, we removed non-

migrated cells from the upper chamber with a cotton swab. The

migrated cells were fixed with 4% paraformaldehyde and stained

with 0.1% crystal violet. The images were captured under a

microscope, and cell counts were determined by analyzing three

random fields per insert. For the cell invasion assay, the same steps

as above were followed, but the transwell membrane was precoated

with Matrigel (50 mg/mL, (BD Biosciences, San Jose, USA)) to

simulate extracellular matrix barriers. All the cells were solidified by

Matrigel for 4 h at 37°C before cell seeding. After incubation for 48

h, a microscope was used to capture the image.
Apoptosis assays

Apoptosis was assessed using Annexin V-fluorescein

isothiocyanate (FITC)/propidium iodide (PI) flow cytometry, as

described in previous studies (23). Cells were stained with an

Annexin V-FITC/PI Apoptosis Detection Kit (MedChemExpress,

USA, #HY-K1073), and apoptosis was analyzed using a flow cytometer.
Statistical methods

All results were expressed as mean ± standard deviation (SD).

Statistical analyses were conducted using R software (version 4.1.0).

Continuous variables were compared using the Wilcoxon rank-sum

test. One-way analysis of variance (ANOVA) was applied to

determine statistical significance among experimental groups. A P-

value <0.05 was considered statistically significant unless otherwise

indicated. A flowchart of the study design is presented in Figure 1.
Results

The associated DEGs are implicated in
UVM

To analyze the differential expression of OSGs in UVM, 175

normal retinal pigmented epithelium-choroid complex samples

from the GSE29801 dataset and 63 UVM samples from the

GSE22138 dataset were included in the present study after

removing batch effects. Principal component analysis (PCA) was

conducted to assess batch effect correction (Figures 2A, B). A total

of 2,576 DEGs were identified, consisting of 1,164 upregulated and
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1,412 downregulated genes, using a threshold of P <0.01 and |log2
(fold change)| >1.5 (Supplementary Table 3). A Venn diagram

showed that 185 genes overlapped between the DEGs and OSGs

(Figure 2C). These intersection genes were subsequently visualized

in a hierarchical clustering heatmap (Figure 2D). Enrichment

analysis revealed that these dysregulated OSGs were significantly

enriched in pathways related to melanoma, cancer, HIF-1 signaling,

FoxO signaling, PI3K-Akt signaling, T-cell receptor signaling, PD-

L1 expression and the PD-1 checkpoint pathway, and

apoptosis (Figure 2E).
Identification of prognostic hub OSGs in
UVM

To further investigate the interactions among OSGs, the

dysregulated OSGs identified above were analyzed using the

STRING database to construct a PPI network. The resulting
Frontiers in Oncology 05
network revealed extensive interactions among dysregulated OSGs

(Figure 3A). To identify hub genes, subclusters of the PPI network

were generated using a median degree cutoff (>61), resulting in 42

hub OSGs for subsequent analysis (Figure 3B). In addition, 54

prognostic genes were identified based on Kaplan–Meier survival

curves. The intersection of hub genes from the PPI network and

prognostic genes yielded 15 common genes (Figure 3C). Kaplan–

Meier survival analysis demonstrated significant associations between

gene expression levels and patient prognosis (Figures 3D–R). High

expression was strongly correlated with poor survival, including

ACACA (Figure 3D), CALM1 (Figure 3F), CALR (Figure 3G),

CXCR4 (Figure 3I), DNM2 (Figure 3J), EDN1 (Figure 3K),

HMOX1 (Figure 3L), HSP90B1 (Figure 3M), IL6 (Figure 3N),

POMC (Figure 3O), TEK (Figure 3Q), and TNFSF10 (Figure 3R).

Conversely, low expression of AKT2 (Figure 3E), CDK2 (Figure 3H),

and SPP1 (Figure 3P) was associated with poor prognosis.

To identify novel genes with diagnostic potential, six machine

learning algorithms were applied: LASSO regression, random forest,
FIGURE 1

The flowchart of this study.
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SVM, NNET, GBM, and XGBoost. ROC curve analysis showed that

all models achieved area under the curve (AUC) values exceeding

0.85 (Figures 4A–F). Compared with random forest (Figure 4B),

higher diagnostic potential was observed in the models including

LASSO (Figure 4A), SVM (Figure 4C), NNET (Figure 4D), GBM

(Figure 4E), and XGBoost (Figure 4F). Based on feature importance

rankings, the top gene identified by each algorithm was selected for

further analysis: ACACA (LASSO), CALM1 (random forest),

HSP90B1 (SVM), DNM2 (NNET), ACACA (GBM), and POMC

(XGBoost) (Figure 4G).
Construction and verification of the OSG-
related risk signature

Using multivariate Cox regression analysis, a risk signature

model was constructed based on the coefficients and expression

levels of key genes identified through machine learning

(Figure 5A). Patients were stratified into high- and low-risk

groups according to the median risk score (0.960617). The high-

risk group exhibited significantly poorer overall survival

compared to the low-risk group (Figure 5B), suggesting that the

risk score may serve as an independent prognostic factor in UVM.

Risk score distribution (Figure 5C), survival status (Figure 5D),

and gene expression profiles (Figure 5E) for each patient in the

TCGA cohort were also visualized. ROC analysis demonstrated
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that the model had the highest sensitivity in predicting 5-year

overall survival (AUC = 0.844), followed by 3-year (AUC = 0.759)

and 1-year (AUC = 0.691) predictions (Figure 5F). To validate the

model, the ICGC dataset was used in this study. Similar to the

training set, the high-risk group in the validation cohort also

exhibited significantly worse prognosis (P = 6.67e−03; Figure 6A).

Distributions of risk scores, survival outcomes, and gene

expression profiles are shown in Figures 6B–D. ROC curves

indicated moderate predictive sensitivity for 1-, 3-, and 5-year

overall survival (Figures 6E–G).
Association between risk score and
immune landscape

To investigate the association between risk score and immune

infiltration, the CIBERSORT algorithm was applied. The analysis of

immune-related functions revealed that the OSG high-risk group

exhibited elevated infiltration scores for CD4+ memory-activated T

cells, activated NK cells, and resting mast cells (Figure 7A). In contrast,

the OSG low-risk group showed higher infiltration scores for CD4+

memory resting T cells, resting NK cells, and monocytes (Figure 7A).

Additionally, the correlations between novel OSGs in the risk

signature model and immune cell infiltration scores were assessed.

The results showed that these OSGs were positively correlated with

CD4+ memory-activated T cells and resting mast cells (Figure 7B).
FIGURE 2

The identification of oxidative stress-related genes (OSGs). (A) Principal component analysis (PCA) before batch effects in merging the RNA
sequencing data of GSE22138 and GSE29801. (B) PCA analysis after batch effects. (C) The Venn diagram showing the intersection of differentially
expressed genes (DEGs) and OSGs. (D) Heatmap showing the differential expression of the intersection of OSGs between normal and UVM samples.
(E) The enrichment function of Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis.
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Further analysis revealed that risk scores were positively correlated

with CD4+ memory-activated T cells (cor = 0.388, P = 0.001078) and

mast cells resting (cor = 0.386, P = 0.00108) while negatively

correlated with resting NK cells (cor = −0.317, P = 0.007704) and

CD4+ memory resting T cells (cor = −0.235, P = 0.04937) (Figure 7C).
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Moreover, ESTIMATE scores were compared between the OSG high-

and OSG low-risk groups. The OSG high-risk group showed

significantly lower immune scores, while stromal scores and total

ESTIMATE scores did not differ significantly between the

groups (Figure 7D).
FIGURE 3

Screening prognostic hub OSGs in UVM. (A) The protein–protein interaction (PPI) analysis. (B) The hub genes network. (C) The Venn diagram
showing the overlapping of prognosis and hub genes of the PPI network. Kaplan–Meier survival curve for overall survival according to the expression
levels of OSGs, including ACACA (D), AKT2 (E), CALM1 (F), CALR (G), CDK2 (H), CXCR4 (I), DNM2 (J), EDN1 (K), HMOX1 (L), HSP90B1 (M), IL6 (N),
POMC (O), SPP1 (P), TEK (Q), and TNFSF10 (R).
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Association between risk score and clinical
features

To further accurately assess the prognostic value of OSGs in

clinical information, the tumor stage, patient age, gender, and race

were used to analyze the correlation with overall survival in this

study. Our results demonstrate that the high-risk group consistently

exhibited a significantly higher risk score (Supplementary

Figure 1A), regardless of whether patients were younger or older

than 60 years. Although the overall survival between patients aged

>60 and ≤60 did not show a statistically significant difference

(Supplementary Figure 1B), further stratified analysis revealed

that the high-risk group showed significantly poorer survival

outcomes in patients ≤60 years (Supplementary Figure 1C).

Similarly, in patients >60 years, the high-risk group also displayed

a comparable and statistically significant association with adverse

prognosis (Supplementary Figure 1D).

Similarly, in our sex-based subgroup analysis, we observed

comparable findings. Although no statistically significant

difference in prognosis was detected between male and female

patients overall, further stratification revealed that high-risk status

remained strongly associated with adverse outcomes in both groups

(Supplementary Figures 1E, F). Among female patients, high-risk

individuals similarly demonstrated higher risk scores and worse

prognosis (Supplementary Figure 1G). Likewise, among male

patients, the high-risk group exhibited significantly elevated risk

scores and poorer survival outcomes (Supplementary Figure 1H).

Due to limitations in the clinical annotation of TCGA datasets,

our race-stratified analysis was restricted to comparing “White”
Frontiers in Oncology 08
versus “Other” populations. Despite this broad categorization,

consistent patterns emerged regarding high-risk patients who

demonstrated significantly elevated risk scores and worse overall

survival in the White subgroup (P = 0.000989, Supplementary

Figures 1I–K).

Similarly, high-risk individuals of other racial subgroups showed

poorer survival outcomes (P = 0.03089, Supplementary Figure 1L).

Notably, our risk stratification model revealed consistent prognostic

value in both subgroups. In early-stage (I–II) patients, high-risk

individuals exhibited significantly elevated risk scores (mean score:

2.326 vs. 0.453; P = 1.1317E−06, Supplementary Figure 1M). When

categorizing patients into early-stage (I–II) and late-stage (III–IV)

disease, we observed that while the overall survival difference between

these groups did not reach statistical significance, early-stage cases

demonstrated a trend toward better prognosis (Supplementary Figure

1N, P = 0.2286). Additionally, early-stage patients within high-risk

groups showed worse clinical outcomes (log-rank P = 0.000774,

Supplementary Figure 1O). In advanced-stage (III–IV) patients,

similar results showed comparable risk score differentiation (mean

score: 3.123 vs. 0.543; P = 0.000105, Supplementary Figure 1M), with

poorer survival in the high-risk group (log-rank P = 0.01491,

Supplementary Figure 1P).

Additionally, we could calculate each patient’s total points and

the corresponding overall survival probability using the constructed

nomogram (Supplementary Figure 1Q). Calibration curves

demonstrated high consistencies between the predicted overall

survival and the actual overall survival rates at 1 year

(Supplementary Figure 1R), 3 years (Supplementary Figure 1S),

and 5 years (Supplementary Figure 1T). These results reinforced
FIGURE 4

Candidate biomarkers identified by the machine learning algorithms. The ROC curves of the LASSO model (A), random forest (B), SVM (C), NNET (D),
GBM (E), and XGBoost (F). The feature importance in different machine learning algorithms (G).
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that our risk stratification model maintained robust predictive value

across age, sex, race subgroups, and disease stages, potentially

identifying high-risk patients who might benefit from more

aggressive therapeutic interventions regardless of initial staging.
CALM1 as a prognostic and diagnostic
biomarker

A total of five key genes were screened using machine

learning and prognosis analysis in the TCGA training dataset.

Further prognostic analysis of individual genes in the GSE84976

(Supplementary Figures 2A–E) database demonstrated that there

were four key genes with consistent correlation of overall

survival, with genes having high expression showing poor

overall survival, including ACACA (Supplementary Figure 2A,

log-rank P = 0.000538), CALM1 (Supplementary Figure 2B, log-

rank P = 0.019632), DNM2 (Supplementary Figure 2C, log-rank

P = 0.03332), and POMC (Supplementary Figure 2E, log-rank P =
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0.002665). HSP90B showed no significant correlation with either

expression or overall survival in the GSE84976 validation data

(Supplementary Figure 2D, log-rank P = 0.407925).

Moreover, the ICGC validation set also revealed consistent

correlations between overall survival and three key genes:

ACACA, CALM1, and DNM2, all showing high expression

associated with poor prognosis (Supplementary Figures 3A–C),

aligning with our initial results. HSP90B1 exhibited a discordant

prognostic trend compared to our training data and GSE84976

validation cohort, with higher expression correlating with better

survival in the ICGC data (P = 0.044791, Supplementary

Figure 3D). POMC showed no significant correlation with either

expression or overall survival in the ICGC validation cohort (P =

0.762312, Supplementary Figure 3E). Based on their reproducible

prognostic associations, ACACA, CALM1, and DNM2 were

prioritized for subsequent mechanistic studies.

The expression levels of key genes were determined in the TCGA

training and ICGC testing data (Supplementary Figures 4A–J). The

results revealed consistent expression between the high- and low-risk
FIGURE 5

The construction of the risk signature model in the TCGA cohort. (A) The multivariate regression analysis. (B) Survival curves to evaluate the risk
stratification ability of OSGs. (C) Risk plots to illustrate the risk scores of different risk groups. (D) Risk plots to illustrate the survival status of different
risk groups. (E) Heatmap showing the expression levels and risk scores in the risk model. (F) ROC curves to evaluate the sensitivity and specificity of
the risk signature to predict the 1-, 3-, and 5-year overall survival.
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groups, including ACACA (Supplementary Figures 4A,F), CALM1

(Supplementary Figures 4B, G), DNM2 (Supplementary Figures 4C,

H), and POMC (Supplementary Figures 4E, J). In our ICGC

validation analyses, we observed a discordant expression pattern of

HSP90B1 between the TCGA training set and the ICGC validation

set. Specifically, HSP90B1 was significantly upregulated in the high-

risk group within the TCGA cohort (P = 0.000159, Supplementary

Figure 4D), whereas it showed higher expression in the low-risk

group in the ICGC dataset (P = 3.611E−31, Supplementary

Figure 4I). We opted not to include HSP90B1 in further analyses

to ensure the robustness of our model.

In addition, ROC analysis was performed to evaluate diagnostic

efficacy. In the TCGA training cohort, CALM1 demonstrated the

highest AUC (0.9225), followed by POMC (AUC = 0.8556) and

ACACA (AUC = 0.8356) (Supplementary Figure 5A). Similarly, in

the ICGC validation data, CALM1 maintained high diagnostic

performance (AUC = 0.8378) (Supplementary Figure 5B),

exceeding the predefined threshold of AUC >0.8. We further

evaluated the diagnosis of these genes using clinical samples,

including three UVM tumor samples and matched adjacent

normal tissues. The results demonstrated that CALM1 and

HSP90B1 exhibited superior discriminatory power, with

significantly higher AUC values compared to other candidate

genes (Supplementary Figure 5C). Based on these findings,

CALM1 was selected for further functional analysis to elucidate

its biological role.
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The effect of H2O2 on the viability of UVM
cells

To evaluate the impact of oxidative stress on cell viability, UVM

cells (MP65, MM28) were treated with various concentrations of

H2O2 (0, 100, 200, 300, and 400 µmol/L) for 24 h. Cell viability was

assessed using the CCK-8 assay. The results indicated that cell

viability decreased significantly in a dose-dependent manner in

MP65 (Figure 8A) and MM28 (Supplementary Figure 6A). A

concentration of 200 µmol/L (cell viability: 57.2% in MP65 and

47.3% in MM28) was selected for subsequent experiments.
CALM1 overexpression attenuates H2O2-
induced oxidative stress in UVM cells

To further investigate the role of CALM1 in H2O2-induced

oxidative stress, UVM cells were transfected with the CALM1

overexpression vector (oeCALM1 group) or a control vector and then

treated with H2O2. Western blot analysis confirmed low expression of

CALM1 in H2O2-treated cells compared to the control (CN) group in

MP65 cells (Figure 8B). In the H2O2-challenged environment (200

µmol/L, 24 h duration), the CALM1 overexpression system achieved a

robust 1.44 ± 0.012-fold increase in CALM1 expression in MM28

(Western blot quantification, normalized to GAPDH, P = 5.36E−05,

Supplementary Figure 6B), meeting the predetermined threshold for
FIGURE 6

Validation of the risk signature model in the ICGC database. (A) Survival curves to investigate the risk stratification ability of OSGs. (B) The risk scores
of the high- and low-risk groups. (C) The survival status of the high- and low-risk groups. (D) The expression levels and risk scores in the risk model.
ROC curves to evaluate the sensitivity and specificity of the risk signature to predict the 1-year (E), 3-year (F), and 5-year (G) overall survival.
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successful genetic manipulation. This overexpression efficiency

remained stable throughout the oxidative stress exposure period (24 h

post-treatment), establishing an appropriate experimental platform for

probing CALM1’s functional role in redox regulation.

To evaluate the effect of CALM1 on oxidative stress, the levels of

SOD, MDA, and LDH were measured using ELISA assays. H2O2

treatment significantly decreased SOD levels (P = 0.03698; Figure 8C)

and increased MDA and LDH levels (P = 0.008023 and P = 0.007522,

respectively; Figures 8D, E), compared to untreated controls (CN).

Notably, oeCALM1 effectively reversed the reduction in SOD and

suppressed the accumulation of MDA and LDH (Figures 8C–E) in

H2O2-treated MP65 cells. Compared with the H2O2 negative control

group (vector + H2O2), oeCALM1 also restored the expression of

SOD2 (P = 0.02858) and CAT (P = 0.00918), both of which were

suppressed by H2O2 treatment (Figure 8F). This protective pattern was

consistently replicated in MM28 cells, where oeCALM1 similarly

mitigated H2O2-mediated SOD suppression (50.39% recovery, P =

0.00046, Supplementary Figure 6C) and reduced oxidative damage

markers (MDA: 23.53% decrease; LDH: 29.81% decrease; both P < 0.05

vs. H2O2-treated vector controls, Supplementary Figures 6D, E).

Western blot results also revealed that oeCALM1 restored the

expression of SOD2 (P = 0.02858) and CAT (P = 0.00918) in H2O2
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treatment (Supplementary Figure 6F). The concordant results across

both cell lines demonstrated the robust capacity of CALM1 to

counteract oxidative stress regardless of cellular context.
CALM1 overexpression attenuates H2O2-
induced apoptosis in UVM cells

Next, we examined the effect of CALM1 on apoptosis induced by

oxidative stress. Flow cytometry analysis showed that H2O2

significantly increased the rate of apoptosis in MP65 cells,

compared to untreated controls (Figure 9A). Importantly, this effect

was attenuated by oeCALM1 transfection (Figures 9A, B), while

necrosis remained unaffected. Compared with the CN group, the

expression levels of CASP3 (caspase-3; P = 0.000797) and BAX (P =

0.00021) were significantly elevated following H2O2 treatment

(Figure 9C). Overexpression of CALM1 mitigated the H2O2-

induced increases in CASP3 (P = 0.00355) and BAX (P = 0.01071)

expression levels (Figure 9C). These protective effects were

consistently observed in MM28 cells, where oeCALM1 similarly

attenuated both the percentage of apoptotic cells (49.14%

reduction, P = 0.000464, Supplementary Figures 7A, B) and the
FIGURE 7

The immune function between the high- and low-risk groups. (A) The difference of immune cell infiltration scores between the high- and low-risk
groups. (B) The heatmap was generated to show the relationship between OSGs and immune cells. (C) The correlation analysis between risk scores
and immune cells. (D) The difference of stromal scores, immune scores, and estimate scores between the high- and low-risk groups. “ns” represents
no statistical significance; * represents P < 0.05, ** represents P < 0.01, and *** represents P < 0.001.
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expression levels of CASP3 (50.60% decrease) and BAX (26.62%

decrease) following H2O2 exposure (Supplementary Figure 7C).
CALM1 overexpression attenuates H2O2-
induced proliferation, migration, and
invasion in UVM cells

Our investigation extended to examine the impact of CALM1

overexpression on proliferation, migration, and invasion under

H2O2-induced oxidative stress (200 µmol/L, 24 h). CCK-8 assays

demonstrated that oeCALM1 significantly enhanced cell

proliferation by 37.58% (P = 0.00383, Supplementary Figure 8A)

in MP65 cells and 43.35% (P = 0.00734, Supplementary Figure 8B)

in MM28 cells at 72 h, effectively reversing the H2O2-mediated

growth inhibition. This pro-proliferative effect was consistently

observed across both cell lines. Furthermore, transwell assays

revealed that oeCALM1 restored migratory capacity by 1.51-fold

(P = 0.00288) in MP65 cells and 1.62-fold (P = 0.00436) in MM28

cells, compared to H2O2-treated controls (Supplementary

Figures 8C, D). The oeCALM1 increased invasive potential by

1.84-fold (P = 0.00069) in MP65 cells and 2.22-fold (P = 6.013E

−06) in MM28 cells, relative to oxidative stress conditions

(Supplementary Figures 8E, F). The concordant results in both
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MP65 and MM28 cell lines established CALM1 as a multifunctional

regulator capable of counteracting oxidative stress-induced

impairment of critical oncogenic processes. These findings suggest

CALM1 may serve as a key mediator in maintaining cellular

functionality during redox imbalance.
Discussion

UVM is a highly aggressive and potentially devastating form of

ocular cancer, characterized by a poor prognosis and high

metastatic potential (2). Despite advancements in early diagnosis

and local treatment, the survival rate for patients with UVM

remains dismally low, underscoring the urgent need for reliable

biomarkers to enhance diagnostic accuracy and predict clinical

outcomes (24–26). Recent research has increasingly focused on

the role of oxidative stress in UVM pathogenesis, revealing that

oxidative stress not only contributes to tumor progression but also

impacts therapeutic resistance (19, 27, 28). Studies have identified

key molecular pathways—such as the HIF-1 signaling axis—

involved in regulating oxidative stress responses across various

diseases (29, 30). Furthermore, elevated levels of ROS and

disrupted antioxidant mechanisms have been observed in UVM,

suggesting the presence of potential therapeutic targets (31, 32).
FIGURE 8

CALM1 overexpression attenuated H2O2-induced oxidative stress in MP65 cells. (A) Cell viability was inhibited by H2O2. (B) The expression level of
CALM1 was detected by Western blot upon transfection of H2O2-induced MP65 cells with negative control (vector) or CALM1 overexpression. The
activity of SOD (C), MDA (D), and LDH (E) in H2O2-induced MP65 cells was determined by ELISA. (F) Western blot evaluating the expression levels of
SOD2 and CAT. * or # represents P < 0.05, ** or ## represents P < 0.01, and *** or ### represents P < 0.001. “0 µmol/L” denotes the untreated
control.
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However, the specific genes that respond to oxidative stress and

influence UVM progression remain poorly characterized. The

molecular mechanisms and key regulatory genes involved in this

process require further elucidation. Therefore, deeper investigation

into the interplay between oxidative stress and UVM biology could

pave the way for novel diagnostic tools and targeted therapies to

improve patient outcomes.

In this study, we identified 185 oxidative stress-related DEGs

between control and UVM samples. Among them, 15 intersecting

genes were identified between hub genes from the PPI networks and

prognostic genes. Multiple machine learning algorithms (LASSO

regression, random forest, SVM, NNET, GMB, and XGBoost) were

employed to identify novel diagnostic genes, including ACACA,

CALM1, HSP90B1, DNM2, and POMC. These five genes were

subsequently used to construct a prognostic risk signature model.

Patients classified as high risk exhibited poorer prognoses and

demonstrated elevated immune infiltration scores for CD4+

memory-activated T cells, activated NK cells, and resting mast

cells. Additionally, functional experiments showed that CALM1

overexpression attenuated H2O2-induced oxidative stress and

apoptosis in MP65 cells.

ACACA (acetyl-CoA carboxylase alpha) is a biotin-containing

enzyme that catalyzes the carboxylation of acetyl-CoA to malonyl-

CoA (33), participating in lipid metabolism and acetyl-CoA

metabolic processes (34). Downregulation of ACACA suppresses

the malignant progression of prostate cancer (35). In hepatocellular

carcinoma, ACACA has been identified as a central gene associated

with poor prognosis (36). Consistent with these findings, our results
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indicated that high ACACA expression was associated with worse

prognosis in UVM patients. Interestingly, its downregulation in

lung fibroblasts was found to trigger an inflammatory phenotypic

shift (37). CALM1 (calmodulin 1) is a member of the EF-hand

calcium-binding protein family, involved in G2/M cell cycle

transition and calcium signal transduction by modulating a wide

range of enzymes (38–40). CALM1 has shown high diagnostic and

prognostic value in several cancers, including UVM, bladder cancer,

and breast cancer (41), which aligns with our findings linking high

CALM1 expression to poor overall survival in UVM patients. Prior

studies reported a positive correlation between CALM1 expression

and macrophage/neutrophil infiltration in skin cutaneous

melanoma (41). Our study supports this, suggesting CALM1 may

modulate the tumor microenvironment. Furthermore, in

esophageal squamous cell carcinoma, CALM1 was shown to

promote tumor progression and reduce sensitivity to EGFR

inhibitors (42). In ovarian cancer, it was associated with tumor

classification and immune status (43). These findings are consistent

with our observation that CALM1 overexpression alleviated H2O2-

induced oxidative stress, reduced MDA and LDH accumulation,

and inhibited apoptosis in UVM cells. CALM1 may regulate tumor

apoptosis through multiple signaling pathways. It activates the Ca2

+/calmodulin-dependent protein kinase II (CaMKII) pathway,

inhibits mitochondrial apoptosis by reducing the Bax/Bcl-2 ratio,

and promotes glioma cell survival (44). CALM1 can also activate the

NF-kB pathway by binding to IkB kinase (IKK) (45), upregulating

anti-apoptotic proteins to inhibit prostate cancer apoptosis (46).

Further studies have shown that activated Ca2+/CaMKII can
FIGURE 9

CALM1 overexpression attenuated H2O2-induced apoptosis in MP65 cells. (A) After transfection with negative control (vector) or CALM1
overexpression, MP65 cells were determined by Annexin V-FITC/propidium iodide (PI) staining. (B) Percentage of apoptotic cell death and necrosis.
(C) The expression level of BAX and CASP3 (caspase 3) was detected by Western blot. Three independent experiments were carried out. “ns”
represents no statistical significance; * or # represents P < 0.05, ** or ## represents P < 0.01, and *** or ### represents P < 0.001.
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enhance CaMKII/NF-kB interaction and NF-kB activation (47). In

addition, CALM1 has been implicated in AKT regulation, especially

in PIK3CA-mutated breast cancer (48). The activation of CaMKII

also promotes PI3K/Akt signaling, facilitating anti-apoptotic

mechanisms in prostate cancer (49). This pathway enhances

glucose uptake, promotes glycolysis, and inhibits apoptosis in

hepatocellular carcinoma (50). Although CALM1 is known to

inhibit apoptosis in many cancers, its role in UVM apoptosis

remains underexplored. Notably, CALM1 may activate Ca2

+/CaMKII signaling, while excessive Ca2+ can induce apoptosis in

some cancer types (51). In GNAQ/11-mutant UVM cells,

mutations increase cytosolic calcium and trigger p53-dependent

apoptosis (52). Moreover, reduced Ca2+ flux in BAP1+/− cells

hinders apoptosis despite DNA damage accumulation in UVM

with germline BAP1-inactivating mutations (53).

CALM1 is involved in the process of oxidative stress through the

Ca2+ signaling pathway. Oxidative stress could activate the TRPM8

channel to induce Ca2+ and pro-apoptotic signals in prostate cancer

(54). Oxidative stress activated the Ca2+-CaMKII cascade to inhibit

early autophagy induction, which led to mitochondria fragmentation

and loss of mitochondrial membrane potential (55). Mitochondrial

calcium uniporter (MCU)-mediated oxidative stress could increase

mitochondrial calcium and decrease mitochondrial membrane

potential in osteoblasts (56). The activation of the iNOS pathway led

to higher reactive oxygen species and nitric oxide production, which

accelerated gastric cancer cell apoptosis (57). The activation of

oxidative stress induced the proliferation of leukemia cancer cells

through cytosolic Ca2+ influx (58). The dysregulation of cytosolic

Ca2+ also decreased mitochondrial function and increased oxidative

stress (59). The mitochondrial oxidative stress was induced by

Clostridium botulinum neurotoxin A via activation of the Ca2+

signaling pathway in neuroblastoma and glioblastoma tumor (60).

The activated Ca2+/CAMKII axis increased NOX4 expression, creating

a feedforward loop of oxidative damage (60). Additionally, Ca2+

signaling mediated airway inflammation in response to oxidative

stress through activation of the ERK pathway (61). These findings

revealed that Ca2+ signaling served as a central regulator of oxidative

stress responses. HSP90B1 (heat shock protein 90 beta family member

1) encodes an ATP-dependent molecular chaperone involved in

protein stabilization and folding (62). Previous studies have

suggested that HSP90B1 is a promising candidate for cancer

diagnosis and prognosis (63) and plays a role in regulating cisplatin

sensitivity in bladder cancer (64). DNM2 (dynamin 2) is a member of

the GTPase protein family (65). It has been associated with poor

prognosis in various cancers (66). Interestingly, downregulation of

DNM2 was linked to worse outcomes and older age in neuroblastoma

patients (67). Our findings are consistent, showing that higher

DNM2 expression correlates with worse survival in UVM. POMC

(proopiomelanocortin) is involved in physiological processes including

pigmentation and inflammation (68). It has been identified as a

survival-related gene in colorectal cancer (69). Moreover, POMC-

negative expression was associated with better response to paclitaxel

and carboplatin chemotherapy in lung cancer (70).

Nowadays, the diversification of treatment strategies has

contributed to improved clinical outcomes for patients. Clinical
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trial results have demonstrated that anti-PD-1 antibodies can

achieve durable clinical benefits in patients with UVM (71).

Oxidative stress has been reported to regulate programmed death-

ligand 1 (PD-L1) expression on tumors, thereby influencing tumor

responses to immune checkpoint inhibitors (72). In our analysis,

significant differences in immune cell infiltration levels were observed

between the OSG high-risk and OSG low-risk groups. Elevated

infiltration scores of CD4+ memory-activated T cells and activated

NK cells were found in the high-risk group, suggesting that CD4+ T

lymphocytes and NK cells may contribute to antitumor activity in

UVM (73, 74). Dysregulated T-cell infiltration may alter antigen

presentation to CD4+ T cells and impair epitope recognition,

potentially contributing to autoimmune or inflammatory diseases

(75). T-cell homeostasis has been associated with Fas-mediated

apoptosis (76). Our results showed a negative correlation between

CD4+ memory resting T cells and ACACA expression (r = −0.25, P =

0.042). Inhibition of ACACA function has been reported to enhance

memory CD4+ T-cell formation via fatty acid metabolism (77), and

ACACA has also been shown to suppress Th9 differentiation in naive

CD4+ T cells through fatty acid synthesis (78). CALM1 was positively

correlated with CD4+ T cells (r = 0.405, P = 0.001), which aligns with

previous findings (79). Although CALM1 has not been directly

studied in T lymphocytes, its known role in Ca2+ signaling suggests

possible involvement in T-cell functions such as activation and

differentiation (80), including CD8+ and CD4+ T cells (81).

Memory and recall responses by CD8+ T cells require Ca2+ channel

expression in CD4+ T cells (82). Furthermore, exosomal regulation of

Ca2+ signaling has been shown to reduce CD40L expression and

suppress CD4+ T-cell activation and proinflammatory cytokine

secretion (83). Differentiation of naive CD4+ T cells into Th17 and

Treg subsets is also dependent on Ca2+ signaling (84).

Other studies have indicated that CD8+ T cells, macrophages, and

NK cell infiltration are associated with poor prognosis in UVM (74,

85). Hepatic NK cells have been shown to occupy the same niche as

uveal melanomamicrometastases in the liver sinusoids (86). Low-risk

primary UVM tumors are characterized by reduced HLA class I

expression and increased NK cell infiltration, which is associated with

a decreased risk of disease recurrence (87). Consistent with these

findings, our results also revealed high levels of resting NK cell

infiltration in low-risk UVM patients (Figure 7A). Calcium channels

involved in Ca2+ signaling have been found to regulate the

homeostasis of secretory lysosomes and their interaction with

mitochondria in human NK cells (88). Deletion of calcium

channels in NK cells has been shown to impede autophagic flux

and lead to the accumulation of dysfunctional mitochondria,

contributing to increased oxidative stress (88). Moreover, our

results showed that immune scores were lower in the high-risk

group, indicating poorer prognosis—contrary to findings in gastric

cancer (89). This oxidative stress-related prognostic model may

therefore have value in guiding clinical immunotherapy for UVM.

In our analysis, the dysregulated genes were significantly enriched

in several critical signaling pathways, including apoptosis, FoxO, and

HIF-1 pathways. These pathways are closely associated with oxidative

stress in tumors and play crucial roles in tumorigenesis and

progression. Prior studies have shown that FoxO transcription
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factor knockdown reduces UVM cell proliferation (90), while

inhibition of FoxO3a promotes proliferation and invasion in UVM

cells (91). Similarly, knockdown of HIF-1 significantly impairs UVM

tumor progression (92), and silencing HIF-1a reduces UVM cell

migration, invasion, and adhesion (93). Increased HIF-1a expression

has also been associated with worse prognosis in UVM patients (94),

suggesting that the FoxO and HIF-1 signaling pathways contribute to

UVM progression. Notably, our findings highlight a particularly

strong association between these pathways and UVM. The

enrichment of dysregulated genes in the apoptosis, FoxO, and HIF-

1 pathways underscores the critical role of oxidative stress regulation

in UVM biology. Consistent with our results, other studies have

shown that ROS production, oxidative stress signaling, and FoxO

activity are pivotal in cancer development and progression (95). The

uncontrolled activation of antioxidant signaling has been implicated

in breast cancer progression via HIF-1 and FoxO pathways (96). Kim

et al. demonstrated that FoxO3a acts as an anti-melanogenic factor

mediating antioxidant-induced depigmentation, thereby influencing

melanogenesis (97). Although no reports have directly linked the

FoxO pathway to antioxidant activity in UVM, loss of FoxO function

has been shown to confer growth and survival advantages to

melanoma cells (98). Additionally, apoptosis under physiological

conditions is tightly regulated by oxidative stress (99), and

impaired signaling may disrupt the balance of apoptosis,

contributing to tumor development (100). Our results revealed that

the dysregulated genes were enriched in key pathways—FoxO, HIF-1,

and PI3K-Akt—all of which are closely linked to oxidative stress

regulation. Previous studies have reported that the PI3K signaling

pathway is enriched in high-risk UVM groups and associated with

worse prognosis (101). PI3K-Akt pathway-related risk scores have

been shown to reflect distinct immune statuses and mutation

landscapes in UVM patients (102). Furthermore, activation of the

PI3K-Akt pathway and enhancement of DNA damage response

mechanisms may help mitigate treatment side effects in UVM

(103). Further investigation of these signaling pathways could

provide deeper insights into the molecular mechanisms driving

UVM progression and help identify novel therapeutic targets.

However, several limitations must be acknowledged in this

study. First, although numerous novel oxidative stress-related

biomarkers were identified as prognostic genes for predicting

overall survival in UVM—and an external validation cohort was

employed— these findings were derived entirely from

bioinformatics analysis. Larger sample sizes are needed to further

validate the robustness of these results. Second, potential biases may

have been introduced by the machine learning algorithms,

including overfitting and limitations inherent to database

selection. Future research should aim to confirm the effectiveness

of this five-biomarker-based diagnostic model using larger,

independent cohorts. Third, the current database does not

contain treatment-related information, making it impossible to

incorporate this factor in the present study. We acknowledge this

limitation and will ensure that treatment history is systematically

recorded in future clinical sample collections to allow for more

comprehensive analyses in subsequent research. Fourth, while we

have successfully collected and analyzed RNA expression data from
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three UVM tissue samples and three paired adjacent normal tissues

for preliminary validation, we acknowledge that the current sample

size is insufficient to perform statistically meaningful survival

prognosis analysis. The limited number of UVM cases (n = 3)

lacks the statistical power required to correlate gene expression

patterns with clinical outcomes such as overall survival. This

preliminary analysis was primarily designed as a proof-of-concept

validation of RNA expression trends observed in our larger

genomic datasets.
Conclusion

In conclusion, this study comprehensively investigated the role of

OSGs in UVM, revealing their significant involvement in key signaling

pathways—including HIF-1, FoxO, PI3K-Akt, and apoptosis—which

are closely associated with tumor progression and oxidative stress

regulation. Through differential gene expression analysis, protein–

protein interaction networks, and multiple machine learning

algorithms, we identified and validated several prognostic hub OSGs,

including ACACA, CALM1, DNM2, POMC, and HSP90B1, which

were all associated with poor survival outcomes in UVM patients. A

robust risk signature model was constructed, demonstrating strong

predictive accuracy for overall survival, particularly for 5-year

prognosis. Furthermore, our findings emphasized the impact of risk

scores on immune infiltration, with high-risk groups exhibiting distinct

immune cell profiles. Experimental validation further confirmed the

protective role of CALM1 in alleviating H2O2-induced oxidative stress

and apoptosis in UVM cells. CALM1 upregulation also mitigated the

inhibitory effects of H2O2 on key cellular processes, including

proliferation, migration, and invasion, highlighting its potential as a

therapeutic target. Collectively, these findings provide valuable insights

into the molecular mechanisms underlying UVM and offer promising

avenues for the development of targeted therapies and

prognostic biomarkers.
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SUPPLEMENTARY FIGURE 1

Combining the OSGs and clinical variables. (A) The difference of risk scores in
patients with age > 60 and age≤ 60. (B) The survival curve showing no

significant difference between age > 60 and age≤ 60. (C) The survival curve in
age≤ 60 patients. (D) The survival curve in age> 60 patients. (E) The difference

of risk scores in female and male patients. (F) The survival curve showing no

significant difference between female and male. (G) The survival curve in
female patients. (H) The survival curve in male patients. (I) The difference of

risk scores in different race. (J) The survival curve showing no significant
difference between white patients and others. (K) The survival curve in white

patients. (L) The survival curve in non-white patients. (M) The difference of risk
scores in different stages. (N) The survival curve showing no significant

difference between early stage and advance stage patients. (O) The survival

curve in early stage patients. (P) The survival curve in advance stage patients.
(Q) Nomogram for predicting the 1-year, 3-years and 5-years overall survival.

Calibration plot of the nomogram for predicting 1-year (R), 3-years (S) and 5-
years (T).

SUPPLEMENTARY FIGURE 2

The correlation of five genes and overall survival in GSE84976 validation
dataset. Survival curve showing the prognostic values of five genes of risk

model, including ACACA (A), CALM1 (B), DNM2 (C), HSP90B1 (D), POMC (E).

SUPPLEMENTARY FIGURE 3

The correlation of five genes and overall survival in ICGC validation dataset.
Survival curve showing the prognostic values of five genes of risk model,

including ACACA (A), CALM1 (B), DNM2 (C), HSP90B1 (D), POMC (E).

SUPPLEMENTARY FIGURE 4

The relative expression levels of five OSGs in training and validation dataset.

The genes expression in TCGA training dataset: ACACA (A), CALM1 (B), DNM2

(C), HSP90B1 (D), POMC (E). The genes expression in ICGC testing dataset:
ACACA (F), CALM1 (G), DNM2 (H), HSP90B1 (I), POMC (J).

SUPPLEMENTARY FIGURE 5

ROC curves showing the comparisons. (A) ROC curves of ACACA, POMC,
HSP90B1, CALM1, DNM2 in TCGA cohort as training cohort. (B) ROC curves

of ACACA, POMC, HSP90B1, CALM1, DNM2 in ICGC cohort as testing dataset.
(C) ROC curves of ACACA, CALM1, POMC, HSP90B, DNM2 in clinical samples

as testing dataset.

SUPPLEMENTARY FIGURE 6

CALM1 overexpression attenuated H2O2-induced oxidative stress in MM28
cells. (A) Cell viability was inhibited by H2O2. (B) The expression level of

CALM1 was detected by western blot upon transfection of H2O2-induced
MM28 cells with negative control (vector) or CALM1 overexpression. The

activity of SOD (C), MDA (D) and LDH (E) in H2O2-induced MM28 cells was
determined by ELISA. (F) Western blot evaluating the expression levels of

SOD2 and CAT using western blot. * or # represents P<0.05, ** or ##

represents P<0.01, *** or ### represents P<0.001. “0 µmol/L” denotes the
untreated control.

SUPPLEMENTARY FIGURE 7

CALM1 overexpression attenuated H2O2-induced apoptosis in MM28 cells.
(A) After transfection with negative control (vector) or CALM1 overexpression,

MM28 cells were determined by Annexin V-FITC/propidium iodide (PI)

staining. (B) Percentage of apoptotic cell death and necrosis. (C) The
expression level of BAX and CASP3 (caspase 3) were detected by western

blot. Three independent experiments were carried out. “ns” represents no
statistical significance; * or # represents P<0.05, ** or ## represents P<0.01,

*** or ### represents P<0.001.

SUPPLEMENTARY FIGURE 8

Effects of CALM1 on the proliferation, migration and invasion in UVM cells. (A)
The proliferation curve of MP65 cells in different group. (B) The proliferation
curve of MM28 cells in different group. (C) The micrographs of migration

assay in MP65 and MM28 cells. (D) box plot representation of the migration
assay analysis in MP65 and MM28 cells. (E) Images of invasion assay in MP65

and MM28 cells. (F) box plot of the invasion assay in MP65 and MM28 cells.
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