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Background: Radiomics based on automatic segmentation of CT images has 
emerged as a highly promising approach for differentiating adrenal adenomas 
from metastases in clinical practice; however, its preoperative diagnostic value has 
not been fully evaluated in previously developed methodologies. 

Objective: To fully elucidate the diagnostic value of radiomics based on automatic 
segmentation techniques in differentiating adrenal adenomas from metastases 
through a retrospective analysis of clinical and contrast-enhanced CT (CECT) data. 

Methods: A retrospective analysis was conducted on the clinical and imaging data of 
416 patients with adrenal masses larger than 10 mm, who had clinically indicated 
contrast-enhanced CT (CECT) examinations at our hospital between January 2020 
and June 2024. Adrenal lesions were segmented automatically using 3D Slicer, and 
radiomic features were extracted from the segmented arterial and venous phase 
images using PyRadiomics. Feature selection and dimensionality reduction were 
performed using mutual information (MI), minimum redundancy maximum 
relevance (MRMR), LASSO, and Pearson correlation analysis. Clinical and imaging 
features were then incorporated into an XGBoost machine learning model, and 
model performance was evaluated using Area Under Curve (AUC), accuracy, 
precision, sensitivity, specificity, and F1 score. SHAP analysis was used to interpret 
the model’s predictions and identify the most influential features. 

Results: This study included 221 adenomas and 195 metastases. Significant 
differences were observed between the two groups in terms of age, lesion size, 
and contrast washout rate (P < 0.001). After feature extraction, selection, and 
dimensionality reduction, 15 arterial phase features, 6 venous phase features, and 
18 combined features were used for model training. The AUC values of the XGBoost 
model for the arterial phase, venous phase, combined arterial and venous phase 
data, and combined arterial, venous phase, and clinical indicators were 0.81, 0.81, 
0.88, and 0.92, respectively. Five-fold cross-validation showed that the average 
scores of XGBoost were 0.868, 0.823, 0.897, and  0.89, respectively.  SHAP  summary  
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plot for each sample under different features were used to illustrate the 
interpretability of the model. 

Conclusion: A machine learning model, combining multimodal CT radiomics 
and automatic segmentation technology, enables machine-based clinical 
features extraction, improves the differentiation between adrenal adenomas 
and metastases, and provides a reliable foundation for accurate diagnosis and 
treatment planning. 
KEYWORDS 

adrenal masses, radiomics, contrast-enhanced CT, machine learning, SHAP analysis 
1 Introduction 

The incidence of adrenal incidentalomas (Adrenal incidentaloma, 
AI) is approximately 6.4% (1, 2). Since they are often asymptomatic 
and discovered incidentally during imaging examinations, they are 
frequently overlooked (3), making it very challenging for the adrenal 
incidentalomas diagnosis. More than half of these are adrenal 
adenomas, which are the most common benign tumors of the 
adrenal gland (4). On the other hand, the most common malignant 
adrenal tumors are metastases (5), which typically require early 
clinical intervention. However, even among patients with a known 
history of primary malignancy, only 26-36% of adrenal masses are 
metastatic (6). Therefore, in clinical practice, accurately distinguishing 
benign adenomas from malignant metastases is crucial for selecting 
appropriate treatment plans and predicting patient outcomes. The 
invasiveness and postoperative complications associated with surgical 
resection or biopsy to determine the nature of the tumor cannot be 
ignored (7). Typical adrenal adenomas contain lipids, and traditional 
imaging techniques can detect them through methods such as CT 
values, relative chemical shift MRI (Chemical-shift MRI, CSI), and 
rapid washout characteristics of the lesions (8–10), which are of 
significant reference value in differentiating adrenal adenomas from 
non-adenomas. However, 30% of adenomas have insufficient fat 
content, making the differential diagnosis challenging (11). 
Therefore, in clinical practice, fully analyzing imaging information is 
of great significance to accurately distinguish atypical adrenal 
adenomas from metastatic adrenal lesions (12). 

In recent years, radiomics has been developed as an emerging 
quantitative analysis technique, providing new insights into tumor 
diagnosis and prognosis by extracting and analyzing many features 
from images (13–15). Combined with advanced automatic 
segmentation techniques, radiomics can accurately identify and 
analyze the subtle characteristics of adrenal lesions, thereby 
improving diagnostic accuracy. More specifically, automatic 
segmentation techniques can quickly and accurately extract 
adrenal lesion areas in contrast-enhanced CT images, providing a 
high-quality data base for subsequent radiomics analysis (16–18). 
To solve current challenges in CT image analysis and diagnosis, this 
02 
study aims to explore radiomics based on automatic segmentation 
techniques in improving the predicting outcomes between adrenal 
adenomas and metastases. By analyzing many quantitative imaging 
features and establishing effective predictive models, our analytical 
method and machine learning model provide a more reliable basis 
for clinical diagnosis, significantly reduce unnecessary invasive 
examinations, and improve patient treatment outcomes and 
quality of life. 
2 Materials and methods 

2.1 Patients 

We retrospectively analyzed the clinical data of 416 patients who 
had clinically indicated enhanced CT (CECT) examination in our 
hospital between January 2020 and June 2024 and showed the 
presence of adrenal masses greater than 10mm in diameter. 
Inclusion Criteria: The adrenal lesions included 221 adenomas and 
195 metastases. Lesions diagnosed as adrenal adenomas must meet 
the following criteria: (1) The lesion has a regular shape and smooth 
margins; (2) The patient has no history of malignancy, and both 
imaging and clinical diagnoses are consistent with adenoma; (3) The 
size of the adrenal nodule remains unchanged on follow-up imaging 
for at least 6 months without any intervention. Lesions diagnosed as 
adrenal metastases must meet the following criteria: (1) The patient 
has a known history of malignancy, and both imaging and clinical 
diagnoses are consistent with adrenal metastasis; (2) Follow-up 
imaging shows treatment-related changes in the size of the lesion 
within 3–6 months. Exclusion Criteria: (1) Patients with incomplete 
CECT protocols; (2) Patients with incomplete reference standard 
data; (3) Patients with adrenal lesions smaller than 10 mm; (4) 
Patients with follow-up duration less than 6 months. 

These inclusion criteria ensured that the study subjects were 
adrenal lesions suitable for comparative analysis and enabled an 
effective evaluation of the application value of contrast-enhanced 
CT and radiomics machine learning in differentiating adenomas 
from metastatic tumors. 
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This retrospective study adhered to the ethical guidelines of the 
1975 Declaration of Helsinki and received approval from the 
Institutional Review Board of Suzhou Ninth People’s Hospital. In 
addition, written informed consent for publication was obtained 
from the patient. 
2.2 Protocol for abdominal CT 

A second-generation dual-source multi-detector computed 
tomography (MDCT) scanner, the SOMATOM Definition Flash 
(Siemens, Erlangen, Germany), was utilized for the CT scans. The 
settings included a tube voltage of 120 kVp, and a reference tube 
current was set at 300 mAs. A scanning thickness and interval were 
both at 5 mm. The image reconstruction parameters were 1 mm for 
both thickness and interval. Other parameters comprised a pitch of 
0.8, a tube rotation speed of 0.5 s per rotation, and a detector width 
of 128 mm × 0.6 mm. 

Prior to the CT scan, the patient was required to fast for a 
minimum of 4 hours and engaged in inspiratory training. For the 
scan, the patient lay in a supine position with hands supporting the 
head. The process began with acquiring a localization image and 
conducting a non-contrast CT scan. Subsequently, 80 mL of the 
non-ionic contrast agent ioversol (HENGRUI MEDICAL HR, 
China) was administered intravenously via the antecubital vein at 
a flow rate of 3.5 mL/s using a high-pressure injector (ulrich GmbH 
& Co.KG), immediately followed by a 20-mL flush of normal saline 
at the same rate to clear the syringe. Triphasic CT imaging, 
encompassing arterial, portal venous, and delayed phases, was 
initiated at 28–32 seconds, 55–65 seconds, and 3–4 minutes post-
contrast injection, respectively. The scan covered an area extending 
approximately 1 cm above the diaphragm to the lower edge of the 
liver. During the contrast-enhanced portion, a contrast agent 
tracking method was employed to precisely time the arterial 
Frontiers in Oncology 03 
phase, with subsequent acquisitions of the arterial, portal venous, 
and delayed phase images. 
2.3 Automatic segmentation 

Thin-section contrast-enhanced CT images contain lesion 
details. Therefore, we exported arterial and portal venous phase 
enhanced CT images in DICOM format from the Picture Archiving 
and Communication System (PACS). After preprocessing and 
normalization of the input images, the CT image data was 
imported into the 3D-Slicer plugin (version 5.6.2, [https:// 
www.slicer.org]). A radiologist with ten years of experience 
attached the ROI and adjusted the size of the rectangular box to 
encompass the lesion (Supplementary Figure S1). The images were 
then imported into the large model medsam_lite.pth for 
computation.  For  patients  with  inaccurate  automatic  
segmentation results, manual adjustments were made in 
consultation with experienced senior attending physicians. 
Finally, the segmentation results were saved. The experimental 
process is shown in Figure 1. 
2.4 Feature extraction 

PyRadiomics (https://www.radiomics.io/pyradiomics.html) was 
utilized to extract image features from the previously saved 
segmentation results. In our study, a total of 1,834 imaging 
features were extracted from both the arterial and venous phases, 
categorized into seven classes: 1) shape features; 2) first-order 
statistical features; 3) Gray-Level Co-occurrence Matrix (GLCM) 
features; 4) Gray-Level Run Length Matrix (GLRLM) features; 
5) Gray-Level Size Zone Matrix (GLSZM) features; 6) Gray-Level 
Dependence Matrix (GLDM) features; and 7) Neighboring Gray-
FIGURE 1 

Experimental flow chart. 
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Tone Difference Matrix (NGTDM) features. Additionally, various 
filters such as Laplacian of Gaussian (LoG, with sigma values of 1.0, 
2.0, and 3.0), Wavelet, 3D Local Binary Patterns (LBP3D), 
Exponential, Square, SquareRoot, Logarithm, and Gradient were 
applied for feature processing. 
2.5 Feature selection 

Although we extracted many features, not all of them had 
clinical significance for predicting adrenal masses. To identify the 
best set of distinguishing features, we introduced four methods for 
radiomic feature selection and dimensionality reduction. First, we 
calculated the maximum mutual information between features 
using MI (Mutual Information) and selected the top 500 features 
for both the arterial and venous phases. Next, we used MRMR 
(Minimum Redundancy Maximum Relevance) to filter out 
redundant and irrelevant features, resulting in 100 features for 
each phase. Then, we applied LASSO (Least Absolute Shrinkage and 
Selection Operator) for dimensionality reduction, yielding 19 
features for the arterial phase and 6 for the venous phase. Finally, 
we removed one of each pair of features with Pearson correlation 
coefficients greater than 0.8, leaving 15 features for the arterial phase 
and 6 for the venous phase. For the combined arterial and venous 
phase data, we sequentially applied MI, MRMR, and LASSO, and 
selected 1,000, 100, and 22 features, respectively. After removing 
one feature from each pair with Pearson correlation coefficients 
greater than 0.8, 18 features left. See the heatmap (Figure 2) 
for details. 
2.6 Statistical analysis 

Statistical analyses were performed using Python 3.9 (https:// 
www.python.org). The predictive efficiency was assessed using the 
AUC of the ROC curve. The LASSO algorithm and ROC curve 
generation were implemented using the “sklearn” package, whereas 
T-tests were conducted with the “scipy” package. A p-value less than 
0.05 was considered to indicate a statistically significant difference. 
3 Results 

3.1 Patient baseline characteristics and 
contrast clearance rate 

A total of 416 patients were enrolled in this study: 221 in the 
adenoma group (105 women [47.5%] and 116 men [52.5%]), aged 
26 to 95 years (mean 60 [52, 69] years), with an average lesion size 
of 19.8 mm, relative washout rate (RPW) 0.3 (0.2, 0.4), and absolute 
washout rate (APW) 0.4 (0.2, 0.5); and 195 in the metastasis group 
(41 women [21%] and 154 men [79%]), aged 37 to 91 years (mean 
69 [60, 73] years), with an average lesion size of 23.4 mm, RPW 0.1 
(0, 0.1), and APW 0.1 (-0.1, 0.3). Patients were randomly divided into 
a training group (291 patients) and a validation group (125 patients). 
Frontiers in Oncology 04
Significant differences were found in gender, age, lesion size, RPW, 
and APW between the two groups (P < 0.001). RPW and APW are 
calculated as follows: RPW = (CT values on venous phase − CT 
values on delayed phase) × 100% ÷ CT values on venous phase; 
APW = (CT values on venous phase − CT values on delayed phase) × 
FIGURE 2 

The optimal feature subset correlation heatmaps for (A) the arterial 
phase, (B) venous phase, and (C) the combined arterial and venous 
phase. The correlations among these optimal features are relatively 
weak and independent. 
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100%÷(CT values on venous phase − CT values on unenhanced 
phase). RPW and APW are important pharmacokinetic parameters 
that describe the clearance rate of drugs in the body (19). See Table 1 
for details. 
3.2 Feature extraction and machine 
learning 

In the training group comprising 291 patients, a total of 1,834 
radiomic features were extracted from the arterial and venous phase 
images using 3D-Slicer. After feature selection through three steps 
—MI (Mutual Information), MRMR (Minimum Redundancy 
Maximum Relevance), and LASSO (Least Absolute Shrinkage and 
Selection Operator)—19 features were selected from the arterial 
phase, 6 from the venous phase, and 22 from the combined arterial 
and venous phase data (see Figure 3 for the three respective images). 
Following Pearson correlation analysis, the optimal feature subsets 
for the three groups consisted of 15, 6, and 18 features, respectively. 
These features demonstrated the most robust performance in 
differentiating adrenal adenomas from metastases. The heatmap 
of the best features’ correlations (Figure 2, three respective images) 
revealed relatively weak and independent correlations among these 
features, indicating that all of them could be incorporated into the 
machine learning model. 

In the XGBoost model, the arterial phase AUC value, accuracy, 
precision, sensitivity, specificity, and F1 score were 0.81, 0.73, 0.70, 
0.70, 0.75, and 0.70, respectively, with a 95% confidence interval of 
0.73-0.89. The venous phase AUC value, accuracy, precision, 
sensitivity, specificity, and F1 score were 0.81, 0.75, 0.74, 0.70, 
0.80, and 0.72, respectively, with a 95% confidence interval of 0.73
0.89. For the combined arterial and venous phase data, the AUC 
value, accuracy, precision, sensitivity, specificity, and F1 score were 
0.88, 0.77, 0.77, 0.67, 0.85, and 0.71, respectively, with a 95% 
confidence interval of 0.81-0.94. For the combined arterial, 
venous, and clinical indicators data, the AUC value, accuracy, 
precision, sensitivity, specificity, and F1 score were 0.92, 0.83, 
0.83, 0.81, 0.85, and 0.82, respectively, with a 95% confidence 
interval of 0.87-0.97. The results are shown in Figure 4 and 
Table 2. After four rounds of five-fold cross-validation, the results 
are shown in Figure 5. The average scores of XGBoost were 0.868, 
0.823, 0.897, and 0.89, respectively. The SHAP values for each 
Frontiers in Oncology 05 
sample under different features were plotted as a SHAP summary 
plot (Figure 6) to demonstrate the global interpretability of the 
model. Each point in the figure represents an observation. The x-
coordinate of the point represents the SHAP value. On the y-axis, 
the ranking of the independent variables indicates the importance 
of the SHAP variables. That is, the importance of the independent 
variables decreases gradually from top to bottom. For example, 
RPW is the most influential feature, followed by AGE, Gender, and 
Size. Most of SHAP values for RPW is concentrated in the positive 
region, indicating that it has a positive impact on the model’s 
output. The color represents the magnitude of the feature value, 
with red indicating a high feature value and blue indicating a low 
feature value. In the RPW feature, red dots (high feature values) are 
concentrated in the negative SHAP value area, further confirming 
that high RPW values have a negative impact on the model’s output. 
Similarly, blue dots (low feature values) are concentrated in the 
positive SHAP value area, indicating that low RPW values have a 
positive impact on the model’s output. This interesting figure 
provides very important diagnosis information on adrenal 
adenomas and metastases, which cannot be realized based on 
traditional manual segmentation and diagnosis techniques. We 
can conclude that RPW, age and Gender are the three most 
important factors to be considered to differentiate lipid-poor 
adrenal adenomas from metastases. Besides, their feature values 
may imply different diagnosis outcomes, which provides clear 
guidelines for decision making on adrenal adenomas. While a 
high age and gender value indicates a positive impact on the 
model output, the RPW shows an opposite prediction, with high 
feature values implying a negative impact on the model output. 
Figure 7 shows the local interpretability of individual prediction 
results with a Waterfall plot, with Figure 7A showing the SHAP 
values for a single positive case sample and Figure 7B showing the 
SHAP values for a single negative case sample, intuitively presenting 
the impact of each feature on the prediction results. 
4 Discussion 

An adrenal incidentaloma is an adrenal mass discovered 
unintentionally during imaging studies conducted for reasons 
unrelated to suspected adrenal disease (20, 21). Their etiology and 
types are complex and diverse, and their prognoses vary widely. 
= = =

TABLE 1 Patient baseline characteristics and contrast clearance rate. 

Variables Total (n 416) 0 (n 221) 1 (n 195) p 

Age, Median (Q1,Q3) 65 (57, 71) 60 (52, 69) 69 (60, 73) < 0.001 

Gender, n (%) < 0.001 

Female 146 (35.1) 105 (47.5) 41 (21) 

Male 270 (64.9) 116 (52.5) 154 (79) 

Size, Median (Q1,Q3) 20.4 (16.4, 26.4) 19.8 (16.6, 23.7) 23.4 (16.1, 32.4) < 0.001 

RPW, Median (Q1,Q3) 0.2 (0, 0.4) 0.3 (0.2, 0.4) 0.1 (0, 0.1) < 0.001 

APW, Median (Q1,Q3) 0.3 (0, 0.4) 0.4 (0.2, 0.5) 0.1 (-0.1, 0.3) < 0.001 
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Therefore, it is crucial to differentiate benign and malignant lesions 
using imaging examinations and to manage adrenal diseases in a 
timely and appropriate manner (22). The 2016 and 2023 guidelines 
suggest that additional diagnostic work should only be performed 
for patients with adrenal masses ≥1 cm, who do not exhibit clinical 
symptoms or signs of excess adrenal hormones (7, 23). Adrenal 
adenomas and metastases, the most common benign and malignant 
adrenal tumors, respectively, are heterogeneous in traditional 
medical imaging (24). However, when adrenal adenomas develop 
with atypical signs and sizes, it becomes challenging to distinguish 
Frontiers in Oncology 06
them from metastases (12). This study proposes a multi-modal 
machine learning model based on automatic segmentation 
techniques to predict adrenal adenomas and metastases. The 
application of automatic segmentation technology provides a 
solid foundation for radiomics analysis in the differential 
diagnosis of these two types of lesions. By using 3D Slicer and the 
large automatic segmentation model Medical SAM, we can quickly 
and accurately extract adrenal lesion areas from multi-modal 
enhanced CT images, significantly improving work efficiency and 
reducing human error. This technology enables more precise and 
FIGURE 4 

The ROC curves for (A) the arterial phase, (B) venous phase, (C) combined arterial and venous phase data, and (D) the integrated data of arterial and 
venous phases with clinical indicators in the XGBoost model. The AUC values for groups (A–D) are 0.81, 0.81, 0.88, and 0.92, respectively. 
FIGURE 3 

Radiomic parameters were screened using three steps: MI (Mutual Information), MRMR (Minimum Redundancy Maximum Relevance), and LASSO 
(Least Absolute Shrinkage and Selection Operator). The LASSO regression feature convergence plots for (A) the arterial phase, (B) venous phase, and 
(C) the combined arterial and venous phase data. Each curve represents the change in the coefficient of a particular feature. 
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efficient extraction of radiomics features, facilitating the 
identification of subtle lesion characteristics and providing a high-
quality data foundation for subsequent machine learning model 
training (25). The multi-modal radiomics approach, including 
arterial phase, venous phase, combined arterial and venous phase 
data, and the fusion of clinical indicators with arterial and venous 
phase data, can fully utilize the rich information provided by 
different imaging stages combined with clinical features. Clinical 
data includes patient gender, age, lesion size, and imaging features 
(e.g., RPW and APW.), where RPW and APW refer to the absolute 
and relative clearance rates calculated using a 15-minute delayed 
scanning method, respectively. Reports have indicated that typical 
adrenal adenomas exhibit rapid washout characteristics, which can 
serve as a basis for  differentiating adrenal adenomas from 
metastases (26). Although this method has high specificity and 
sensitivity, it is limited by long scan times, additional radiation, and 
contrast agents (27). In this study, images from different phases 
reflect the hemodynamic features of adrenal lesions at various time 
points, which are significant for distinguishing benign and 
malignant lesions. For example, adrenal adenomas usually have 
richer blood perfusion features because they are typically well
vascularized. In contrast, metastases, often originating from 
malignant tumors of other organs, have different vascularization 
Frontiers in Oncology 07 
and blood perfusion patterns from primary adrenal lesions. In 
imaging examinations, metastases may show uneven contrast 
agent distribution, reflecting their complex vascular structure and 
unstable blood perfusion. By integrating multi-modal radiomics 
features, the model can comprehensively capture lesion 
characteristics, thereby significantly improving diagnostic 
accuracy and enhancing the model’s discriminative ability. 

In this study, the machine learning model played a crucial role 
in differentiating adrenal adenomas from metastases using clinical 
imaging data. Based on the multi-modal data obtained from 
automatic segmentation, the extracted radiomic features were 
classified using the XGBoost algorithm, which effectively 
enhanced the ability to differentiate adrenal adenomas from 
metastases. XGBoost, as a powerful ensemble learning algorithm, 
is capable of automatically handling the complex relationships 
between features and optimizing model performance through 
gradient boosting methods (28). The study results showed that 
the AUC values of the XGBoost model for the arterial phase, venous 
phase, combined arterial and venous phase data, and combined 
arterial, venous phase, and clinical indicators were 0.81, 0.81, 0.88, 
and 0.92, respectively, indicating a high diagnostic efficiency of the 
model. Additionally, through five-fold cross-validation, the average 
scores of the model were 0.868, 0.823, 0.897, and 0.89, respectively, 
 FIGURE 5

After four rounds of five-fold cross-validation, the results are shown in the figure. The average scores of the XGBoost model are 0.868, 0.823, 0.897, 
and 0.89, respectively. 
TABLE 2 The results of the XGBoost models. 

AUC Accuracy Precision Sensitivity Specificity F1 
Score 

95%CI RepeatedKFold 

Arterial 
Radiomics Model 

0.81 0.73 0.7 0.7 0.75 0.7 0.73-0.89 0.868 

Venous 
Radiomics Model 

0.81 0.75 0.74 0.7 0.8 0.72 0.73-0.89 0.823 

A+V Radiomics Model 0.88 0.77 0.77 0.67 0.85 0.71 0.81-0.94 0.897 

Radiomics 
+ClinicModel 

0.92 0.83 0.83 0.81 0.85 0.82 0.87-0.97 0.89 
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FIGURE 7 

Local interpretability of individual prediction results using a waterfall plot. (A) The SHAP values for a positive case sample. (B) The SHAP values for a 
negative case sample. The plots illustrate the impact of each feature on the prediction outcome. 
FIGURE 6 

The SHAP Summary plot displays the SHAP values for each sample across different features. 
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which further demonstrated the stability and reliability of the 
model. The application of the machine learning model not only 
improved the accuracy of diagnosis but also provided strong 
support for clinical decision-making, which is critically important 
to reduce unnecessary invasive examinations and improve patient 
treatment outcomes and life quality. Regarding the interpretability 
of the machine learning model’s predictions, we conducted SHAP 
(SHapley Additive exPlanations) analysis. The SHAP values can 
intuitively show the contribution of each feature to the model’s 
predictive outcomes, thereby assisting clinicians in better 
understanding the model (29). In this study, the SHAP summary 
plot clearly indicated the impact of different features on the model 
and demonstrated that features such as RPW, age, gender, and 
lesion size had the most significant influence on model predictions. 
For example, lesions with higher RPW are more likely to be 
predicted as adrenal adenomas, which is consistent with clinical 
experience. Moreover, SHAP analysis can also provide local 
explanations for individual prediction results, which intuitively 
presents the impact of each feature on the predictive outcomes 
through Waterfall plots and further enhances the model’s 
interpretability and clinical applicability (30). This interpretative 
analysis not only helps to increase clinicians’ trust in machine 
learning models but also facilitates the application of these models 
in real clinical settings (31). 

This article has some limitations: (1) Although the sample size 
is comparable to those in similar studies, it remains relatively 
limited for training and validating machine learning models, 
potentially compromising their generalization capability. (2) 
While five-fold cross-validation was employed in the study, the 
absence of external validation raises concerns about the reliability 
and generalizability of the findings. (3) Although SHAP analysis 
was utilized to explain the model’s predictions, the study offers only 
a limited discussion on feature selection and overall model 
interpretability. (4) While this study combines automatic 
segmentation and radiologist fine adjustments to realize accuracy 
considering the complexity of adrenal masses, the limited training 
case set may introduce potential biases in the automatic 
segmentation. A large data set and ML consistent iteration are 
expected to further improve model accuracy. (5) This study of this 
ML model is focused on CT radiomics but the incorporation of this 
model into other clinical imaging techniques (e.g., MRI or dual-
energy CT) is still challenging due to the variations in imaging 
contrast technologies and mechanisms. Solving this limit is 
expected to provide synergistic diagnosis by combing different 
features of adrenal lesions and allow for developing generic ML 
models for imaging-based disease treatment and planning. 

Multimodal enhanced CT radiomics, when combined with 
machine learning models based on automatic segmentation 
technology, hold significant potential for the differential diagnosis 
of adrenal adenomas and metastases. The use of automatic 
segmentation provides a high-quality data foundation essential 
for robust  radiomics analysis (32). Multimodal radiomics can 
fully utilize information from different imaging stages, and 
machine learning models effectively improve the accuracy and 
reliability of diagnosis (33). SHAP analysis further enhances 
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model interpretability, offering intuitive decision support for 
clinicians. Future research could benefit from larger sample sizes, 
external validation, and continued refinement of automatic 
segmentation techniques. Additionally, exploring a wider range of 
imaging modalities and feature extraction methods, as well as 
integrating machine learning models more seamlessly into clinical 
workflows, may contribute to more comprehensive and precise 
solutions for the diagnosis and treatment of adrenal tumors. To this 
end, refining the current model is a good starting point to extend 
this ML-based diagnosis technique to other imaging modalities, 
which is expected to provide insights in applying artificial 
intelligence to interpret clinical data for imaging and theranostics. 
The next approach to intelligent theranostics will be to develop deep 
learning, in addition to the supervised learning presented in this 
work, to automatic imaging processing and machine-based clinical 
decision making, providing more powerful and diverse ML models 
for imaging-based diagnosis on not only adrenal adenomas but also 
other diseases. 
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