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Cervical cancer continues to pose a considerable global health challenge, 
especially in low- and middle-income nations, although progress in screening 
and vaccine efforts. In recent years, immunotherapy has emerged as a promising 
treatment option; nevertheless, its efficacy in cervical cancer is constrained by 
the intricate and heterogeneous tumor immune microenvironment. Reliable 
biomarkers to predict which patients will benefit from immunotherapy are 
lacking. The heterogeneity of the immune landscape across patients adds 
further complexity. This paper offers a thorough examination of the 
immunological landscape in cervical cancer, highlighting the interactions 
among tumor cells, immune infiltrates, and stromal elements. Moreover, we 
investigate how advanced technologies—such as single-cell RNA sequencing, 
spatial transcriptomics, and multiplex imaging—are transforming our 
comprehension of immunological heterogeneity and uncovering new 
therapeutic targets. We seek to delineate present problems and potential 
pathways in the development of effective, tailored immunotherapies for 
cervical cancer by integrating genetic analysis with immunological insights. 
KEYWORDS 

cervical cancer, tumor immune microenvironment, immunotherapy, PD-1/PD-L1 
signaling pathway, immune checkpoint 
1 Introduction 

Cervical cancer (CC) ranks as the fourth most common malignant neoplasm among 
women globally, serving as a primary contributor to cancer mortality in females (1, 2). It is 
a serious threat to women’s health. CC is preventable and treatable, but remains a major 
global health burden (3). Alarmingly, more than 85% of these cases and deaths occur in 
low- and middle-income countries, where access to HPV vaccination, routine screening, 
and timely treatment is often limited. CC can be categorized into squamous cell carcinoma 
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(SCC), adenocarcinoma (AC), and adenosquamous carcinoma 
(ASC), which represent the three predominant histological 
variants of CC (4–6). Human papillomavirus (HPV) is a requisite 
yet insufficient factor in the etiology of CC. HPV is a prevalent 
sexually transmitted infection; nevertheless, the majority of HPV 
infections are eradicated by the immune system. Persistent infection 
of the genital mucous membranes by specific high-risk HPV types 
(HPV16 and HPV18) induces cellular proliferation and genetic 
instability, which, if unaddressed, may ultimately progress to 
malignant tumors (7–10). 

In recent years, CC incidence and mortality have declined 
significantly in some developed countries due to advances in early 
screening methods and increased HPV vaccine coverage, but CC 
cannot be completely prevented by this strategy alone (11–16). 
Presently, commercially accessible preventive HPV vaccinations are 
prevalent; nevertheless, they do not manage confirmed infections or 
lesions (17–20). First-line treatment options for CC are still limited 
to traditional methods such as surgical excision, radiotherapy and 
chemotherapy (21–25). Treatment alternatives for early and 
locally invasive CC encompass radical hysterectomy or radical 
hysterectomy in conjunction with pelvic lymph node dissection, 
and concomitant chemotherapy and radiotherapy (26–29). 
Treatment for distant metastatic CC emphasizes systemic therapy. 
There is no standard treatment for second-line systemic therapy for 
advanced CC (30, 31). Targeted agents such as tisotumab vedotin 
and bevacizumab can help some advanced metastatic patients who 
meet the criteria (32–34), but as the disease worsens or resistance 
develops, options for further treatment are few and the toxicity and 
decreased quality of life they cause cannot be ignored. These factors 
make treating advanced and repeated metastatic CC a very tough 
task in clinical practice. How to find more accurate biomarkers to 
help with personalized and accurate treatment has become a major 
scientific problem that needs to be solved in the current field of 
CC study. 

A key advance in addressing the therapeutic challenges 
associated with advanced and metastatic CC has been the advent 
of immunotherapy (35, 36). Immunotherapy is considered a 
groundbreaking modality in contemporary oncology and offers 
promising avenues for tumor control (37–42). Immunotherapy, as 
a novel treatment approach, aims to augment the body’s innate and 
adaptive immune responses to combat cancer cells. This approach 
encompasses a range of modalities, including immune checkpoint 
inhibitors (ICIs), monoclonal antibodies, cancer vaccines, 
immunomodulatory agents, and adoptive T-cell transfer therapies 
(43–45). Each of these strategies aims to overcome mechanisms of 
immune evasion and restore effective antitumor immunity, offering 
promising avenues for improving outcomes in various malignancies 
(46, 47). The use of ICIs has brought new hope to patients (48, 49). 
In clinical practice, inhibitors targeting the immune checkpoints 
PD-1 and CTLA4 have been shown to improve survival in patients 
(21, 50–53). 

However, the unique histologic features of CC pose a significant 
challenge to the heterogeneity of immunotherapy (54, 55). Clinical 
data suggest that only 15-20% of patients benefit from ICIs therapy, 
and reliable predictors of efficacy are lacking (56). This event really 
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shows how complicated and varied the CC tumor microenvironment 
(TME) regulatory network is. This means we need to learn more 
about how it works on the inside and look into how different kinds of 
immune cells get into the TME in order to make immunotherapies 
work better and come up with new ways to treat cancer. Emerging 
tools such as spatial transcriptomics, multiplex imaging, and single-
cell RNA sequencing allow high-resolution mapping of the TME (57– 
62).  These  approaches  are  expected  to  uncover  novel  
immunoregulatory pathways, improve biomarker discovery, and 
support the development of highly personalized immunotherapy 
regimens (63–66). Combining multi-omics techniques has become 
a useful way to study the complexity of TME in recent years (67–70). 
By correctly looking at the molecular features of each cell group in 
TME, the dynamic interaction network between tumor cells and 
immune cells is made clear. 

This review aims to systematically examine the immunological 
landscape of CC, focusing on how tumor–immune interactions 
contribute to therapeutic resistance and immune evasion. We place 
particular emphasis on novel immune targets identified through 
single-cell and spatial transcriptomic technologies, and we explore 
how these insights may inform next-generation immunotherapeutic 
strategies (Figure 1). 
2 Variability of immune responses in 
TME of CC 

Even though there have been big improvements in CC therapy 
with ICIs over the last ten years, a lot of patients are still not getting 
the best immune responses in clinical situations. The heterogeneity 
of therapeutic response may be influenced by the characteristics of 
immune cell infiltration in the tumor microenvironment, the 
integration status of the HPV genome, the expression profiles of 
immune-related biomarkers, and individual differences in host 
immune status (21, 71–73). Persistent infection with high-risk 
HPV, particularly HPV16 and HPV18, plays a central role in 
cervical carcinogenesis. These viruses have evolved several 
sophisticated strategies to evade host immune surveillance, which 
contributes to both viral persistence and progression to malignancy. 
The HPV oncoproteins E6 and E7 disrupt multiple immune 
pathways (74). E6 targets interferon regulatory factors (IRFs) and 
hinders Type I interferon responses, limiting antiviral immunity 
(75). E7 interferes with antigen processing and presentation, 
reducing cytotoxic T lymphocyte (CTL) recognition of infected 
cells (76). Both E6 and E7 reduce the function of dendritic cells 
(DCs) and Langerhans cells, impairing the priming of HPV-specific 
T cells  (77). The resulting TME becomes immunosuppressive, 
posing significant barriers to the success of immunotherapies. 
Cervical tumors, like many solid tumors, create a hostile 
microenvironment for effective immune activation. PD-L1 is 
commonly expressed in cervical tumors, especially in HPV-

positive cases, leading to T cell exhaustion via the PD-1/PD-L1 
axis. Understanding these evasion strategies is critical to improving 
the response to immune checkpoint inhibitors and  other
immunotherapies in CC. 
frontiersin.org 

https://doi.org/10.3389/fonc.2025.1620501
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2025.1620501 

FIGURE 1 

Abstract image. The abstract figure illustrates various scenarios of interactions between immune cells and cervical cancer. These include T cells, 
dendritic cells (DCs), natural killer (NK) cells, macrophages, and mast cells, with relevant proteins and signaling pathways labeled. The image of a 
syringe and an infant symbolizes human papillomavirus (HPV) vaccination. Adaptive cell therapy is explained using a human figure. Lines connect the 
various elements to the central image of the cervix, highlighting their immune interactions. 
The TME displays dynamic and intricate characteristics across 
different cancer types, where immune cells play a crucial role in the 
elimination of tumor cells; but, in some cases, they may also 
promote tumor progression (78–80). In hypermetabolic tumor 
regions, there were stronger signals from CD56 Natural Killer 
(NK) cells and immature dendritic cells, while hypometabolic 
tumor regions exhibited a higher presence of eosinophils, 
immature B cells, and Treg cells (81). Fan et al. performed a 
multi-omics investigation demonstrating that bidirectional 
interactions between malignant epithelial cytokeratin cells and 
immune-suppressive cancer-associated fibroblasts foster an 
immune rejection microenvironment in CC through FABP5-
mediated transforming growth factor b pathway signalling (82). 
Additionally, specific molecular processes indicate that NAT10-
mediated metabolic reprogramming in cancer cells inhibits the 
therapeutic efficacy of PD-L1 blockade therapy (83). Insights into 
the complex immunological landscape of the TME have paved the 
way for novel treatment strategies (84–88). Finding new 
immunotherapeutic targets and quickly putting possible 
biomarkers into clinical trials are big steps forward in improving 
clinical response rates, making combination therapy strategies 
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work better, and dealing with immunotherapeutic heterogeneity. 
The following sections will explore current immunotherapeutic 
approaches and emerging targets that aim to overcome the 
barriers posed by immune heterogeneity in CC. 
3 Summary of contemporary 
immunotherapy approaches 

3.1 Immune checkpoint inhibitors 

Immune checkpoints are molecules that inhibit signalling 
pathways and uphold immune tolerance; however, cancer cells 
frequently exploit these mechanisms to escape immune surveillance 
(89, 90). ICIs represent a significant advancement in tumor therapy. 
Their mode of action primarily involves augmenting the cytotoxic 
effect of T lymphocytes through the targeted inhibition of inhibitory 
receptors. ICIs targeting the PD-1/PD-L1 signalling pathway, such as 
Pembrolizumab, Nivolumab, Cemiplimab, and Balstilimab, have 
received approval for second-line and subsequent treatment of 
advanced CC (91–94). While immunotherapy offers a promising 
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avenue for improving outcomes in cervical cancer, it is not without 
risks. The use of ICIs can lead to a spectrum of immune-related 
adverse events resulting from excessive immune activation (95). As 
such, careful patient selection, early detection of toxicity, and 
proactive management protocols are essential components of 
clinical immunotherapy use. The therapeutic application of ICIs 
has progressively transitioned from monotherapy to combination 
therapy techniques. Research has demonstrated that the dual ICIs 
regimen exhibits substantial efficacy in patients with metastatic or 
recurrent CC (96). The combination of ICIs with anti-angiogenic 
agents, such as Sintilimab and Anlotinib, has demonstrated 
significant therapeutic efficacy in patients with advanced CC who 
have not responded to chemotherapy. In patients with advanced CC 
who have not responded to first-line platinum-based therapy, the 
overall response rate (ORR) of Sintilimab in conjunction with 
albumin-paclitaxel is 44.4%, with a median progression-free 
survival (mPFS) of 5.2 months and a median overall survival 
(mOS) of 13.1 months (97). The treatment strategy of ICIs 
combined with concurrent chemoradiotherapy has demonstrated 
considerable success in patients with high-risk locally advanced CC. 
Combining radiotherapy and chemotherapy with immunotherapy 
holds significant promise for improving treatment outcomes in CC. 
Radiotherapy can enhance tumor immunogenicity by inducing 
immunogenic cell death, increasing antigen presentation, and 
modulating the tumor microenvironment to promote immune 
infiltration. When paired with ICIs, these effects may synergize to 
overcome immune resistance. Ongoing clinical trials are exploring 
triplet combinations of radiotherapy, chemotherapy, and PD-1/PD-
L1 inhibitors (98). Looking forward, integrating immunotherapy with 
standard treatments may enable personalized therapeutic strategies. 
3.2 Therapeutic vaccinations for HPV 

Through the activation of certain T cell immunological 
responses, the therapeutic vaccine method that is based on HPV 
oncoprotein E6/E7 attempts to generate anti-tumor effects. A phase 
II clinical trial (NCT04405349) validated the long-term clinical 
benefit of the therapeutic DNA vaccine VB10.16 combined with 
atezolizumab in the population of HPV16-positive patients with 
recurrent or metastatic CC. The trial demonstrated an overall 
response rate (ORR) of 19.1%, a median progression-free survival 
(mPFS) of 4.1 months, and a median overall survival (mOS) that 
was prolonged to 21.3 months (99). Another phase II clinical trial 
(NCT04096911) indicated that the combination of Sintilimab and 
the HPV quadrivalent vaccine could markedly enhance clinical 
outcomes for individuals with recurrent or metastatic CC who were 
unresponsive or intolerant to traditional therapies. The treatment 
regimen had a median progression-free survival (mPFS) of 7.16 
months, an overall response rate (ORR) of 53.8%, and a disease 
control rate of 76.9% on average (100). These research findings 
emphasize the necessity of spreading HPV preventive vaccination, 
especially in low-income areas with insufficient medical resources. 
Although therapeutic vaccines targeting E6/E7 have shown promise 
in early trials, their integration into standard care is hampered by 
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low immunogenicity and logistical barriers in large-scale 
application. More rigorous phase III trials are needed to validate 
their long-term clinical benefit. 
3.3 Adoptive cell therapy and application 

ACT entails the ex vivo expansion of either autologous or 
allogeneic tumor-specific T cells, which are then reinfused into 
the patient to specifically target and eradicate tumor cells (101, 102). 
ACT is categorized into three primary types: tumor-infiltrating 
lymphocytes (TIL), TCR-engineered T cells (TCR-T), and chimeric 
antigen receptor T cells (CAR-T) (103–105). TILs demonstrated 
superior tumor abrogation compared to lymphocytes produced by 
vaccine treatment, indicating their efficacy in counteracting 
immune evasion mechanisms (106). Of nine patients with 
metastatic CC, two achieved complete remission and one had 
partial remission according to clinical investigations following 
TILs (107). Nisha et al. conducted the inaugural human phase 1 
clinical study with TCR- T lymphocytes targeting E7 for metastatic 
human oncovirus-associated epithelial carcinoma, yielding 
significant tumor reduction and objective clinical responses in 6 
out of 12 patients (108). In clinical trials, an NKG2D CAR-T 
treatment targeted for NKG2DL demonstrated great potential to 
drastically stop tumor development without appreciable off-target 
damage (109). These researches show a viable therapeutic method 
and emphasize the clinical possibilities of using cell therapy for the 
treatment of CC. 
4 Potential novel therapeutic targets 
for CC in relation to immune 
infiltration 

The extensive application of omics technologies, including 
scRNA-seq, has enabled researchers to achieve a single-cell 
comprehension of the TME. Immune infiltration, a significant 
element of the TME, has been demonstrated to influence tumor 
progression and the efficacy of immunotherapy. The expansion of 
options for CC immunotherapies, coupled with the significant 
functional heterogeneity and plasticity of immune cells, offers 
novel research avenues for creating personalized diagnostic and 
therapeutic strategies, as well as enhancing combination therapies. 
4.1 T cells 

The investigation of T cell-related immune checkpoints, as 
essential effector cells in tumor immunotherapy, has consistently 
been a primary focus for biomarker identification. The markers 
primarily regulate T cell activation, differentiation, and exhaustion. 

HAVCR2, a significant member of the TIM family, 
demonstrates distinct expression characteristics in CC. Research 
indicates that HAVCR2 expression in exhausted CD8+ T cells 
within CC tissues is significantly elevated compared to 
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precancerous lesions; however, this expression level declines 
following chemoradiotherapy (110). The expression level of the 
ligand-receptor pair LGALS9-HAVCR2 in the TME is significantly 
elevated in CC tissues compared to high-grade squamous 
intraepithelial  lesions,  potentially  indicating  enhanced  
immunosuppression (111). Exhausted CD8+ T cells in cervical 
adenocarcinoma exhibit high expression of HAVCR2 and TIGIT, 
whereas CD96 is predominantly expressed in exhausted CD8+ T 
cells in cervical squamous cell carcinoma. These molecules may 
serve as potential targets for immunotherapy (112, 111). 

FOXP3 serves as a critical transcription factor for regulatory T 
cells (Tregs), with its expression level closely associated with the 
malignancy of CC. The elevated expression of FOXP3 correlates 
positively with the advancement of FIGO stage and the 
differentiation degree of histological subtypes in CC, and is 
significantly associated with a decreased overall survival rate in 
patients (113). The elevated expression of FOXP3 in HPV-related 
CC underscores its significant role in the immune evasion 
associated with this condition (114). 

CX3CR1, a specific receptor for CX3CL1, plays a role in 
regulating the chemotaxis, adhesion, and cytotoxic functions of 
immune cells, in conjunction with the perforin-encoding gene 
PRF1. These two molecules are upregulated in effector memory T 
cells and cytotoxic T cells and serve a role in early immune 
activation within CC metastatic lymph nodes (115). The 
identification of the specific enrichment of CXCL13 in resident 
memory T cells, along with its immunosuppressive function, offers 
a novel perspective for a more comprehensive understanding of the 
complexities within the TME of CC (116). 
4.2 Macrophages 

The groundbreaking utilization of scRNA-seq technology has 
fundamentally transformed the conventional binary classification 
framework of macrophages. Researchers have progressed beyond 
categorizing macrophages solely as pro-inflammatory (M1 type) or 
anti-inflammatory (M2 type) (117), now delineating more nuanced 
functional subtypes based on their multifunctional attributes inside 
the TME. 

APOE, a multifunctional protein released by hepatocytes and 
macrophages, has been recognized as a signature gene of lipid-
associated macrophages due to its crucial role in lipoprotein 
clearance, lipid transport, and cholesterol metabolism. 
Macrophage subtypes that overexpress APOE can markedly 
augment the proliferative activity and migratory capacity of CC 
cells (118). Mechanistic investigations have demonstrated that this 
macrophage subtype may secrete immunosuppressive substances 
via exocytosis (110). 

Li et al.’s work demonstrated the probable involvement of 
C1QA in the spread of CC. In comparison to primary CC tissues, 
macrophages exhibiting elevated C1QA expression were markedly 
enriched in metastatic lymph nodes, indicating that C1QA may play 
a role in the regulation of CC metastasis (119). A separate study 
arrived at a more intricate conclusion: in patients with advanced 
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CC, macrophages exhibiting reduced SPP1 expression and elevated 
C1QA expression correlated with improved clinical outcomes 
(120). CD74 is a crucial regulator of the transport of surface 
molecules on antigen-presenting cells, and its expression patterns 
are intimately linked to the functional status of macrophages. 
Research indicates that CD74-positive macrophages exhibit 
diminished phagocytic capability and are predisposed to develop 
into the M2 phenotype (121 ,120). Blocking CD74 can restore the 
immunosuppressive phenotype and markedly limit the growth of 
CC cells. The elevated expression levels of IFI30 and TGFBI in 
macrophages indicate their potential as novel immunological 
checkpoints (122). 

Notably, macrophage subgroups exhibiting elevated HPV16 
expression may correlate with favorable prognoses in CC patients. 
This observation is compounded by the high expression of HPV16 
in malignant tumor cells (123, 122). The precise molecular 
mechanism behind this dual expression pattern and its 
therapeutic implications require additional investigation. 
4.3 Dendritic cells 

IDO1 is a pivotal immunoregulatory enzyme mostly expressed in 
immune cells, astrocytes, and some tumor cells, and it significantly 
contributes to cancer immunoregulation and cellular metabolism. In 
comparison to precancerous lesions and normal cervical tissues, 
dendritic cells in CC tissues exhibited a marked elevation of IDO1 
and LAMP3 expression (124). This specific expression pattern may 
contribute to the formation of the immunosuppressive 
microenvironment in CC. The combination of IDO1 inhibitors and 
ICIs significantly suppresses IDO1 overexpression and stimulates the 
proliferation of effector CD8+ T cells, thereby augmenting the efficacy 
of anti-tumor immunotherapy. 

In the examination of dendritic cell-related immune checkpoints, 
Siglec-10, as a potential immune checkpoint inhibitor, can suppress 
the function of adaptive T cells via the Galectin-9-mediated signalling 
pathway, thereby further augmenting the tumor immunological 
microenvironment of CC (125). 

Moreover, plasmacytoid dendritic cells expressing CLEC4C and 
LILRA4 are pivotal in modulating the immunological response of 
CC to HPV infection by secreting IFN-a and suppressing viral 
genome replication during the initial phase of HPV infection (115). 
During persistent HPV infection, these dendritic cells may assume a 
pro-oncogenic function by activating NF-kB and MAPK signalling 
pathways, underscoring their dual role in CC development. 
4.4 NK cells 

NK cells are unique innate immune cells that mediate antiviral 
and antitumor responses. Blocking immune checkpoints not only 
saves NK cells from depletion, but also enhances their potent anti-
tumor activity (126, 127). Monalizumab is a humanized IgG4 
antibody that inhibits NKG2A from binding to its HLA-E ligand, 
which is overexpressed in tumor cells, and also triggers a natural 
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killer cell-mediated immune response against cancer cells (128). 
Published findings from phase I clinical study NCT02459301 
indicate that monalizumab is well tolerated in individuals with 
advanced gynecological malignancies, exhibiting minimal 
therapeutic harm (129). 

Furthermore, research indicates that  the  favorable clinical

outcome of CC patients is considerably positively linked with the 
expression levels of FGFBP2. The increase of FGFBP2 expression 
can markedly augment the cytotoxicity of NK cells, hence 
improving the body’s anti-tumor immune response (130). This 
study elucidates the significant function of FGFBP2 in the TME of 
CC, while also presenting a novel molecular target for the 
advancement of NK cell-based immunotherapeutic approaches. 

NK cells in the TME acquire CD73 molecules and facilitate 
immunosuppression through the production of adenosine (131). 
Recent evaluations have assessed the efficacy of anti-CD73 
monoclonal antibodies (oleculumab, NZV930), both as 
monotherapy and in conjunction with other immunosuppressive 
agents (e.g. anti-PD-1 and A2AR antagonists), for the treatment of 
various solid tumors in multiple phase I/II studies (NCT03381274, 
NCT03454451, and NCT03549000) (126). The impact of anti-CD73 
treatment on NK cell functionality requires more investigation. 
4.5 Mast cells 

In the past few years, the regulatory function of MCs in anti-
tumor immunity has increasingly garnered interest from the 
academic community. The study by Zhao et al. demonstrated that 
elevated ALOX5 expression in MCs is significantly associated with 
the progression of CC from benign to malignant (132). These MCs 
may engage in bidirectional contact with CC cells via the 
TNFRSF12A-mediated signalling pathway. This revelation 
enhances our comprehension of the mechanism of action of mast 
cells in the cancer microenvironment and offers a novel research 
avenue for investigating targeted treatment options centred on mast 
cell-tumor cell interactions. 
5 Discussion 

By bridging immunological insights with technological innovation, 
the future of CC treatment lies in precision immunotherapy tailored to 
the patient’s unique tumor-immune ecosystem. Immunotherapy is 
slowly becoming one of the most important ways to treat CC. 
Immunotherapy has come a long way, but there are still a lot of 
issues that need to be fixed before it can be used to really target and beat 
immune resistance. CC generally exhibits a relatively low tumor 
mutational burden, which limits the generation of neoantigens and 
reduces immunogenicity (133). Furthermore, upregulation of PD-L1, 
IDO1 expression, and TGF-b signaling can dampen anti-tumor 
immune responses and limit the efficacy of ICIs (81). We talked 
about the new immune markers that have been proven by tests in 
vitro and in vivo. However, there is still a long way to go before these 
immune markers can be used in clinical settings. 
Frontiers in Oncology 06
In summary, the study of immune markers for CC cancer 
therapy faces many challenges, including little understanding of 
their interactions in the complex environment of TME and 
insufficient clinical studies to validate their functionality and 
potential side effects. We anticipate that with today’s mix  of
different types of holographic data, such as bulk sequencing, 
proteomics, spatial transcriptomics, and other technological 
platforms, to deeply and methodically characterize CC’s immune 
checkpoints, their functional mechanisms and their biological 
components will soon become clearer. 
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