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Background: Loco-regional recurrence (LRR) poses a clinical challenge for the
follow-up of patients treated with curative intent for early-stage breast cancer
(EBC). While circulating tumor DNA (ctDNA) has been shown to predict distant
metastases, its value for LRR is less characterized.

Methods: Starting from an index case with documented LRR and available tumor
and plasma samples, we report the analysis of the prospective phase Il
fenretinide prevention trial, which primarily aimed to assess the incidence of
second malignancy in women with T1-T2 NO EBC. Patients were eligible if they
had FFPE and/or frozen tissue from primary or recurrent invasive tumor for next
generation sequencing, and at least three serial plasma samples for ctDNA
analysis by digital PCR.

Results: The TP53 R196* mutation was identified in the primary tumor of the
index case with a variant allele frequency (VAF) of 29%, and in the LRR with a VAF
of 58%. The same mutation was also detected in plasma prior to both the primary
and LRR surgeries with VAFs of 0.19% and 0.12%, respectively. Following
treatment, the mutation became undetectable in plasma samples during
follow-up, consistent with the absence of recurrence. Among 40 eligible
patients from the fenretinide prevention trial, 27 (67.5%) had primary tumor
somatic variants trackable in plasma. Median age was 55 years (range, 35-78);
stage | (16, 59%) and stage Il (11, 41%); mostly luminal-like (19, 70%); median
follow-up 173 months (range, 98-193); common mutations included PIK3CA
(50%), TP53 (30.7%), and PTEN (5.9%). Six patients developed LRR as first event; 4
distant metastases. In all LRR cases, except one, ctDNA was detected prior to
surgery and anticipated the clinical diagnosis up to 28 months. Three patients
with LRR developed distant metastases 1 to 2 years later.
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Conclusion: These findings show the potential of ctDNA for the early detection
of LRR in EBC, and its promise as a tool for timely interventions and personalized
surveillance strategies.

circulating tumor DNA, loco-regional recurrence (LRR), early breast cancer (EBC),
follow-up, next generation sequencing (NGS), digital PCR (dPCR), somatic mutation

Introduction

Breast cancer accounts for nearly a quarter of all female
malignancy and represents the leading cause of cancer-related
mortality among women worldwide (1). Although substantial
advances in early diagnosis and treatment have contributed to
ameliorate survival, disease recurrence remains a major
clinical challenge.

Loco-regional recurrence (LRR) occurs in approximately 5-15%
of patients with early-stage disease and is associated with an
increased risk of subsequent systemic spread (2-4). Since LRR is
strongly associated with disease-specific mortality (5, 6), its early
identification is crucial to improving patient outcomes. However,
current surveillance protocols relying on physical examinations and
imaging have limited sensitivity in detecting subclinical disease,
highlighting the need for more dynamic and specific biomarkers.

Circulating tumor DNA (ctDNA), a component of cell-free
DNA shed by tumor cells, has emerged as a promising and
minimally invasive biomarker, providing a unique source to
monitor disease in real time (7).

In advanced breast cancer, ctDNA is increasingly integrated
into clinical decision-making to identify actionable mutations for
targeted therapy (8). As an example, plasma PIK3CA mutations can
guide the use of PI3K inhibitors in patients with hormone receptor-
positive/HER2-negative disease; while ESRI mutations inform
resistance to aromatase inhibitors and the use of novel oral
SERDs (9).

In the early-stage breast cancer (EBC), ctDNA is technically
more challenging due to its lower levels. Nevertheless, ctDNA has
shown clinical potential for prognosis, prediction of pathological
complete response after neoadjuvant therapy, detection of residual
disease after surgery, and early identification of relapse during
follow-up (10).

Plasma serial monitoring for individual tumor mutations in
TP53, PIK3CA, GATA3, ARIDIA, AKT which are the most
commonly found altered genes in breast cancer (11-13), has
shown to detect minimal residual disease even months before
clinical or radiologic evidence of overt metastases (14-16). These
studies have reported the potential of ctDNA in predicting distant
recurrence in operable breast cancer, with encouraging results in
terms of sensitivity and specificity and supported prospective trials
that aim to assess the utility of ctDNA for EBC (17-19).
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Nonetheless, most ctDNA research has focused on distant
recurrence or treatment monitoring, whereas data on the use of
ctDNA for detecting LRR, particularly in early-stage disease,
remain limited.

In this study, we explored the role of ctDNA for the early
identification of LRR in EBC patients. As a first step, we
retrospectively analyzed ctDNA dynamics in an index case with a
documented LRR and available tumor and plasma samples.
Building on this observation, we report a post hoc analysis of a
prospective phase IIT prevention trial enrolling patients with
surgically treated for stage I-II breast cancer (20), for whom serial
plasma samples were prospectively collected during follow-up. Our
goal was to evaluate whether ctDNA monitoring could anticipate
LRR, thus envisaging its integration into tailored post-treatment
surveillance protocols.

Materials and methods
Study design and patient population

This study was based on a single breast cancer patient, referred
to as the index case, and evaluable EBC patients from the
prospective phase III fenretinide prevention trial (20).

For the index case, clinico-pathological data, sequencing of
tumor tissue and profiling of plasma samples were evaluated at
diagnosis, at the time of LRR, and during follow-up.

Patients from the prospective phase III fenretinide prevention
trial were eligible if they fulfilled the following criteria: i) FFPE or
frozen tumor tissue suitable for somatic single-nucleotide variants
(SNV) identification by next generation sequencing (NGS), and ii)
at least three plasma samples prospectively collected during follow-
up. It is worth noting that the trial included women aged 30-70
years with T1-T2 NO breast cancer who were treated with surgery +
radiotherapy, without adjuvant systemic chemo- or endocrine-
therapy. Participants underwent semi-annual clinical evaluations,
annual mammography and chest X-rays, and biennial bone scans.
During trial follow-up serial plasma samples were collected every 6
months until relapse. These samples had been previously used for
ancillary studies (reviewed in 21). Written informed consent and
Institutional Review Board approval were obtained for the original
and current analyses. As original assessment did not include HER2
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status, HER2 was evaluated for the purpose of the current analysis
by immunohistochemistry (IHC) and in situ hybridization as per
standard practice (22).

Tumor tissue DNA extraction and
sequencing

DNA was isolated from four sections of primary tumor FFPE
tissues (10 um thick slides with tumor cellularity >50%) using the
GeneRead DNA FFPE Kit (Qiagen, Valencia, CA, USA) according
to the manufacturer instructions. For DNA extraction from frozen
samples the QIAamp DNA Mini Kit (Qiagen) was used following
the manufacturer protocol. DNA quantity was assessed using Qubit
dsDNA HS Assay Kit (Thermo Fisher Scientific, Waltham, MA,
USA). Targeted NGS was performed using the Ion AmpliSeqTM
Cancer Hotspot Panel v2 (Thermo Fisher Scientific), which includes
207 amplicons covering of 50 oncogenes and tumor suppressor
genes. Cases with no detectable somatic variants using this panel
and with available matched germline DNA from normal (non-
tumoral) lymph nodes or breast tissue were subsequently analyzed
with the Ion AmpliSeqTM Comprehensive Cancer Panel (Thermo
Fisher Scientific), which targets all exons of 409 cancer-related
genes. Detailed procedures are described in the
Supplementary Materials.

Plasma collection and cell-free DNA
extraction

For the index case, blood was collected in K2EDTA tubes
preoperatively at both surgical time points and during follow-up.
For the fenretinide cohort, blood was collected in heparin tubes at
baseline, follow-up visits, and until relapse. Plasma was separated by
centrifugation and stored at —80°C. cell-free DNA (cfDNA) was
extracted using the QIAamp Circulating Nucleic Acid Kit (Qiagen),
eluted in 35 uL of AVE buffer, and quantified using Qubit dsDNA
HS Assay Kit (Thermo Fisher Scientific). For heparinized samples,
eluates were treated with heparinase I (1u/ul) for 1 hour at room
temperature (23). Spike-in experiments using a 125 bp Lambda
DNA fragment confirmed successful dPCR performance after
heparinase treatment (Supplementary Material, Supplementary
Figure S1A).

digital polymerase chain reaction

dPCR assays (TagMan SNP Genotyping, Thermo Fisher) were
developed to validate somatic variants in tumor tissue and to track
them in plasma. When dPCR assays wet-lab validated by the
manufacturer were not available custom mutation-specific dPCR
assays were designed using the Thermo Fisher Scientific custom
SNP genotyping assay tool.

PCR reactions were run on the ProFlex  2x Flat PCR System
thermal cycler (Thermo Fisher), incubating the chips at 96°C for 10
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minutes, followed by 45 cycles of 56°C for 2 minutes, 98°C for 30
seconds and 60°C for 2 minutes. Chips were read on the
QuantStudio® 3D Digital PCR Instrument (Thermo Fisher) and
analyzed using QuantStudio® 3D AnalysisSuiteTM Server (Thermo
Fisher). Negative controls were performed with wild type (wt)
genome (Promega Corporation, Madison, WI, USA) and no DNA
template (NTC) were included in every run.

Plasma DNA pre-amplification

Plasma DNA was pre-enriched by amplification using
TaqMan® PreAmp Master Mix Kit (Thermo Fisher Scientific), as
previously described (24). Briefly, sample volume was reduced by
Eppendorf Concentrator 5301 (Epperdorf Srl, Milano, Italy) to 14
ul. Pre-amplification reaction was performed in a volume of 10 ul
containing 4 ul of DNA template, 5 pl of pre-amplification
mastermix, and 1 pl of the same specific primers and probes
designed for dPCR (at a final dilution of 0.05x). The amplification
reaction was initiated by incubation of samples at 95°C for 10
minutes followed by 12 cycles of 95°C for 15 seconds, 60°C for 4
minutes. The pre-amplified PCR products were then diluted 1:100-
1:500 and 7 pl of dilutions were used to perform dPCR.

As negative controls, wild-type genome and NTC, in place of
DNA template, were included in each pre-amplification reaction,
and assayed by dPCR. VAFs estimated by dPCR with or without
pre-amplification showed a strong linear correlation, with an r* =
0.96 (Supplementary Figure S1B), indicating that pre-amplification
does not impair the evaluation of VAFs.

Results
Presentation of the case

A 37-year-old premenopausal woman, with no family history of
breast or ovarian cancer, and confirmed germline BRCAI and
BRCA2 wild-type, was referred to our institution following a left
breast tumorectomy performed at another hospital.

Physical examination revealed a well-healed surgical scar on the
left breast and a palpable lymph node approximately 1 c¢m in
diameter in the left axilla. Mammography and ultrasound showed
both hyperplastic and suspicious nodes in the left axilla. The patient
underwent left upper-outer quadrantectomy and axillary lymph
node dissection 5 weeks after the initial surgery.

Histological examination of the definitive surgical specimen
showed an invasive breast carcinoma, grade III, measuring 18 mm
in greatest dimension (pT1c), with metastatic involvement of 15 out
of 30 axillary lymph nodes (pN3). Immunohistochemistry was
negative for estrogen receptor (ER), progesterone receptor (PgR),
and HER?2, consistent with a triple-negative phenotype; Ki-67
proliferation index was 90%.

Adjuvant chemotherapy was initiated with four cycles of
doxorubicin and paclitaxel (AT regimen) every 21 days, followed
by four cycles of cyclophosphamide, methotrexate, and fluorouracil
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(CMF) administered on days 1 and 8 every 28 days. The patient
completed the treatment without major complications.

Approximately one year after the initial surgery, the patient
developed local recurrence at the site of the primary tumor. Imaging
studies confirmed the absence of distant metastases. She underwent
radical mastectomy. Histological evaluation confirmed a triple-
negative LRR, spanning at least 1.7 cm in greatest dimension
(rpT1c). Following surgery, the patient received six cycles of
carboplatin and gemcitabine administered on days 1 and 8, every
21 days, followed by adjuvant radiotherapy to the chest wall and
supraclavicular lymph nodes, for a total dose of 50.4 Gy delivered in
28 fractions of 1.8 Gy per day.

The patient has remained under routine surveillance. At her
most recent follow-up in June 2024, clinical examination and
imaging studies showed no evidence of local, regional, or distant
disease recurrence (Figure 1).

Tumor targeted NGS identified multiple somatic variants,
specifically TP53 (c.586C>T, p.R196*, VAF 29%), SMARCBI
(c.215C>A, p.T72K, VAF 38%), and PTEN (c.203A>G, p.Y68C,
VAF 8%). Among these, only the TP53 p.R196* mutation was
detected in both the primary tumor and the LRR, and was therefore
selected for subsequent plasma analysis. SMARCBI and PTEN
mutations were not detected in the recurrent lesion and were not
assessed in plasma samples. TP53 p.R196* mutation was confirmed

10.3389/fonc.2025.1621322

by dPCR in both lesions, including the recurrent tumor, where it
was present at a VAF of 58%. In addition, the same mutation was
found in preoperative plasma samples of both primary and LRR
surgeries with values of VAF of 0.19% and 0.12%, respectively.
Notably, it was undetectable in all five samples prospectively
collected during follow-up, when the patient remained disease-free.

ctDNA monitoring in the trial cohort

Based on these results, we report a post hoc analysis of patients
enrolled in the prospective phase III fenretinide prevention trial. A
total of 40 patients were considered eligible based on the prefixed
criteria reported above (Figure 2).

Even though DNA was extracted from specimens more than 20
years old, one or more somatic mutations suitable for ctDNA
tracking were identified in tumor samples from 27 patients of the
40 analyzed (67.5%), enabling the development of tumor-informed
dPCR assays for plasma analysis. Study patients, tumor and
treatment characteristics are summarized in Table 1.

A total of 34 tumor mutations were found by NGS and validated
by dPCR: 23 patients had 1 mutation (85%), 3 had 2 (11%), and 1
patient had 3 (4%). The most frequently mutated genes were
PIK3CA (17/34, 50%), TP53 (8/34, 23.5%), and PTEN (2/34,
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Specimen collection, molecular testing, and clinical timeline for the index case.
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FIGURE 2

CONSORT diagram showing patients analyzed and reasons for their exclusion. Contralateral recurrences was excluded as it may represent a distinct

primary tumor.

5.9%). VAFs estimated by NGS and dPCR showed a strong linear
correlation, with an 1> = 0.90 (Supplementary Figure S1C). Details
on validated mutations are provided in Supplementary Table S1.

A total of 112 plasma samples were analyzed for the identified
tumor mutations by dPCR. Among the recurrent patients, 6 with
LRR and 4 with distant metastases, ctDNA was detectable at the
time of clinical diagnosis in all the cases except one with VAF values
ranging from 0.113 to 4.69 (Figures 3, 4, Supplementary Figure S2).
Detection of ctDNA prior to clinical diagnosis was observed in both
LRR and distant relapses with a median lead time of 24.5 months
(IQR: 17.9 - 27.9) for LRR and 12.25 months (IQR: 7.4 - 22.8) for
metastatic disease compared with clinical relapse. In patients #2, #7,
and #8, LRR was eventually followed by metastasis (Supplementary
Table S2). As the protocol stopped plasma sampling after the initial
event, ctDNA monitoring until progression was precluded.

In 17 patients without evidence of clinical recurrence, ctDNA
was undetectable in all 67 samples except in patient #19 that showed
ctDNA in three consecutive samples which turned negative in the
last sampling (Supplementary Figure S3). No documented clinical
breast relapse was available. The patient died 52 days after last blood
draw, at the age of 79 years.

Even considering the limited number of cases, ctDNA showed
an overall accuracy of 92% (95% CI: 75-99), with a sensitivity of
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90% (95% CI: 55-99), and specificity of 94% (95% CI: 71-99)
(Supplementary Table S3).

Discussion

Tumor-specific mutations in post-operative plasma samples of
patients with EBC may serve as a monitoring tool for detecting LRR.
In the index case, a TP53 mutation shared by primary and LRR was
detected in plasma at diagnosis and at the time of relapse but
remained undetectable during follow-up consistent with the patient
remaining disease-free. In a prevention trial cohort, ctDNA not
only identified LRR, but also anticipated its clinical diagnosis.

These findings expand the evidence supporting the potential
applications of ctDNA for breast cancer management,
complementing its established role in predicting distant
recurrence (14). While prior research focused on ctDNA for
monitoring advanced disease or therapy response, recent
advances suggest we should reconsider the full potential of
ctDNA. Beyond simply detecting recurrence, ctDNA can assess
surgical efficacy, identify residual disease, and monitor evolution
during remission (25, 26), as a dynamic biomarker guiding
personalized care across the treatment continuum. Our earlier

frontiersin.org


https://doi.org/10.3389/fonc.2025.1621322
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Appierto et al.

TABLE 1 Study patient population.

Characteristics n (%)

Age

< 50 years 9 (33)

> 50 years 18 (67)
Sex

Female 27 (100)

Male 0
Primary tumor

<2cm 15 (56)

>2cm 12 (44)
Nodal status

NO 27

N>1 0
Histology

Invasive ductal carcinoma 12 (44)

Other 15 (56)
Receptor status

ER-positive 19 (70)

PgR-positive 13 (48)
HER2

0 6 (22)

low 15 (56)

3+/amplified 3(11)

missing 3(11)
Luminal-like 19 (70)
Triple-negative 5(19)
HER2-overexpressing 3(11)
Treatment

BCT 19 (70)

BCS 4 (15)

Radical mastectomy 4 (15)
Adjuvant therapy

Fenretinide 23 (85)

Nihil 4 (15)
Events

Loco-regional recurrence 6 (22)

Distant metastases 4 (15)

None 17(63)
Follow-up

(Continued)

Frontiers in Oncology
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TABLE 1 Continued

Characteristics n (%)

Follow-up

Median (IQR), months ‘ 173 (98-193)

Plasma samples per patient

Median number (range) ‘ 4(3-7)

ER, Estrogen receptor; PgR, Progesterone receptor; BCT, Breast-Conserving Therapy; BCS,
Breast-Conserving Surgery; HER2, Human Epidermal Growth Factor Receptor 2; Luminal-like,
ER+ and/or PgR+ without known HER2 overexpression; triple-negative, ER-/PgR-/HER2
negative; IQR, Interquartile range.

study detecting primary tumor mutations in blood from patients
with ductal carcinoma in situ (27) further reinforced the potential of
ctDNA analysis across all breast cancer stages, from pre-invasive to
recurrent disease.

Early diagnosis of LRR in breast cancer remains a cornerstone
of post-treatment management, given its critical implications for
prognosis and therapeutic strategy. LRR not only signals potential
treatment failure but may also precede distant metastases, thereby
influencing both disease-free and overall survival (4, 28).
Traditional mammographic surveillance after breast-conserving
therapy aims to detect ipsilateral recurrences and contralateral
breast cancer, which occur with an annual risk of 0.2-2% and
0.4%, respectively (1).

While annual diagnostic mammography is commonly
performed during the first three to five years to identify residual
or recurrent disease and to establish a reliable post-treatment
baseline (29), high-quality evidence regarding its optimal
frequency, methodology, and survival benefit remains limited
(30, 31). Nonetheless, retrospective studies suggest a survival
advantage for mammographically detected recurrences (32),
despite the lower sensitivity and specificity observed in women
with a personal history of breast cancer (33).

Hence, ctDNA holds the potential to assist the diagnosis of LRR
still at a potentially curable status by integrating both imaging and
molecular tools to optimize early detection and management of
LRR in breast cancer survivors.

In addition, our observation that ctDNA-negative patients
remained recurrence-free supports the personalization of imaging
assessment based on individual risk. We have to recognize that one
patient (out of 17) had detectable ctDNA without developing overt
recurrence during the follow-up period. Although patient #19 had a
false positive result, given the absence of recurrence and subsequent
ctDNA clearance, this was the only such case in the study population,
with ctDNA demonstrating a high positive predictive value of 90%
(95% CI: 57-98%) and a similarly high negative predictive value of
94% (95% CI: 73-99%). The patient died 52 days after the last blood
draw. Unfortunately, attempts to gather further clinical information
on the cause of death through possible means were unsuccessful.
Therefore, we cannot exclude the possibilities of an undiagnosed
malignancy, a subclinical disease, or other unrelated causes. These
findings underscore the importance of maintaining high specificity in
the development of new ctDNA assays, both to prevent unnecessary
psychological distress due to false positive results and to address
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FIGURE 3

Swimmer plot representing longitudinal ctDNA tracking for study patients. For each patient, times of surgical resection and relapse are indicated by a

green line and a blue asterisk, respectively.

technical challenges such as background signals potentially related to
ineffective erythropoiesis (34).

It is worth noting that, in current clinical practice, international
guidelines recommend a rational use of NGS in advanced breast
cancer, prioritizing targeted testing for known actionable mutations
(e.g., PIK3CA, BRCA1/2, ESRI, etc.). Conversely, the assessment of
minimal residual disease in the post-operative setting for localized
disease is not yet standard practice and should be limited to patients
enrolled in clinical research protocols.

Studies have shown that ctDNA detection after surgery can
predict early relapse and a worse prognosis in breast cancer, with a
median lead time of 7.9 to 18.9 months before clinical recurrence
(reviewed in 35). Most of these studies assess ctDNA using a tumor-
informed approach, often through digital PCR, as in our case, or
with assays such as Signatera, which offer high sensitivity with a
limit of detection 0.01%. More recently, novel methods for ctDNA
analysis have emerged. Invitae PCM tracks 18-50 tumor-specific
variants and detected ctDNA in 10 of 13 patients who experienced
relapse, with a median lead time of 13.7 months and no false
positives among patients who did not relapse. NeXT Personal
combines whole-genome sequencing-based tumor-informed
panels with a fixed panel of clinically relevant variants, allowing
the tracking of up to 1,800 tumor-specific mutations with a level of
detection as low as 1 part per million, and a reported lead time for
relapse of 11.7 months (36).

Frontiers in Oncology

Our study contributes to this expanding field by specifically
focusing the potential of ctDNA to predict loco-regional recurrence,
an aspect that has received limited attention to date. The strength of
our work lies in the use of a well-defined patient population enrolled
in a prospective clinical trial designed to evaluate loco-regional
relapse, offering a robust framework for analyzing ctDNA dynamics
in this setting. Moreover, our findings strengthen the case for using
ctDNA to detect disease early and to initiate treatment sooner,
particularly when the recurrence is still localized and therefore
amenable to treatment with curative intent. While the findings of
this study advance the understanding of the potential of ctDNA in
LRR detection, several limitations should be acknowledged. The
study sample size was relatively small, the use of historical tissue
and plasma samples may affect the applicability of our results to a
contemporary clinical setting, and the variable timing for post-
surgical blood drawings could affect the evaluation of relapse/
progression anticipation. In addition, the extraction of DNA from
frozen recurrent tissue specimens in five cases represents a technical
limitation. However, as direct plasma sequencing technologies
continue to evolve and increase in level of detection, tumor-
informed approaches may eventually be complemented, or even
replaced, by direct, tumor agnostic ctDNA profiling, particularly in
settings where tissue is unavailable or archival material is
suboptimal. Future investigations should include prospective
clinical trials to determine whether ctDNA-guided interventions
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FIGURE 4

Post-operative tumor mutation tracking in plasma samples of patients surgically treated for primary T1-T2 NO. x-axis, time of follow-up (months
from primary surgery); y-axis, mutation VAF (%). Blue and red arrows indicate primary tumor resection and clinical detection of LRR, respectively.

improve patient management. Key questions remain about optimal
sampling frequency and the clinical utility of quantitative ctDNA
monitoring over time.

Conclusions

Our findings suggest that ctDNA represents a promising tool
for the detection of LRR following curative treatment of EBC. The
strengths of this study include the use of highly sensitive, tumor-
informed digital PCR technology; the availability of samples from a

Frontiers in Oncology

cohort enrolled in a study specifically designed to monitor second
primary breast cancers; and the presence of multiple prospectively
collected longitudinal plasma samples. Furthermore, ctDNA
analysis was conducted retrospectively in patients who were
regularly monitored with breast imaging as part of the study
protocol, thereby minimizing the confounding bias that has
historically affected ctDNA studies in metastatic settings, where
imaging was often irregular. Nonetheless, several limitations must
be acknowledged, particularly the detection of VAFs frequently
below 0.2%, highlighting the need to enhance the sensitivity and
specificity of direct profiling assays to render ctDNA assessment
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sufficiently practical for wide routine clinical application. Further
confirmation by independent studies will be essential to corroborate
these findings and support the integration of ctDNA analysis into
the multidisciplinary management of patients treated for early-stage
breast cancer.
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