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Uterine fibroids (leiomyomas) are the most common benign uterine tumours,

affecting a significant portion of women, and often present with symptoms similar

to malignant tumours, such as leiomyosarcoma or endometrial carcinoma,

particularly in patients with cancer-related pelvic pain. Conventional imaging

modalities, including ultrasound, CT, and MRI, struggle to differentiate between

these benign and malignant conditions, often leading to misdiagnoses with

potentially severe consequences, such as unnecessary hysterectomies or

inadequate treatment for malignancy. Recent advances in artificial intelligence

(AI) have begun to address these challenges by enhancing diagnostic accuracy and

workflow efficiency. AI-assisted imaging, encompassing techniques like radiomics,

convolutional neural networks (CNNs), and multimodal fusion, has demonstrated

substantial improvements in distinguishing between uterine fibroids andmalignant

smooth-muscle tumours. Furthermore, AI has streamlined clinical workflows,

enabling faster, more accurate segmentation, and automating decision-making

processes, which significantly benefits patients presenting with acute cancer-

related pain. Throughout this article the term radiation imaging is used as an

umbrella for ionising-based modalities (CT, PET/CT) and non-ionising, radiation-

planned modalities such as MRI and diagnostic ultrasound that feed the same

radiotherapy or interventional planning pipelines; with that definition clarified, the

review synthesizes current developments in AI-assisted radiation imaging for

differentiating uterine fibroids from malignant lesions, exploring diagnostic gaps,
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emerging AI frameworks, and their integration into clinical workflows. By

addressing the technical, regulatory, and operational aspects of AI deployment in

pelvic-pain management, this review aims to provide a comprehensive roadmap

for incorporating AI into personalized, efficient, and equitable oncologic care

for women.
KEYWORDS
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1 Introduction

Uterine fibroids (leiomyomas) are the most prevalent benign

uterine neoplasms, affecting up to 80% of women by 50 years of age

and constituting a leading cause of dysmenorrhoea, menorrhagia,

cancer-like pelvic pain, and—in a subset of patients—infertility (1). In

the considerably smaller—yet clinically urgent—subset of patients

whose pain originates from malignant myometrial disease (most

frequently leiomyosarcoma or deeply infiltrative endometrial

carcinoma), symptomatology and first-line imaging findings often

overlap with those of fibroids; delayed or inaccurate discrimination

can precipitate sub-optimal surgical planning, ineffective radiation

dosing, and a two- to three-fold increase in disease-specific mortality,

with recent series still documenting unexpected uterine malignancy

in 0.3% of hysterectomies—roughly three leiomyosarcomas per 1–

000 operations—performed for presumed benign disease (2).

Biplanar T2-weighted MRI, contrast-enhanced CT, and—in select

centres—hybrid PET/MRI remain the principal imaging modalities

for pelvic tumours. Benign leiomyomas are oestrogen-responsive

bundles of smooth-muscle cells with low mitotic indices and

abundant extracellular collagen, whereas leiomyosarcomas arise de-

novo through complex karyotypic chaos; they display high cellularity,

tumour-cell necrosis, and markedly elevated Ki-67, features that

ultimately manifest as hyperintense T2 signal, diffusion restriction,

and atypical vascularity. Clinical scenarios in which AI adds the

greatest incremental value can be divided into two archetypes:

(i) emergency-room triage for women presenting with acute

cancer-like pelvic pain, where lightweight 2-D CNNs on

point-of-care ultrasound must return a prediction within seconds

to steer analgesia and admission; and (ii) elective pre-operative

planning in tertiary centres, where volumetric transformers ingest

multiparametric MRI and laboratory data to guide either

fertility-sparing laparoscopy or oncologic hysterectomy. Yet

degenerative phenomena such as haemorrhagic infarction, cystic or

myxoid change, and hyalinisation in fibroids can reproduce the

heterogeneous T2 signal, ill-defined margins, and apparent necrosis

classically ascribed to sarcoma, limiting MRI sensitivities to < 70%

even among subspecialty readers and fuelling potentially

unwarranted hysterectomies or, conversely, undertreatment of

aggressive malignancy (3).
02
Artificial-intelligence (AI) pipelines—spanning handcrafted

radiomics, convolutional neural networks (CNNs), and vision

transformers—have begun to recalibrate this diagnostic

equilibrium. A multicentre study that ensembled 15 MRI

sequences achieved an AUC of 0.93–0.97 for leiomyosarcoma–

leiomyoma discrimination, surpassing senior-radiologist

performance and cutting false-positive rates by nearly half (4).

Parallel efforts aimed at workflow automation are equally

promising: a 3-D nnU-Net model reached a Dice coefficient of

0.92 in segmenting fibroids across multi-orientation MRI, reducing

manual contouring time to < 1 min and streamlining radiation-

treatment planning (5). Beyond binary classification, diffusion-

weighted-imaging radiomics now predicts non-perfused-volume

ratios after high-intensity-focused-ultrasound (HIFU) ablation

with external-test AUCs > 0.80, providing a quantitative surrogate

for pain relief that informs re-irradiation decisions (6). Automated

volumetric regression networks further accelerate dosimetric

calculations for image-guided brachytherapy, while systematic

reviews across gynaecologic oncology consistently show AI-

enabled feature extraction and multimodal fusion outperforming

traditional heuristics in lesion characterisation and risk

stratification (7).

As shown in Figure 1, against this backdrop, the present review

synthesises current evidence on AI-assisted radiation-imaging

pathways for distinguishing uterine fibroids from malignant

smooth-muscle tumours in women presenting with cancer-related

pelvic pain. We first delineate persistent diagnostic blind spots in

conventional imaging, then survey state-of-the-art radiomics,

deep-learning, and multimodal-fusion strategies for lesion

discrimination before tracing their translation into end-to-end

clinical workflows and prognostic modelling. By situating

technical advances within the realities of dose stewardship,

regulatory compliance, and multidisciplinary care, we aim to

provide a roadmap for integrating AI into genuinely personalised

pelvic-pain management. The diagnostic dilemma is compounded

by the clinical consequences of occult sarcoma. Meta-analytic

evidence indicates that even experienced gynaecologic surgeons

are occasionally confronted with an unexpected leiomyosarcoma

discovered only on final pathology, an event carrying a markedly

worse prognosis because morcellation or delayed radical surgery
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can disseminate disease (8). Accordingly, any imaging or workflow

innovation must explicitly address the risk of under-recognising

these rare but lethal tumours.
2 Diagnostic gaps in conventional
radiation imaging

Despite decades of refinements in pelvic ultrasound, CT and

MRI protocols, the visual hallmarks that radiologists rely on to

separate benign leiomyomas from malignant smooth-muscle

tumours remain treacherously equivocal. Ultrasound and

contrast-enhanced CT—long favoured as rapid triage tools for

cancer-related pelvic pain—confer neither the soft-tissue contrast

nor the perfusion granularity needed to disentangle haemorrhagic

or myxoid degeneration in fibroids from coagulative necrosis in

leiomyosarcoma; a 2016 multi-institutional study reported overall

diagnostic accuracies of only 56% for CT and 49% for ultrasound,

with most misclassifications skewed toward under-diagnosing

sarcoma (3, 9).

Multiparametric MRI improves tissue characterisation but does

not abolish ambiguity. Classical “red-flag” signs—intermediate-to-

high T2 signal, irregular margins or intratumoural vascular lakes—

occur in up to one-third of benign fibroids undergoing cystic or

hyaline change, while a sizeable fraction of leiomyosarcomas

present with deceptively homogeneous low-signal intensity that
Frontiers in Oncology 03
mimics cellular leiomyoma. Diffusion-weighted imaging partially

compensates: sarcomas typically exhibit lower apparent-diffusion-

coefficient (ADC) values than fibroids, yet inter-scanner variability

and physiological T2 shine-through impose wide threshold ranges

(≈ 0.9–1.4 × 10-³ mm²/s), curbing transferability of single-centre

cut-offs (10, 11).

Even when morphology is compelling, reproducibility falters. A

recent prospective reader-study comparing expert radiologists

demonstrated k coefficients of 0.42–0.58 for key sarcoma features

on conventional body-axial 3 T MRI; organ-axial high-resolution

T2-weighted sequences improved agreement to k ≈ 0.88 but remain

uncommon in routine protocols, underscoring persistent inter-

observer drift that complicates multi-institutional trials and

consensus-contouring initiatives (10).

Clinical audit data amplify the consequences of these blind

spots. In a five-year retrospective series of 3–012 hysterectomies

performed for presumed benign disease, 0.36% harboured

unexpected uterine malignancy, and over 80% of those cancers

had pre-operative MRI reported as “consistent with fibroid” (2).

Repeated contrast-enhanced CT for treatment-response assessment

can push cumulative effective doses above 50 mSv in many pre-

menopausal women, while gadolinium-based MRI follow-up is

limited by cost and, in renally compromised patients, by concerns

over gadolinium deposition (8).

Deficiencies in anatomic resolution, functional specificity, reader

consistency and longitudinal feasibility delineate a clear unmet need: a
FIGURE 1

Multimodal AI-enhanced imaging pathway for differentiating benign uterine fibroids from malignant uterine lesions.
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decision-support paradigm capable of detecting micro-scale textural

or perfusion cues invisible to human observers, standardising

interpretation across centres and operating within dose-neutral

imaging workflows. Imaging manifestations vary with sex-hormone

milieu and ancestry. African-descendant women tend to harbour

more cellular leiomyomas that mimic sarcoma on T2-weighted MRI,

while post-menopausal oestrogen withdrawal reduces fibroid

vascularity and conspicuity. Diverse, balanced training cohorts and

bias-monitoring dashboards are therefore critical to avert

algorithmic drift.
3 Artificial intelligence frameworks for
lesion discrimination

Rapid gains in radiomics and deep learning have reframed uterine−

mass diagnosis from a qualitative art to a quantitative science (Table 1).

Contemporary pipelines begin with meticulous region−of−interest

definition—still predominantly manual in single−institution studies,

but increasingly supported by convolutional−neural−network (CNN)

contouring that cuts annotation time by almost two−thirds without

eroding Dice scores. Texture−based radiomics then extracts hundreds

of first−order, GLCM, and wavelet features from multiparametric

MRI or contrast−enhanced CT; least−absolute−shrinkage selection

and random−forest modelling have delivered area−under−the−curve

(AUC) values of 0.83−0.89 for separating leiomyosarcoma fromatypical

fibroid variants on perfusion−weightedMRI (15). Comparable accuracy

has been achieved on ultrasound after grey−scale harmonisation, where

radiomics−support−vector machines correctly re−classified 78% of

“indeterminate” lesions that had fooled senior sonographers (16).

Transfer−learning frameworks now outperform hand−crafted

radiomics. ResNet−50 features pulled from T2−weighted and

diffusion−weighted MRI, fused with patient age and LDH, yielded an

external−test AUC of 0.96 and accuracy of 0.87—ten percentage

points higher than classical radiomics on the same cohort (17).

Three−dimensional CNNs further lift performance by capturing

volumetric heterogeneity; when trained on 2–500 augmented

MRI volumes they reduced false−negative sarcoma calls to 6%.

Transformers are beginning to displace CNN backbones, particularly

for low−contrast ultrasound data where frequency−domain self−

attention (FreqYOLO) improved average−precision for fibroid
Frontiers in Oncology 04
detection by 12% over YOLOv5 while sustaining 45 fps inference

suitable for real−time scanning (18).

Multimodal fusion is critical in the pain−clinical pathway,

because patients frequently undergo rapid CT triage before

definitive MRI. Hybrid graphs that concatenate CT radiomics,

unenhanced T2/DWI features, and serum inflammatory markers

have pushed cross−validation AUCs above 0.90 and achieve

calibration curves well aligned with observed sarcoma prevalence

(19). Domain−adaptation strategies such as cycle−generative

adversarial networks harmonise scanner−specific intensity

profiles, permitting federated learning across centres without

breaching data−protection laws; in a five−hospital consortium

this lowered out−of−site performance loss from 14% to 4%.

External validity is also protected by systematic domain-shift

testing across scanner vendors, field strengths, and slice

thicknesses; performance degradations >5% trigger harmonisation

via CycleGAN intensity matching or physics-based simulation to

restore calibration.

Interpretability is no longer an afterthought. Gradient−weighted

class−activation mapping localises high−risk regions that correspond

to necrotic cores on histology, giving surgeons visual justification for

radical resection. SHAP analysis of ensemble models consistently

ranks low minimum apparent−diffusion−coefficient values, irregular

margins, and entropy−based texture metrics as the three dominant

malignancy drivers, mirroring radiological heuristics. Crucially,

diffusion−tensor−imaging eigenvalues have emerged as robust

inputs: fractional−anisotropy ≤ 0.19 differentiates sarcoma from

degenerative fibroid with 92% specificity (20).

Clinical deployment is advancing from proof−of−concept to

workflow−integrated decision support. A cloud−hosted CNN,

validated prospectively on 312 patients presenting with acute

cancer pain, flagged probable sarcoma within 30 s of MRI upload

and accelerated definitive oncologic referral by a median of 4 days,

without missing any leiomyosarcoma cases (21). Such acceleration is

germane to analgesia planning: correct early discrimination spares

benign fibroid patients from unnecessary radical hysterectomy yet

ensures timely initiation of sarcoma−tailored chemoradiation when

required. Despite these strides, data scarcity and verification bias

remain limiting. Ongoing multi−centric registries that pair imaging

with full histopathology will be indispensable for closing the

generalisation gap, while rigorous adversarial testing must
TABLE 1 Representative AI−assisted imaging studies relevant to uterine fibroid–sarcoma discrimination and workflow automation.

First author
(Year)

Imaging
modality

AI technique Primary task Sample size
Best

reported
performance

Roller 2024 (12)
Multiparametric

MRI
Radiomics + clinical

ensemble ML
Leiomyosarcoma vs

leiomyoma classification
136 (49 LMS) AUC = 0.989

Santoro
2024 (13)

Contrast-
enhanced CT

Radiomic feature selection +
random forest

LMS vs leiomyoma classification 54 AUC = 0.97 (test cohort)

Xi 2024 (14) Ultrasound Attention-gated EfficientNet-B0 Fibroid detection (binary) 1–990 images Accuracy = 0.99

Theis 2023 (5) T2-weighted MRI 3-D nnU-Net Uterus/fibroid segmentation
56 +

external
validation

Dice = 0.95 ± 0.05
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safeguard against domain shifts introduced by novel scanner

protocols. Most single-centre datasets contain far fewer sarcomas

than fibroids. Oversampling of minority classes, focal-loss functions

that down-weight easy fibroid examples, and cost-sensitive boosting

have been shown to halve false-negative sarcoma rates without

inflating false positives. Synthetic minority-over-sampling with

conditional GANs further augments rare histotypes. Rare sarcoma

sub-subtypes (e.g., myxoid or epithelioid variants) remain under-

represented. Class-reweighting at loss time and targeted data-

augmentation—elastic deformations and Rician-noise injection—

mitigate this imbalance and should be routinely reported.
4 Clinical translation and workflow
integration

The translation of AI algorithms from the laboratory to routine

clinical practice has hinged on their seamless embedding within

existing imaging and treatment-planning infrastructures. In

contemporary MRI workflows, lightweight inference plug-ins now

trigger automatically once a T2-weighted series is validated; within

thirty seconds they delineate the uterus, dominant fibroid and any

suspicious myometrial mass, and export these contours to the PACS

as DICOM-RT STRUCT objects (5, 22). A recent multicentre trial

confirmed that a 3-D nnU-Net pipeline sustained a meanDice of 0.92

after HIFU debulking while cutting manual volumetry time from

eight minutes to under one minute (5). Health-economic modelling

usingMarkov chains suggests that anMRI-embedded CNN costing ≈

US $35–000 annually would break even if it prevented four

unnecessary hysterectomies per 1–000 work-ups, generating 14

quality-adjusted life-years and a net saving of US $420 000.

Diagnostic clarity also has downstream surgical implications. A

recent network meta-analysis comparing laparoscopic and open

myomectomy found that minimally invasive surgery offers faster

recovery and lower transfusion rates without compromising fertility,

yet incurs higher consumable costs and demands advanced operator

skill (23). AI-based triage that reliably excludes sarcoma could

therefore justify a laparoscopic approach for more women, whereas

high-risk scores would steer patients toward oncologic laparotomy

and en-bloc specimen retrieval. Edge-deployment on GPU-equipped

scanners guarantees sub-second latency and avoids cloud egress of

protected health information but raises hardware-maintenance costs;

cloud inference offers elastic scaling and easier model updates at the

expense of network dependence and expanded cybersecurity liability.

Beyond segmentation, modern treatment-planning systems ingest

AI-generated structures directly, enabling end-to-end “one-click”

automation that shrinks the interval from image acquisition to a

clinically approved plan from several days to < 1 h (24). Review data

and early prospective evaluations show that such automation frees

clinicians for plan appraisal and adaptive-therapy decisions while

maintaining target and OAR acceptance rates comparable to expert

benchmarks (25).

Cloud-hosted decision-support engines further accelerate

multidisciplinary care. Secure APIs stream malignancy probabilities

and structured contour reports into EHR dashboards in real time,
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and pilot deployments have shortened the median imaging-to-

oncology-review interval by ≈ 4 days without extra false-negatives

(26). Structured-reporting frameworks that inject AI-derived metrics

via Common Data Elements eliminate manual transcription and

improve interoperability across institutions (27). Successful

implementation also hinges on up-skilling. A proposed curriculum

combines (i) web-based modules on probability calibration for

radiologists, (ii) hands-on sonographer workshops in AI-assisted

scanning, and (iii) multidisciplinary tumour-board simulations so

radiation oncologists can interrogate saliency maps with confidence.

Sustained clinical translation nevertheless demands rigorous

vendor selection, regulatory compliance and continuous QA. A six-

vendor comparison highlighted wide inter-system variability in both

geometric accuracy and cybersecurity safeguards, underscoring the

need for multidimensional procurement criteria (28). Independent

benchmarking across seven commercial autocontouring suites

likewise revealed persistent errors for small or highly concave

pelvic structures, reinforcing the importance of systematic contour

review and ongoing performance monitoring (29).
5 Future perspectives

Under the U.S. FDA framework, most imaging AI tools follow a

510(k) predicate-comparison route as Software as a Medical Device,

whereas under the draft EU AI Act they will occupy “high-risk” class

IIb or III and require a conformity-assessment body plus post-market

performance monitoring dashboards tethered to real-world evidence

registries. The next translational leap will be driven less by incremental

accuracy gains than by robustness across centres, modalities, and

clinical contexts. Two complementary strategies are emerging. First,

federated learning allows geographically dispersed institutions to co-

train models without ever exporting raw data; a secure aggregation

scheme (“SecureFed”) and an EU-wide imaging-cloud infrastructure

both preserved privacy while matching centralised performance

(30, 31). Privacy is preserved through secure aggregation—local

model weights are encrypted and summed so the server never sees

an individual contribution—and a differential-privacy budget (e < 6)

that adds calibrated noise, with homomorphic encryption available

where national law precludes any raw-weight transfer. Second, self-

supervised and synthetic-data curricula are beginning to decouple

model quality from exhaustive manual labelling. A self-supervised

transformer framework now rivals fully-supervised baselines in 4-D

cardiovascular segmentation, while motion-artefact simulators and

test-time synthetic augmentation improve generalisation under

distribution shifts (32–34).

Another frontier is the integration of large multimodal

foundation models. Comparative board-exam studies show that

GPT-4o and peers already achieve respectable diagnostic accuracy

yet still hallucinate ~40% of fine-grained findings, underscoring the

need for strong guard-rails (35). In parallel, the European Society of

Radiology has issued detailed guidance on data governance, human

oversight, and post-market monitoring that will shape forthcoming

certifications for imaging AI (36). Training large vision transformers

consumes up to 40 MWh of electricity; sustainability can be
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improved by transfer-learning on pretrained medical backbones,

mixed-precision training, and scheduled inference so on-premise

GPUs sleep during off-peak hours. Real-time, anatomy-aware

radiotherapy adaptation will also benefit. High-dice nnU-Net

contours can already be exported in seconds; coupling these with

online adaptive planning engines promises on-couch replanning for

uterine brachytherapy, minimising margin inflation and dose to

organs-at-risk. Point-of-care ultrasound is poised to democratise

AI-enhanced triage. Lightweight EfficientNet-derived detectors

executing on battery-powered probes now classify fibroids with

near-offline-MRI accuracy in < 50 ms per frame, shortening

referral pathways in low-resource settings (21).

RecirculatingDNAand transcriptomic profileswill demandmodels

that reason across distributed, multimodal data silos. A recent survey of

federated foundation models maps the technical and ethical agenda for

that effort (37). International harmonisation of imaging ontologies and

in-situ audit trails will be essential to translate these advances into

reproducible science and faster regulatory clearance. Looking forward,

radiogenomic convergence—linking peritumoural texture signatures

with circulating DNA and transcriptomic profiles—may finally

unravel why some fibroids undergo sarcomatous transformation while

others remain indolent. Multicentre registries that pair serial imaging

with molecular phenotyping will be indispensable for training

prognostic models that guide surveillance intervals and adjuvant

radiotherapy dosing. International harmonisation of imaging data

ontologies and in situ audit trails will not only accelerate device

clearances but also foster reproducible science. The coming decade

will likely see AI−assisted radiation imagingmove fromniche decision−

support to an orchestrating role that spans acquisition, interpretation,

treatment planning, and longitudinal outcome prediction—

transforming pelvic−pain pathways into a model of precision, equity,

and efficiency in women’s oncologic care. Radiogenomic convergence is

on the horizon: low-fractional-anisotropy MRI voxels co-localise with

TP53-mutated clones detectable in uterine-lavage cell-free DNA.Multi-

omics fusion transformers could therefore stratify surveillance intervals

and personalise adjuvant radiotherapy.
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