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Objective: To develop a deep learning radiomics(DLR)model integrating PET/CT

radiomics, deep learning features, and clinical parameters for early prediction of

bone oligometastases (≤5 lesions) in breast cancer.

Methods: We retrospectively analyzed 207 breast cancer patients with 312 bone

lesions, comprising 107 benign and 205 malignant lesions, including 89 lesions

with confirmed bone metastases. Radiomic features were extracted from

computed tomography (CT), positron emission tomography (PET), and fused

PET/CT images using PyRadiomics embedded in the uAI Research Portal.

Standardized feature extraction and feature selection were performed using

the Least Absolute Shrinkage and Selection Operator (LASSO) method. We

developed and validated three models: a radiomics-based model, a deep

learning model using BasicNet, and a deep learning radiomics (DLR) model

incorporating clinical and metabolic parameters. Model performance was

assessed using the area under the receiver operating characteristic curve

(AUC), accuracy, sensitivity, and specificity. Statistical comparisons were

conducted using the DeLong test.

Results: Visual assessment of fused PET/CT images identified 227 (72.8%)

abnormal lesions, demonstrating greater sensitivity than CT or PET alone. The

complex radiomics model achieved a sensitivity of 98.9% [96.1%–99.4%],

specificity of 98.2% [88.1%–99.6%], accuracy of 98.7% [89.6%–99.5%], and area

under the curve (AUC) of 0.989. The BasicNet model outperformed other

transfer learning models, achieving an AUC of 0.961. The DeLong test

confirmed that the AUC of the BasicNet model was significantly higher than

the traditional radiomics model. The DLR+Complex model with a random forest

classifier achieved the highest overall performance, with an AUC of 0.990,

sensitivity of 98.6%, specificity of 90.5%, and accuracy of 99.8%.
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Conclusions: The BasicNet model significantly outperformed traditional

radiomics approaches in predicting bone oligometastases in breast cancer

patients. The DLR+Complex model demonstrated the best predictive

performance across all metrics. Future strategies for precise diagnosis and

treatment should incorporate histologic subtype, advanced imaging, and

molecular biomarkers.
KEYWORDS
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1 Introduction

Breast cancer is among the most prevalent malignant tumors

globally and remains a major health concern for the female

population (1).However, approximately 50%–70% of locally

advanced breast cancer cases eventually metastasize to distant

organs such as the lungs, liver, and bones (2). Globally, bone

metastases represent a leading cause of death from breast cancer,

occurring in 30%–70% of patients with advanced breast cancer,

accounting for approximately 500,000 new global cases annually.

Bone metastases from breast cancer remain a serious condition,

contributing significantly to patients’ morbidity and mortality (3).

Patients with bone-only metastases generally exhibit longer overall

survival compared to those with widespread metastases involving

visceral organs such as the liver and lungs. And the later patients have

a median survival of only 24–36 months (4).One prior study also

found that patients with bone metastases had a better survival rate

than those with visceral metastases, with a 5-year survival rate of up

to 20% and a median survival time of more than 72 months in some

patients, indicating that a large proportion of breast cancer bone

metastases were in a state of oligometastases with inert biological

behavior (5). Current definitions of bone oligometastases vary across

studies, While some trials define it as ≤5 lesions (4, 6–8), others

include up to 3 lesions (9). This study we adopts the definition as five

or fewer metastatic lesions confined to the skeletal system

pathologically proven by bone scan or PET-CT, and the lesions

could be considered as having oligometastases.

Early recognition and accurate diagnosis of bone oligometastases

metastases with breast cancer are critical to their further

treatment.Advances in medical technology and increased awareness

have significantly improved the early detection and treatment of the

disease (10). Traditional imaging modalities such as bone

scintigraphy, computed tomography (CT), and magnetic resonance

imaging (MRI) are commonly used to assess metastatic bone disease

(11–13). However, these techniques have notable limitations. For

example, the sensitivity, specificity, positive predictive value, and

negative predictive value of 99mTc-MDP bone scintigraphy for

detecting skeletal metastases are only 67%, 78%, 50%, and 50%,

respectively (14). Moreover, early micrometastases (<5 mm),
02
particularly osteolytic lesions, are often missed by CT or

scintigraphy, with missed diagnosis rates as high as 40% (15).

Inter-observer variability also poses a challenge (Kappa values:

0.65–0.72), and single-modality imaging fails to fully capture tumor

metabolic heterogeneity and molecular characteristics (16). Although

PET/CT improves sensitivity (up to 94%) with 18F-FDG imaging, it

involves higher radiation exposure (14–20 mSv), and its quantitative

analysis of metabolic parameters (e.g., SUVmax slope) often depends

on empirical thresholds (13, 17, 18). These limitations have driven

research toward more advanced multimodal imaging strategies.

Recent progress in artificial intelligence and deep learning has

transformed medical image analysis, particularly in the detection of

metastatic breast cancer. Deep learning radiomics (DLR), which

integrates features from multiple imaging modalities, has notably

emerged as a promising approach. Ceranka et al. (19) previously

developed a fully automated deep learning method for detecting

and segmenting bone metastases on whole-body multiparametric

MRI. Their system outperformed existing methods, achieving 63%

sensitivity with a mean of 6.44 false positives per image and a Dice

coefficient of 0.53. In another study, Shang et al. (20) enhanced

sensitivity using a Multi-Perspective Extraction module in the

feature extraction phase, utilizing three different sizes of

convolutional kernels to enhance sensitivity to bone metastases.

Their BMSMM-Net allowed high-performance segmentation of

bone metastases, achieving F1 scores of 91.07% and 95.17% for

segmenting bone metastases and bone regions, respectively, along

with mIoU scores of 83.60% and 90.78%.
18F-FDG PET/CT imaging is commonly used in diagnosis and

follow-up of metastatic in breast cancer, but its quantitative analysis

is complicated by the number and location heterogeneity of

metastatic lesions. In some studies, by combining MRI, CT, and

PET imaging data, researchers were able to more fully assess the risk

of bone metastases in breast cancer. Moreua (21) proposed a

completely automatic deep learning based method to detect and

segment bones and bone lesions with 24 patients on 18F -FDG PET/

CT in the context of metastatic in breast cancer, and they

introduced an automatic PET bone index which could be

incorporated in the monitoring and decision process. Moreua

(22) also proposed networks to segment breast cancer metastatic
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lesions on longitudinal whole-body PET/CT with 60 patients and

extract imaging biomarkers from the segmentations and evaluate

their potential to determine treatment response. Their works

constituted promising tools for the automatic segmentation of

lesions in 60 patients with metastatic breast cancer allowing

treatment response assessment with several biomarkers.

DLR offers a new paradigm for the accurate diagnosis of bone

oligometastases. By extracting high-throughput features from PET/CT

—including textural features (e.g., Gray Level Co-occurrence Matrix

(GLCM) entropy, GLSZM regional variance) and morphological

characteristics (e.g., sphericity)—DLR enables quantification of

tumor heterogeneity and risk prediction. However, few studies have

applied DLR specifically to bone oligometastases in breast cancer.

Such models enhance multimodal feature integration and reduce

overfitting. This study aims to develop a DLR model integrating

PET/CT radiomics, deep learning features, and clinical parameters for

early prediction of bone oligometastases (≤5 lesions) in breast cancer.
2 Materials and methods

2.1 Patient population

This retrospective study was approved by the institutional

review board of our hospital (Approval No. Y (2025)-022), who

further waived the requirement for informed consent. A total of

10,893 female patients who underwent PET/CT examinations at

our centre between January 2012 and January 2025 were reviewed.

Clinical data were obtained from our hospital’s electronic medical

record system, including pathology reports, laboratory tests, and

treatment records. Imaging data included original PET/CT DICOM

images and structured departmental reports.

Inclusion criteria were:
Fron
1. Pathological biopsy-confirmed primary breast cancer.

2. Age between 18 and 75 years.

3. Underwent baseline PET/CT performed before treatment.

4. Confirmed as having bone lesions, defined as ≤5 bone

lesions, confirmed via pathology (≥1 lesion) or follow-up

imaging (CT/MRI) for at least 6 months.

5. Complete imaging and clinical data available.
Exclusion criteria included:
1. History of other malignancies.

2. Poor image quality due tomotion artifacts or equipment failure.

3. Prior radiotherapy or surgery for bone metastases.

4. More than five bone lesions.

5. Absence of pathological confirmation.
Ultimately, 207 patients with 312 breast tumor-associated bone

lesions were included. Of these, 107 lesions were benign and 205
tiers in Oncology 03
were malignant. The dataset was split into a training and testing

cohort in a 7:3 ratio. The training cohort consisted of 218 lesions (78

benign, 140 malignant), while the internal testing cohort included

94 lesions (29 benign, 65 malignant). The enrollment process is

outlined in Figure 1.
2.2 Image acquisition

Images were acquired using the GE Discovery VCT and GE

Discovery 710 PET/CT scanners. 18F-FDG was synthesized on a GE

Minitrace cyclotron, with a radiochemical purity >98%. Patients

fasted for more than 6 hours before the scan, with blood glucose

controlled below 6.1 mmol/L. 18F-FDG was intravenously

administered at a dose of 5.5 MBq/kg, and imaging was

performed 40–60 minutes post-injection.

The imaging protocol included a non-contrast CT scan,

followed by a PET scan, covering from the mid-femur to the

skull vertex, and including the lower limbs when necessary.

CT parameters were: 120 kV, 110 mA, pitch 1.0; rotation time

0.5 s; and slice thickness, 3.27 mm. PET images were collected

in the same range, with a body collection time of 2–3 min/bed.

In total, 6–8 beds were collected by 3D PET scanning, with each

bed taking 1.5min. The computer system automatically performed

image reconstruction using Ordered Subsets Expectation

Maximization for coronal, sagittal, and transverse views and

3D projections.
2.3 Region of interest segmentation

Bone oligolesions of breast cancer were selected for region

of interest (ROI) segmentation on the largest layer of the tumor.

ROI segmentation in PET/CT images is a critical step in deep

learning and image-based data analysis. To ensure the consistency

and reliability of the data, we applied standardized image

segmentation. All PET/CT DICOM images were imported into

3D Slicer (version 5.2) (23) and uploaded to the uAI Research Portal

(version 20241130) in both DICOM and nii.gz formats for deep

learning and radiomics analysis. Lesions were identified on CT by

the presence of lytic or sclerotic changes, with or without associated

soft tissue mass, abnormal postcontrast enhancement. In PET, the

maximum standard ingested value (SUVmax) was calculated using

both visual and semi-quantitative methods. Abnormal lesions were

defined as those with an increased FDG uptake, with an SUVmax

higher than physiologic hepatic background activity.

Three experienced readers (two radiologists and one nuclear

medicine physician with 10–12 years of experience each)

independently delineated each ROI along the tumor margin, from

the first to the last layer of the whole tumor, using 3D Slicer, under

the supervision of a senior radiologist (30 years’ experience). All

readers were blinded to histopathological results. We traced
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abnormal areas in these images and attempted to delineate the burr

at the edge of each tumor.

The ROI segmentation followed strict criterias:
Fron
1. Include the entire lesion as completely as possible.

2. Minimize inclusion of surrounding non-lesion tissue.

3. For lesions with unclear boundaries, integrate PET and CT

data for delineation.

4. Necrotic regions(Areas of necrosis in bone metastases are

areas within the bone metastases that have formed due to

tumor cell death and destruction of tissue structure due to a

variety of reasons)or calcified regions(Calcified areas in bone

metastases are areas of higher density within or around bone

metastases that are formed as a result of abnormal local

deposition of calcium salts due to the metabolism and

proliferation of tumor cells as well as the body’s repair

processes)were included for accurate radiomic feature

extraction.Necrotic/calcified regions were included if

occupying >10% of lesion volume (verified by 3D Slicer’s

volumetric analysis) to ensure radiomic feature stability.
Each patient’s ROI segmentation took approximately 10–15

minutes, with a review time of 5–8 minutes. Example segmentations

are shown in Figure 2.
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2.4 Model Selection and Transfer Learning

We selected a 3D deep supervised residual BasicNet model (24)

for transfer learning, due to its efficiency and proven effectiveness in

medical image analysis. BasicNet, a lightweight convolutional

neural network architecture with moderate number of

parameters, high computational efficiency, and ease of migration,

is particularly suitable for lesion detection and classification tasks in

medical imaging. Compared to ResNet-101 (25) (23.5M params)

and 3D U-Net (19.7M) (26), BasicNet’s lightweight design (4.2M

params) achieved faster convergence (98% accuracy by epoch 50 vs.

65 in ResNet) with lower computational cost. This model was pre-

trained on ImageNet for robust feature extraction and fine-tuned on

PET/CT bone lesion data.

Separate transfer learning processes were implemented for PET

and CT to leverage modality-specific information. The network

comprised an encoder–decoder architecture adopted as the

mainstream network, residual connections, and deep supervision

layers. The parameter configuration during the training process had

a decisive impact on the model performance. Optimal training

parameter combinations were determined. Through many

preliminary experiments and a literature research. Considering the

common category imbalance problem in medical data, similar to the

3D U-Net (27), this study used the loss function to choose focal loss
FIGURE 1

Flowchart of patient recruitment.
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function (Focal Loss) instead of the traditional cross-entropy loss (28).

Target weights were set to reflect the different tolerances for false

positives and false negatives in clinical practice, with weights set to 0.3

for benign lesions and 0.7 for malignant lesions. This optimal

combination was determined by iteratively adjusting the weight

values through receiver operating characteristic (ROC) curve analysis

and clinical expert assessment. Adaptive Moment Estimation was

selected as the optimizer. Compared with the traditional stochastic

gradient descent method, Adam was able to adaptively adjust the

learning rate of each parameter, making the training process more

stable and achieving more rapid convergence. The learning rate was

initially set to 0.0001, but was gradually reduced during the training

phase to find the global minimum of the loss function. The number of

training iterations was set to 1001, and the batch size was set to 32

samples per batch, defined as a balance between model performance

and computational resources. To fully utilize the parallel computing

capability of themulti-core processor, the number of IO threads was set

to 8, which significantly accelerated the data loading and preprocessing

process and reduced the IO bottleneck in training.

For the training process, we adopted a validation set performance

monitoring strategy, in which the model performance was evaluated

on an independent validation set every 10 epochs. The accuracy,

sensitivity, specificity, AUC value, and many other indicators were

assessed. An early stopping mechanism was applied to prevent

overfitting. The training process was automatically terminated

when the validation set performance did not improve for five

consecutive evaluations. At the end of training, the model

parameters saved at the epoch point with the best performance on

the validation set were collected. This strategy avoided overfitting

which may otherwise occur in the late stage of training, and further

ensured the generalization capabilities of the model.

The Max Pooling layer (29) was used to extract the most salient

features in the image, retaining structural information while
Frontiers in Oncology 05
reducing data dimensionality and computational complexity.

Specifically, the output of the penultimate maximum pooling

layer was extracted, to retain sufficient semantic information,

while ensuring a high spatial resolution.

We further adopted a pre-fusion (30) approach to obtain

joint PET/CT features by fusing deep learning features from both

CT and PET. This pre-fusion strategy achieved information

integration at the feature level, preserving the semantic relevance

of the original features, and capturing inter-modal interactions

better than post-fusion (decision-level fusion). For concrete

implementation, we first normalized the feature vectors of the

two modalities, and then merged them into one augmented

feature vector by concatenation operation.
2.5 Extraction of radiomics features

Radiomics feature extraction, in which PET/CT images are

quantitatively analyzed to extract feature information difficult to

recognize with the naked eye, is one of the core aspects of this

study. In the present study, the PyRadiomics (31) embedded in the

uAI Research Portal was applied for standardized feature extraction.

Prior to feature extraction, images were first preprocessed, including

voxel resampling to 1×1×1 mm³ to eliminate any specific differences

in scanning parameters between different devices, while a

standardized grayscale discretization algorithm was applied to

quantify the grayscale values to a fixed number of bins. This was

then used to segment and extract radiomic features from the semi-

automated segmentation of attenuation-corrected PET images by

selecting an absolute SUVmax threshold of 2.2. For PET images, the

bin size was 0.7936508 and the number of gray levels in intensity

discretization was 64; further, an absolute intensity rescaling with a

minimum bound of zero and maximum of 50 was selected. For
FIGURE 2

The typical imagings of two patients:The first row of images showed a 67-year-old woman, 6 months after right breast cancer surgery, CT showed
the first lumbar had low density foci, and accompanied with multiple punctate high-density focals, PET images of this lesion local metabolism
slightly increased, and finally diagnosed as benign hemangioma after 6 months of clinical follow-up. The second row of images showed a 72-year-
old woman, 4 years after left breast cancer surgery, CT showed right sciatic and right iliac were all destructed, PET images of these lesions'
metabolism were obviously increased, and finally diagnosed as bone metastasis with puncture pathology.
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intensity discretization of CT images, the bin size was 32 and the

number of gray levels was 400. Kernel 3 was applied, and an intensity

rescaling of minimum bound of −1000 and maximum bound of 3000

was applied (32). A circular 3D ROI in the region with the highest

FDG avid bone lesion was chosen for analysis. This preprocessing

step ensured the stability and comparability of the extracted features.

Radiomics was predominantly conducted using the following

stems: First-order feature, second order texture, conventional PET/

CT parameters (SUV and TLG), shape feature, GLCM, Gray Level

Run Length Matrix, GLRLM), Gray Level Size Zone Matrix

(GLSZM), Gray Level Dependence Matrix (Gray Level Dependence

Matrix, GLDM) and Neighboring Gray Tone Difference Matrix.
2.6 Feature selection and model
construction

Feature selection and model construction sessions are key to

ensure the performance of the final classifier. In the present study,

we adopted a multi-step feature selection strategy combined with

several machine learning algorithms to achieve the accurate

qualitative diagnosis of bone oligo lesions. First, Z-score

normalization was conducted on all extracted deep learning

features and radiomics features to transform feature values into a

standard distribution with a mean of 0 and a standard deviation of

1. To initially reduce the spatial dimensionality of the features, the

Mann–Whitney U test (a nonparametric test) was applied to assess

the ability of each feature to discriminate between groups of benign

and malignant lesions. In terms of initial threshold setting, the

Mann Whitney U test uses a relatively loose p<0.05 threshold to

avoid premature exclusion of potentially useful features. We chose a

nonparametric test rather than a t-test based on the consideration

that medical imaging features generally do not conform to the

normal distribution assumption. Indeed, there is often a high degree

of correlation between medical imaging features, and this

redundant information not only increases computational

complexity, but may also lead to unstable model performance.

Pearson correlation analysis was applied to calculate the

correlation between feature parameters and construct the feature

correlation matrix. Pearson correlation threshold (|r|>0.85) was

selected to balance feature independence and information retention,

validated by 10-fold CV showed optimal AUC at this

threshold.Those showing a stronger correlation with the target

variable (benign and malignant classification) were retained. The

remaining features were further screened using LASSO, and the

sparse representation of the features is achieved by introducing the

L1 regularization term, which drives some of the regression

coefficients to be precisely equal to zero. The present study used a

5-fold cross-validation method to find the optimal value among a

series of candidate l values. Experiments show that when l is set to

approximately 0.015, the model reached the optimal equilibrium

point, and the screened subset of features maintained a high

predictive power, while avoiding the risk of overfitting.

Overall, this study compared various machine learning classifiers,

including Random Forest (RF) (33), Support Vector Machines
Frontiers in Oncology 06
(SVM) (34), Extra Trees (ET) (34), K-nearest neighbor (KNN) (35)

and Mamba (36), ultimately selecting RF as the final classification

model. The realization of multi-level fusion of DLR and clinical

metabolic parameters features is one of the most important

innovations of our study. Our feature selection process was initially

applied to deep learning features and imaging radiomics features,

respectively, to obtain their respective optimal feature subsets.

Subsequently, these two types of features were combined with PET

metabolic parameters (including SUVmax, SUVmean, etc.).

Subsequently, these were used in clinical practice to construct a

Complex model integrating multi-source information.

For the fusion strategy, feature-level, rather than decision-level,

fusion was used. All selected features were combined into a single

feature vector and input into the RF classifier. This strategy allowed the

model to automatically learn the complex interactions between

different types of features, and fully utilize the complementary

advantages of each type of features. Experiments further

demonstrated that the Complex model significantly outperformed

models using only a single type of features (deep learning, radiomics,

clinical parameter model), validating the effectiveness of multi-source

feature fusion. The workflow for classification model construction is

shown in Figure 3.
2.7 Statistical analysis

Statistical analysis was performed using SPSS version 26 (IBM

Corp., USA) (37). Normally distributed data were expressed as

mean ± standard deviation and compared using Student’s t-test.

Non-normally distributed data were presented as medians and

analyzed with the Mann–Whitney U test. Categorical variables

were compared using the chi-square (c²) test.Model performance

was evaluated via ROC curves, sensitivity, specificity, accuracy,

precision, and F1-score. The DeLong test was used to compare

ROC curves between models, with P < 0.05 considered

statistically significant.
3 Results

3.1 Clinical characteristics

A total of 207 female patients with clinically highly suspected

breast cancer bone metastasis were enrolled, contributing 312 bone

lesions, yielding an average of 1.5 lesions per patient. The mean age

was 58.23 ± 14.05 years. Among the lesions, 107 were benign and

205 were malignant. The lesions were randomly divided into a

training cohort (218 lesions) and a testing cohort (94 lesions).

Clinicopathological and multimodal PET/CT imaging data

yielded a total of 234,668 data features. Statistically significant

differences (P < 0.05) were observed in PET metabolic parameters

between benign and malignant bone lesions (Figure 4A). No

significant differences were found in other clinical features across

cohorts (P > 0.05), as detailed in Table 1. The pathological findings

of the bone oligolesions are illustrated in Figure 4B.
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3.2 Visual assessment based on PET/CT
reader performance

A double-blind visual analysis was independently conducted by

two experienced physicians (LGX and HSH, each with over 10 years

of experience). Physicians were blinded to patients’ clinical and

pathological data. Of the 312 lesions suspected of bone metastases,

98 (31.4%) showed morphological abnormalities on CT, 195

(62.5%) showed abnormalities in PET metabolic parameters, and

227 (72.8%) were abnormal on PET/CT fused images.

Through visual assessment, 57 lesions (53.3%) were diagnosed

as benign and 138 (67.4%) as malignant. According to the reference

standard, 89 of the malignant lesions (43.4%) were ultimately

confirmed as bone oligometastases. The diagnostic accuracy of

PET/CT was 50.6% (45/89).
3.3 Radiomics analysis of multimodal imaging

Rectangular ROI images were extracted from 48 groups of CT

and PET feature values. Features were classified into the single-mode

radiomics model and perfusion model (PET/CT) features. Overall, 7

classifiers were tested in the experiment to finally yield the optimal

classification model. Notably, when training the first classification

model, we set up random seeds to fix the instances of the training and

test sets, to ensure the consistency of training and testing of all

classification models and thus the fairness of model evaluation.

Multimodal fusion models combining CT, PET, and PET/CT

images demonstrated high validity and stability. Diagnostic metrics for

different imaging modalities were calculated for both the validation
Frontiers in Oncology 07
and test cohorts. Among the single modalities, PET radiomics achieved

higher accuracy (97.8%) and AUC (0.970) compared to CT. The PET/

CT fusion model had a sensitivity of 93.4% [80.3%–97.5%]. The best-

performing model, a complex classifier, achieved a sensitivity of 96.1%

[75.7%–99.4%], specificity of 98.2% [88.1%–99.6%], accuracy of 98.7%

[89.6%–99.5%], and AUC of 0.989 [0.927–0.994], as shown in Table 2.
3.4 Deep learning models for multimodal
imaging

A CNN-based segmentation model was developed using a 3D U-

Net architecture. Input data included CT, PET, and label masks,

which were resampled using trilinear interpolation and concatenated

along the channel dimension. Each lesion patch had a volume of 100

× 100 × 100 voxels with a voxel size of 3.0 × 1.37 × 1.37 mm. The

output of the CNNwas a probability map for a 12 × 12 × 12 region at

the center of the input patch.

Training employed categorical cross-entropy loss with evenly

sampled training data from both classes. To improve learning, more

samples were drawn from regions with high SUV uptake and

previously misclassified voxels to emphasize difficult-to-classify

areas (38–40). For single-modality models, PET achieved an

accuracy of 94.7%, sensitivity of 90.4%, and specificity of 95.9%.

The multimodal fusion model demonstrated an improved accuracy

of 96.3%, with an AUC of 0.979, sensitivity of 97.5% [85.7%–

98.7%], and specificity of 90.3% [81.9%–92.5%]. The ensemble

fusion model further enhanced performance with an accuracy of

97.0%, AUC of 0.986, sensitivity of 93.2%, and specificity of 91.6%,

as summarized in Table 3.
FIGURE 3

Workflow of Deep learning, Radiomics and Complex with PET metabolic parameters from multimodal data. Conventional radiomic features were
extracted from CT, PET and PET/CT images. Feature selection and fusion techniques were applied to reduce dimensionality and integrate
complementary information. BasicNet was employed in transfer learning using a pretrained model. The classiffcation model was constructed using
six machine learning algorithm and visualisation of the decision process.
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3.5 DLR fusion models

To further improve classification performance, conventional

radiomics features were integrated with deep learning (DL) features

derived from multimodal imaging of bone lesions of breast cancer

oligometastases. Feature fusion of DLR features was performed

using Z-score normalization. The Spearman correlation coefficient

was used to assess feature correlations, retaining one feature from

pairs with a correlation above 0.9. LASSO logistic regression was

subsequently applied, with penalty parameter tuning via 10-fold

cross validation to identify bone lesions features with nonzero

coefficients (41). The classification model combining radiomics

and DL features showed robust performance.

Evaluation of the performance of the PET/CT fusion models

revealed that the complex ensemble model with PET/CT fused

clinical parameters in RF classifier achieved the best AUC of 0.990,

as well as the highest accuracy, sensitivity, specificity and accuracy

of 98.6%, 99.8%, and 99.7%, respectively (Table 4).
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3.6 Comparison of classification models

Various classification models were compared to distinguish

benign from malignant bone oligolesions in breast cancer. Models

based on BasicNet (24), ResNet-101 (42), DCU-Net (43), and S-Net

(44) were evaluated. The best performance was achieved by the

complex model that combined traditional radiomics, DL, and

clinical parameters using the RF classifier. This model performed

best in both the training and testing cohorts. The comparative

results are illustrated in Figures 5A, B.

The DLR+Complex model showed the best performance on all

evaluation metrics, with an AUC of 0.990, sensitivity of 98.6% [95%

CI: 0.896-1.000], specificity of 99.8% [95% CI: 0.905-1.000], and

accuracy of 99.7% [95% CI: 0.917-0.999]. More importantly,

compared with the BasicNet model, the AUC of the DLR

+Complex model increased by 0.005 and the accuracy increased

by 0.27, demonstrating a more significant performance advantage.

Further performance comparison analysis shows that compared
FIGURE 4

(A) PET metabolic parameters in benign and malignant bone oligolesions. (B) The pathology in benign and malignant bone oligolesions.
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with the BasicNet model, the DLR+Complex model has improved

sensitivity (98.6% vs 98.5%), specificity (99.8% vs 96.5%), and

accuracy (99.7% vs 97%), which is of great significance in

clinical applications.
4 Discussion

Bone is the third most common site of metastasis after the lungs

and liver. Bone metastases most frequently originate from breast and

prostate cancers, which together account for approximately 70% of
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primary tumors (45). Bone is affected by various types of malignancies.

Among them, bone oligometastases of breast cancer represents a

significant subtype, for which early diagnosis and precision treatment

are critical for improving patient outcomes. However, the unique

biological characteristics of bone oligometastases still require further

investigation, especially the roles played by microenvironmental

remodeling and the osteogenic/osteoclastic balance, both of which

are crucial in determining prognosis (46).

The most commonly used diagnostic modality for detecting

bone metastases is whole-body bone scintigraphy (WBS) using
99mTc-MDP due to its high sensitivity and full-body scanning

capability (47). However, WBS has limited accuracy in detecting

osteoclastic lesions, particularly when the number of lesions is fewer

than three or the lesion size is under 1 cm.

Our study offers significant advancements by integrating

radiomics and DL models with multimodal PET/CT images to

improve the prediction of bone metastasis in breast cancer. Based

on expert diagnostic visual assessment, CT scans detected 98

abnormal morphological lesions—56 osteogenic, 29 osteoclastic,

and 13 mixed-type. However, CT alone failed to identify 214

lesions, demonstrating its limitations as a single modality.

In contrast, PET/CT provides a multidimensional view by

combining metabolic and anatomical information, which is

critical for early diagnosis, disease staging, and evaluating

treatment efficacy. Fused PET/CT images revealed 227 abnormal

foci, including 89 osteoclastic lesions. The diagnostic accuracy of

visual evaluation in distinguishing benign from malignant lesions

was 53.3% and 67.4%, respectively. Using a conventional radiomics

model, fused PET/CT imaging achieved improved diagnostic

performance, with an accuracy of 90.1%, specificity of 86.3%,

sensitivity of 83.4%, and an AUC of 0.894.

Pallavi et al. (32) also found that combined models

incorporating PET and contrast-enhanced CT (CECT)

outperformed single-modality models in differentiating multiple

myeloma from skeletal metastases. Other studies have similarly
TABLE 3 Results of transfer learning classiffcation utilising deep features.

Modality AUC Sensitivity Specificity Accuarcy Classifiers

CT 0.960 0.833[0.784–0.881] 0.880[0.781–0.946] 0.956 [0.812–0.976] SVM

PET 0.980 0.904[0.860–0.984] 0.959[0.863–0.985] 0.947 [0.881–0.982] ExtraTrees

PET/CT 0.979 0.975[0.857–0.987] 0.903[0.819–0.925] 0.963[0.916–0.972] RF

Complex 0.986 0.932[0.884–0.965] 0.916[0.835–0.967] 0.970[0.832–0.979] SVM+KNN
# [] represents the 95% conffdence intervals (CI).
TABLE 2 Results of radiomic performance with conventional features.

Modality AUC Sensitivity Specificity Accuarcy Classifiers

CT 0.970 0.868[0.793–0.897] 0.882[0.893–0.929] 0.939 [0.875–0.979] SVM

PET 0.970 0.926[0.875–0.978] 0.947[0.812–0.973] 0.978 [0.817–0.983] RF

PET/CT 0.980 0.934[0.803–0.975] 0.963[0.862–0.983] 0.981 [0.892–0.996] XGBoost

Complex 0.987 0.961[0.757–0.994] 0.982[0.881–0.996] 0.989 [0.896–0.995] LightGBM
# [] represents the 95% conffdence intervals (CI).
TABLE 1 Characteristics of bone focals in breast cancer.

Characteristics
Training
(n=218)

Testing
(n=94)

Values
(c2) P

Anatomical
location

6.627 0.156

limbs 45(20.6%) 22(23.4%) – –

Vertebrae 57(26.1%) 19(20.2%) – –

Pelvis 49(22.5%) 27(28.7%) – –

Ribs 53(24.3%) 15(16.0%) – –

Skull 14(6.4%) 11(11.7%) – –

Bone structure
changes

1.094 0.595

Osteolytic 87(39.9%) 33(35.1%) – –

Osteogenic 96(35.1%) 42(44.7%) – –

Mixed 35(38.5%) 19(20.2%) – –

Pathology 0.715 0.398

Benign 78(35.8%) 29(64.2%) – –

Malignant 140(30.9%) 65(69.1%) – –
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reported positive outcomes using radiomics and traditional machine

learning techniques for bonemetastasis prediction. For example, Chen

et al. (48) demonstrated the effectiveness of a Vision Transformer

model, which achieved an AUC of 0.918 on the test set in predicting

bone metastasis in colorectal cancer using both plain and contrast-

enhanced CT. Song (49) also developed a semi-automated model

integrating radiomics, DL, and clinical features using biparametric

MRI, achieving an internal AUC of 0.934 and an external AUC of

0.903 for bone metastasis prediction in prostate cancer.

Our results are consistent with the above findings, confirming

the value of radiomics features in predicting metastasis. Meanwhile,

we compared the Mamba-based recent classifier with the traditional

classifies.With its unique structure and algorithmic optimization,

the Mamba with multimodal feature fusion method can efficiently

extract and fuse the features of different modalities to enhance the

system performance and efficiency (50). Its high efficiency and

accuracy have made it an important strategy for multimodal data

processing (9, 51).While in our study, although the former based on

generative feature extraction effectively integrates the datas from CT

and PET, it only achieved good performance in the DCU-net

model, while the other models underperformed, which may be

related to less raw datas in our study.

Few studies have specifically targeted bone oligometastases in

breast cancer using PET/CT with integrated DLR. In our study, the
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integration of radiomics, DL (particularly the BasicNet model), and

clinical metabolic parameters significantly enhanced predictive

performance. The DLR + Complex model achieved outstanding

diagnostic metrics, including an AUC of 0.990, accuracy of 99.7%,

specificity of 99.8%, and sensitivity of 98.6%, indicating exceptional

discriminative ability and generalizability.Our model’s superior

performance may stem from its ability to automatically learn

complex features directly from raw CT, PET, and fused PET/CT

images, combined with clinical metabolic parameters. DL methods

capture intricate spatial relationships and hierarchical patterns.

These architectural advantages—such as enhanced feature reuse

and improved gradient flow—contributed to the model’s high

accuracy and robustness. The DLR + Complex model based on

multimodal PET/CT imaging has significant potential in accurately

identifying and monitoring bone oligometastases in breast cancer,

thereby enabling timely and individualized treatment strategies.

The confusion matrix (28 cases of true positive, 1 case of false

negative, 2 cases of false positive, 63 cases of true negative) reveals

the core performance characteristics of the model in the prediction

of bone oligometastasis of breast cancer, as shown in (Figure 6A).

From a clinical perspective, the high sensitivity (98.6%) showed that

the model had excellent positive case capture ability, and only one

false negative case was missed. This is crucial in the screening of

metastatic cancer, because missed diagnosis may lead to treatment
TABLE 4 The feature fusion results of conventional radiomic features and deep features from transfer learning.

Methods AUC Sensitivity Specificity Accuracy Classifier

Basic Net 0.985 0.985 [0.818-0.993] 0.965 [0.894-0.985] 0.970 [0.884-0.996] SVM

ResNet-101 0.786 0.768 [0.660-0.842] 0.718 [0.631-0.775] 0.774 [0.619-0.795] KNN

DCU-Net 0.814 0.895 [0.754-0.908] 0.712 [0.683-0.772] 0.794 [0.730-0.837] Mamba

S-Net 0.807 0.871 [0.716-0.912] 0.642 [0.584-0.716] 0.743 [0.695-0.810] ExtraTrees

DLR 0.954 0.937 [0.861-0.992] 0.925 [0.868-0.969] 0.957 [0.892-0.979] RF

DLR+Complex 0.990 0.986 [0.896-1.000] 0.998 [0.905-1.000] 0.997 [0.917-0.999] RF
DLR represents fused deep learning radiomics.
FIGURE 5

Comparison of ROC curves under different classiffers with trainging set (A) and testing set (B).
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delay. The high specificity (99.8%) proved that the model can

effectively exclude non metastatic patients and avoid over

treatment. Combined with the overall accuracy of 98.6%, it was

confirmed that the deep learning radiomics model was significantly

superior to the conventional diagnostic method. The deep learning

radiomics model established in this study has achieved effective

improvement in sensitivity, specificity and accuracy, and its PR

curve has confirmed its stability under high recall demand,

providing a reliable tool for early intervention of bone metastasis

of breast cancer, as shown in (Figure 6B).

Despite our promising results, several limitations remain,

as follows:
Fron
1. The sample size of 312 lesions is relatively small and lacks

diversity in oligometastases types (52).

2. The study is a single-center, retrospective design, which

may introduce selection bias and does not encompass all

subtypes and metastatic patterns of breast cancer (53).
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3. TheDLR + clinical complexmodels are still in the experimental

stage and require prospective, multicenter validation.

4. This research focused solely on the diagnostic performance of

PET/CT images and did not investigate the relationship

between imaging features and underlying molecular

mechanisms, such as bone microenvironmental remodeling.
Future research should therefore aim to expand the sample size,

improve automated analysis pipelines, and integrate multi-omics

data with imaging features. These efforts will support the

advancement of precision diagnostics and therapeutic strategies

for breast cancer patients with bone oligometastases.
5 Conclusion

Overall, this study demonstrates the potential of integrating

radiomics, DL, and clinical complex models to predict bone
FIGURE 6

Confusion matrix for prediction of bone oligometastases in breast cancer (A) and PR curve for predicting bone oligometastases in breast cancer (B).
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oligometastases in breast cancer patients using fused PET/CT

imaging. The DLR + Complex model significantly outperformed

traditional radiomics and other deep learning architectures,

achieving high AUC, accuracy, specificity, and sensitivity in both

training and testing cohorts.

Accurate early prediction of bone oligometastases enables

timely, targeted treatment interventions, improving patient

outcomes and optimizing resource utilization. Ultimately, while

PET/CT-based models show strong predictive power, further

refinement incorporating histological subtypes, imaging features,

and molecular biomarkers will be essential for comprehensive and

personalized diagnosis.

Taking histological subtypes as an example, based on our data

analysis and relevant literature, triple negative breast cancer

(TNBC) and HER2 positive breast cancer showed a higher

tendency of bone metastasis. Specifically, the risk of bone

metastasis in TNBC patients is about 2–3 times higher than in

hormone receptor positive patients, and the metabolic activity of

metastatic lesions is higher, which is manifested as higher SUVmax

values in our PET/CT imaging. HER2 positive breast cancer tends

to have multiple bone metastases rather than oligo metastasis.

Therefore, future predictive models should consider these

molecular subtypes as key stratification factors, especially in

TNBC and HER2 positive patients, which may require the

development of more sensitive early detection strategies.
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