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Bladder cancer (BCa) is one of the most prevalent malignant tumors globally,

particularly among men. According to data from the Global Cancer Research

Agency, the annual incidence of BCa continues to rise, and its clinical features are

complex, involving various molecular mechanisms and pathophysiological

processes. Although existing treatments such as surgery, chemotherapy, and

immunotherapy have improved patient prognosis to some extent, many

individuals remain at risk for recurrence and metastasis. Therefore, there is an

urgent need to explore new biomarkers and therapeutic targets to enhance the

diagnostic and therapeutic efficacy of BCa. In recent years, RNA methylation, as

an important post-transcriptional modification, has gradually attracted the

attention of researchers. Among the methyltransferases, methyltransferase-like

3 (METTL3) is considered a key regulator, which is mainly responsible for the N6-

methyladenosine (m6A) modification of mRNA. More and more studies have

shown that METTL3 not only plays an important role in normal physiological

processes, but also is closely related to the occurrence and development of a

variety of tumors. This review aims to systematically explore the role of METTL3

in BCa, including its biological function, expression characteristics, potential

therapeutic targets, and prognosis related research progress. Through the in-

depth analysis of METTL3, we hope to provide new ideas and directions for the

early diagnosis, prognostic evaluation, and the development of novel treatment

strategies for BCa.
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1 Introduction

BCa is one of the most prevalent malignant tumors of the

urinary system. In terms of incidence, BCa ranks as the 10th most

common cancer worldwide, with an estimated 600,000 new cases

reported in 2022 (1). In recent years, both the incidence and

mortality rates of BCa in China have been on the rise. Urothelial

carcinoma (UBC) is the most common histological subtype,

accounting for approximately 90% of BCa cases globally (2). UBC

is typically classified into two categories: non-muscle invasive

bladder Cancer (NMIBC) and muscle invasive bladder cancer

(MIBC). At the time of diagnosis, 75% of UBC cases are classified

as NMIBC, while 25% are categorized as MIBC or metastatic

disease. For patients with NMIBC, a common treatment strategy

involves transurethral bladder tumor resection followed by

postoperative intravesical chemotherapy or Bacillus Calmette-

Guérin (BCG) therapy (3, 4). For patients with locally advanced

or advanced MIBC, the standard treatment remains the

gemcitabine and cisplatin (GC) regimen (5). However, once

MIBC has metastasized, the five-year survival rate drops to only

15% (6). BCa not only brings physical pain to patients, but also

suffers from anxiety, fear and torture psychologically. At the same

time, families have to bear financial pressure and the rhythm of life

is disrupted. Therefore, there is an urgent need to explore new

treatment strategies and personalized treatment methods (7). As an

RNA methyltransferase, METTL3 has attracted much attention in

cancer research in recent years. Studies have shown that METTL3

regulates gene expression and cell fate by adding m6A modification

to mRNA (8), and affects biological processes such as cell

proliferation, apoptosis and migration (9). The expression level of

METTL3 is abnormally increased in a variety of tumor types, such

as lung, liver, breast, gastric, colorectal and pancreatic cancer (10–

15), and is closely related to the occurrence, development and

prognosis of tumors. In BCa, high expression of METTL3 is thought

to be associated with tumor aggressiveness and metastasis (16).

METTL3 can participate in the biological behavior of BCa by

regulating key genes related to cell cycle, apoptosis and

chemotherapy resistance (17). In addition, the expression level of

METTL3 may also be used as a prognostic marker in patients with
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BCa (18), providing a new risk assessment tool for clinical practice.

This review focuses on the potential of METTL3 as a potential

therapeutic target as well as a prognostic marker in the treatment of

BCa by promoting the proliferation and invasion of BCa cells.
2 M6A methylation modification

To date, more than 170 types of post-transcriptional RNA

modifications have been identified (19), with m6A being the most

prevalent RNA modification found in eukaryotic mRNAs.

Numerous studies have demonstrated that m6A modifications

play a crucial role in regulating RNA processing, splicing,

nucleation, translation, and stability. These modifications

significantly impact human diseases, as alterations in m6A may

promote tumor development (20, 21) or contribute to

neurodegeneration (22–24). In addition to its role in mRNA, m6A

modification is also present in non-coding RNAs, such as

microRNAs(miRNAs), long non-coding RNAs(lncRNAs), and

circular RNAs(circRNAs), which similarly regulate their biological

functions (25–27). m6A modulates gene expression in a post-

transcriptional manner, involving three parts: “writers,” (28–30)

“erasers,” (31, 32) and “readers” (33–35) (see Table 1). Following

modification by these three components, the primary transcript

RNA is transformed into mature RNA.
3 Structure and function of METTL3

METTL3, also known as MT-A70, is a 70 kDa protein that

serves as a key m6A methyltransferase and is widely present in

eukaryotes (36). The structural features of METTL3 include an S-

adenosylmethionine (SAM) binding domain and an RNA-binding

domain. The N-terminus of METTL3 contains two Cys-Cys-Cys-

His (CCCH)-type zinc finger (ZnF) motifs, which are commonly

found in RNA-binding proteins (37). These structures enable

METTL3 to efficiently catalyze methyl transfer reactions.

Typically, METTL3 forms a stable dimeric complex with

methyltransferase 14 (METTL14) in the nucleus, which
TABLE 1 m6A post-transcriptional regulation mechanisms: writers, erasers, and readers.

Functional
module

Key constituent Key Features References

Writers METTL3, METTL14, WTAP, VIRMA, RBM15/15B
Adds m6A modifications to RNA, regulating RNA stability and
translation efficiency. It is also involved in RNA splicing, nuclear

export, and localization.
(28–30)

Erasers FTO, ALKBH5
Dynamically removes m6A modifications, regulates RNA stability and

translation, and influences the development of diseases such as
obesity, cancer, and neurodegenerative disorders.

(31, 32)

Readers

YTH Family (YTHDF1, YTHDF2, YTHDF3),YTHDC
Family (YTHDC1, YTHDC2), IGF2BP Family:IGF2BP1,

IGF2BP2, IGF2BP3), hnRNP Family:
(hnRNPC, hnRNPG)

Recognizes and binds to m6A modification sites, determining the fate
of RNA—whether it is translated, stabilized, degraded, or spliced—
and coordinates the role of RNAs in various biological environments.

(33–35)
METTL3,methyltransferase-like 3; METTL14,methyltransferase 14; WTAP, wilms tumor 1-associated protein; VIRMA, viral RNA methylation adapter; RBM15/15B,RNA binding motif protein
15/15B; FTO, fat mass and obesity-associated protein; ALKBH5,alkB homolog 5; YTHDF1/2/3, YTH N6-methyladenosine RNA binding protein 1/2/3; IGF2BP1/2/3, Insulin like growth factor 2
MRNA binding protein 1/2/3.
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subsequently interacts with wilms’ tumor 1-associating protein

(WTAP) to create the m6A methyltransferase complex (METTL3/

METTL14/WTAP), also referred to as m6A “writers” (38). “In the

methyltransferase complex, METTL3 is the first and only catalytic

subunit discovered to transfer methyl groups from SAM to

adenosine residues in the RNA molecule, forming the m6A

modification (39).” This process is an important part of RNA

post-transcriptional modification, affecting mRNA stability and

translational efficiency. In addition, METTL3 also plays an

important role in biological processes such as stem cell

differentiation (40), immune cell activation (41), and neural

development (42), helping cells to respond to different

environments. In terms of disease, the abnormal expression of

METTL3 is closely related to the occurrence and development of

a variety of cancers, and may affect the behavior of tumors by

regulating the proliferation, metastasis and drug resistance of tumor

cells. Studies have found that microRNA-600 (miR-600) can inhibit

the progression of lung cancer by down-regulating the expression of

METTL3 (10). He et al. found that microRNA-4429 (miR-4429)

can inhibit m6A modification by targeting METTL3, leading to the

stabilization of SEC62 homolog, preprotein translocation factor

(SEC62) to prevent the progression of gastric cancer (13).

Interestingly, METTL3 is also closely related to neurodegenerative

diseases. It has methyltransferase activity and deposits methyl

groups on RNA, which can inactivate neurophysiological events

and trigger or worsen neuropathological events (23). Overall, the

structure and function of METTL3 complement each other, making

it an important factor in the regulation of m6A modification.
4 The role of m6A modification and its
key proteins in BCa.

Studies have demonstrated that m6A modification is closely

associated with the occurrence, progression, and prognosis of BCa.

Compared to normal bladder tissue, the expression patterns of

various regulatory factors involved in m6A modification differ

significantly. Several key regulators are notably upregulated in

BCa cells, including METTL3, WTAP (43), fat mass and obesity-

associated protein (FTO) (44), insulin-like growth factor 2 mRNA-

binding protein 1 (IGF2BP1) (45), YTH n6-methyladenosine RNA-

binding protein 1 (YTHDF1) (46), and Heterogeneous nuclear

ribonucleoprotein A2/B1 (HNRNPA2B1) (47). Conversely, AlkB

homolog 5 (ALKBH5) (48), METTL14 (49), and YTH n6-

methyladenosine RNA-binding protein 3 (YTHDF3) (50) are

downregulated. FTO is recognized as an oncogenic factor in the

development of BCa. The knockdown of FTO enhances the stability

of the mRNA for the signal transducer and activator of

transcription 3 (STAT3), increases STAT3 expression, effectively

reduces cell cycle progression, and diminishes cell proliferation,

migration, and invasion capabilities, while also inducing apoptosis

and carcinogenic transformation. An increase in FTO levels

correlates with poor prognosis in BCa patients (51, 52). Qiu et al.

found that knockdown of yes-associated protein 1(YAP1) inhibited

the growth, invasion, and migration of BCa cells, and at the same
Frontiers in Oncology 03
time, hindered YTHDF3-mediated degradation of SMAD family

member 7 (SMAD7), ultimately leading to a reduction in the

stemness of BCa cells (50). YTHDF1 plays a role in BCa

progression and glycolytic activity. It has been found that

YTHDF1 can positively regulate the expression of glutamate

ionotropic receptor NMDA type subunit 2D (GRIN2D) to

promote BCa cell proliferation and enhance aerobic glycolysis.

Moreover, inhibition of the m6A-YTHDF1-GRIN2D axis can

inhibit cancer progression and metabolic changes (53). Huang

et al. found that overexpression of METTL14 inhibited BCa cell

migration, invasion in vitro, and tumor metastasis in vivo.

METTL14 positively regulated ubiquitin-specific peptidase 38

(USP38) and enhanced the stability of USP38 mRNA through

YTHDF2-dependent m6A modification. To inhibit migration,

invasion, and epithelial-mesenchymal transition (EMT) of BCa

cells (54). In addition, both YTHDC1 and ALKBH5 mediate

cisplatin resistance in BCa. YTHDC1 could decrease phosphatase

and tensin homolog (PTEN) expression and activate PI3K/AKT

signaling by destabilizing PTEN mRNA while enhancing cell

viability in BCa cells.” Thus, reduction of YTHDC1 expression

promotes resistance to cisplatin, whereas overexpression of

YTHDC1 promotes cisplatin sensitivity (55). “ Meanwhile, it has

been reported that ALKBH5 knockdown can also promote the

proliferation, migration and invasion of BCa cells and sensitize BCa

cells to cisplatin in vitro and in vivo in an m6A-dependent manner

through the casein kinase 2 (CK2)-mediated glycolysis pathway

(56). In summary, m6Amodification plays a multifaceted role in the

occurrence and development of BCa, affecting the proliferation,

migration, invasion and cisplatin resistance of tumor cells by

dynamically regulating the fate of RNA. Although current studies

on m6A modification in BCa have revealed remarkable functions,

many questions remain unanswered.
5 The role of METTL3 in BCa

As one of the key methyltransferases involved in m6A

methylation modification, METTL3 plays a significant role in the

occurrence and progression of BCa (see Figure 1). Studies have

demonstrated that METTL3 precisely regulates the expression of

tumor-related genes by modulating the levels of m6A modification.

This regulation promotes the proliferation, invasion, and migration

of tumor cells and may also contribute to the remodeling of the

tumor microenvironment and the development of chemotherapy

resistance. Its abnormally high expression is often closely associated

with poor prognosis in patients with BCa, highlighting its

considerable potential for use in diagnosis, prognosis assessment,

and targeted therapy.
5.1 METTL3 enhances the proliferation,
invasion, and migration of BCa cells

More and more studies have found that METTL3 shows a

significant upward trend in BCa tumor tissues, and the
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overexpression of METTL3 significantly promotes the growth and

invasion of BCa cells. METTL3 can promote cancer cell

proliferation and anti-apoptosis by regulating various targets and

pathways, including miRNAs and non-coding RNAs, which are

critical for BCa. Cheng et al. first revealed METTL3-mediated m6A

modification in BCa cells. Knockdown of METTL3 significantly

reduced the proliferation, invasion, in vitro survival rate, and in vivo

tumorigenicity of BCa cells. At the same time, FMR2 family

member 4/nuclear factor kappa-light-chain-enhancer of activated

B cells/MYC proto-oncogene (AFF4/NF-kB/MYC) was further

identified as the direct targets of METTL3. It can promote the

progression of BCa through this signaling pathway (57). In

addition, Shen et al. found that oncogene enolase 1 (ENO1) was

methylated and highly expressed in BCa, and the RNA binding

motif protein 15 (RBM15)/METTL3 complex enhanced the

translation efficiency of ENO1 mRNA through m6A modification,

thereby promoting BCa cell proliferation (58). YTHDF2, the first

discovered m6A “reader” protein, regulates mRNA degradation and

cell viability (59, 60). Mettl3-mediated m6A modification is

recognized by YTHDF2, which mediates the mRNA reduction of

tumor suppressors SET domain containing 7 (SETD7) and kruppel-

like factor 4 (KLF4). In turn, it induces the progression of BCa (61).

In addition, YTHDF2 may also bind to the m6A modification site

RAS-related protein R-Ras (RRAS) and cause the degradation of

RRAS mRNA, and bioinformatics analysis showed that RRAS is a

potential downstream target of METTL3. METTL3 can bind to the

m6A site of RRAS mRNA and inhibit the transcriptional activity of

RRAS, thereby promoting the proliferation, migration, and invasion
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of BCa cells (62). Studies have found that METTL3 can also bind to

YTHDF1 to significantly reduce the ribophorin II (RPN2) mRNA

and protein, thereby reducing the phosphorylation level of the

phosphoinositide 3-kinase/protein kinase B/mammalian target of

rapamycin (PI3K/AKT/mTOR). pathway and leading to

proliferation of BCa cells (63). Recent studies have found that

METTL3 can interact with microprocessor protein DiGeorge

syndrome critical region gene 8 (DGCR8) and positively regulate

and accelerate the maturation of Primary microRNA-221/222 (pri-

miR-221/222) in an m6A-dependent manner, leading to PTEN

reduction and ultimately promoting the proliferation of BCa (64).

Huang et al. found that RNA binding motif protein 15(RBM15) and

METTL3 are potential master regulators of lncRNAs, and the level

of m6A modification of lncRNA was significantly reduced after

knocking down METTL3 and RBM15. This suggests that METTL3

and RBM15 may promote the development and progression of BCa

by jointly regulating the level of RNA modification (16).

Interestingly, Liu et al. found that long-term exposure to fine

particulate matter is also closely related to the development of

BCa, and particulate matter 2.5 (PM2.5) can enhance the expression

of METTL3 by inducing hypomethylation of its promoter and

increasing the binding affinity of transcription factor hypoxia-

inducible factor 1 alpha (HIF1A). PM2.5 exposure exerts

epigenetic regulation on BCa through the HIF1A/METTL3

network (65). EMT is an important biological process in the

development of cancer and plays a key role in the invasion and

metastasis of tumor cells (66). Liu et al. found that prolyl 3-

hydroxylase 4 (P3H4) was significantly highly expressed in BCa
FIGURE 1

The role of METTL3 in BCa. METTL3 plays a crucial role in BCa primarily by promoting the proliferation, invasion, and migration of BCa cells. It
accelerates angiogenesis around bladder tumor cells, drives the metastasis of BCa, and can also predict the response of MIBC to neoadjuvant
chemotherapy. M6A,N6-methyladenosine; MIBC, muscle invasive bladder cancer; BCa, bladder cancer; AFF4/NF-kB/MYC,FMR2 family member 4/
nuclear factor kappa-light-chain-enhancer of activated B cells/MYC proto-oncogene;ENO1,Enolase 1,SETD7,SET domain containing 7; KLF4,
kruppel-like factor 4; RRAS,RAS-related protein R-Ras; RPN2,ribophorin II; pri-miR-221/222,Primary microRNA-221/222;RBM15,RNA binding motif
protein 15; HIF1A,hypoxia-inducible factor 1 alpha; P3H4,prolyl 3-hydroxylase 4; PI3K/Akt, phosphoinositide 3-kinase/protein kinase B;TEK,TEK
tyrosine kinase; VEGF-A, vascular endothelial growth factor A;CLASP2,Cytoplasmic linker associated protein 2; IQGAP1,IQ motif containing GTPase
activating protein 1.
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samples, and METTL3 overexpression increased the stability of

P3H4mRNA, thereby promoting proliferation, migration, invasion,

and EMT progression in BCa (67). Taken together, these studies

suggest that METTL3 acts as an oncogene contributing to BCa

progression and metastasis.
5.2 METTL3 accelerates angiogenesis in the
vicinity of bladder tumor cells

Tumor blood vessel formation plays a crucial role in the growth

of primary solid tumors, as well as in tumor progression and

metastasis. An increase in tumor blood vessel density facilitates

the entry of tumor cells into the circulation, and this enhanced

blood vessel formation appears to be closely associated with the

invasive characteristics of tumors (68). Vascular endothelial growth

factor (VEGF), also known as vascular permeability factor (VPF)

(69), has been identified as a significant pro-angiogenic factor that is

frequently overexpressed in various tumors, including BCa, breast

cancer (70). VEGF can induce the proliferation, migration, and

neovascularization of vascular endothelial cells in the normal tissues

surrounding BCa, thereby providing adequate oxygen and nutrients

to the tumor (71). Targeting VEGF, its receptors, and downstream

signaling cascades represents a viable strategy to inhibit BCa growth

and metastasis (72). Wang et al. found that METTL3 could promote

angiogenesis, epithelial-mesenchymal transition, and metastasis in

BCa by regulating the phosphoinositide 3-kinase/protein kinase B

(PI3K/AkT) signaling pathway, and METTL3 inhibited transcripts

and proteins of TEK tyrosine kinase (TEK) and vascular endothelial

growth factor A (VEGF-A) involved in the PI3K/AKT pathway. In

addition, in order to further study whether METTL3-mediated m6A

modification could effectively affect the biological process of BCa,

gene ontology (GO) analysis of the m6A-enriched gene set showed

that METTL3 methylation could accelerate the formation of

neovascularization around BCa and promote the progression of

BCa (73).
5.3 METTL3-mediated m6A modification
drives BCa metastasis

Metastasis of BCa is a complex, multistep process primarily

triggered by cytoskeletal reorganization. Cytoplasmic linker

associated protein 2 (CLASP2), a microtubule-binding protein,

plays a crucial role in the dynamic regulation of the cytoskeleton

and cell migration (74). Elevated expression of CLASP2 is

associated with shorter overall survival in BCa patients (75).

Tumor necrosis factor-alpha (TNF-a) has been shown to

promote METTL3-mediated m6A modification of CLASP2,

thereby enhancing the stability of CLASP2 mRNA. Additionally,

CLASP2 interacts with IQ motif-containing IQ motif containing

GTPase activating protein 1 (IQGAP1). Consequently, the

remodeling of the F-actin cytoskeleton drives the metastasis of

BCa (76).
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5.4 METTL3 mutations can predict the
response of MIBC to neoadjuvant
chemotherapy

MIBC is a highly aggressive subtype of BCa, characterized by

tumor invasion into the muscular layer of the bladder. This

subtype is associated with a higher risk of metastasis and a poor

prognosis. Currently, the gold standard for treating MIBC is

radical cystectomy following cisplatin-based neoadjuvant

chemotherapy (NAC) (77). However, two-thirds of MIBC

patients exhibit partial or no pathological response to NAC,

leading to delayed surgery and a worse prognosis (78).

Therefore, accurately predicting the pathological response to

NAC is crucial, as it significantly aids in the subsequent

treatment and prognosis of MIBC patients (79). By employing

whole exome sequencing (WES) to identify gene mutations in

MIBC that can predict NAC response, Yang et al. discovered that

BCa patients with mutations in METTL3 experienced a significant

survival benefit after NAC treatment (80).
6 Potential clinical applications of
METTL3-targeted therapeutic
strategies in BCa

Currently, treatment strategies for BCa are rapidly evolving,

particularly due to breakthroughs in immunotherapy (81, 82) and

targeted therapy (83), which have significantly transformed the

treatment landscape. Immune checkpoint inhibitors have been

extensively utilized in the management of advanced or metastatic

bladder cancer, demonstrating remarkable efficacy in prolonging

patient survival and enhancing quality of life (84). Additionally,

targeted therapies that focus on specific molecular characteristics

provide tailored treatment options for patients with fibroblast

growth factor receptor (FGFR) mutations or fusions (85).

Furthermore, emerging therapies such as antibody-drug

conjugates (ADCs) broaden the available treatment options (86).

These advancements not only offer patients a wider array of choices

but also advance bladder cancer treatment toward a more

personalized and diverse approach. One such molecule, METTL3,

is a key methyltransferase responsible for m6A modification and

plays a crucial role in cancer development and progression.

Targeting METTL3 as a therapeutic strategy for various types of

tumors has received widespread attention (87). Compared to

normal bladder tissues, METTL3 is highly expressed in BCa

tissues and regulates multiple tumor characteristics, including cell

proliferation, metastasis, anti-apoptosis, and chemoresistance.

Therefore, targeting METTL3 may achieve multiple anti-tumor

effects and possibly possess favorable tumor specificity. Currently,

research on the development of METTL3-targeted therapies for

BCa treatment is still mostly at an early stage, mainly focusing on

small molecule inhibitors, RNA-targeted therapies, and

combination treatment strategies.
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6.1 Small molecule inhibitors

The development of small molecule inhibitors targeting

METTL3 aims to inhibit its m6A methylation function and block

its oncogenic effects in BCa (88). Although no METTL3-targeted

drugs have been approved yet, inhibitors based on the structure of

its methyltransferase, such as the METTL3/METTL14 heterodimer,

are currently undergoing early-stage research. These inhibitors

primarily fall into two categories: nucleoside and non-nucleoside

compounds. STM2457 is the first widely studied small molecule

inhibitor of METTL3. It competitively binds to the SAM binding

site of METTL3, inhibiting its m6A methyltransferase activity and

thereby reducing RNA methylation levels. In acute myeloid

leukemia (AML) models, STM2457 significantly inhibits tumor

cell proliferation, induces apoptosis, and blocks the proliferation

and colony formation of the Human Acute Myeloid Leukemia Cell

Line (MOLM-13), all without affecting normal hematopoietic

function (89). STM2457 is also being considered for the

treatment of non-small cell lung cancer (NSCLC), where it can

upregulate programmed death-ligand 1 (PD-L1) both in vivo and in

vitro, enhance the efficacy of NSCLC immunotherapy, and inhibit

tumor progression while overcoming heterogeneity through its

impact on the translatome (90). In addition to STM2457, several

pharmaceutical companies and academic institutions are utilizing

high-throughput screening technology to develop new small

molecule inhibitors of METTL3, although these specific drugs are

still in the early stages of research (91). A derivative of STM2457,

known as STC-15, has reportedly entered clinical trials, and

preliminary results indicate that it shows promise for inhibiting

tumor growth through direct antitumor effects and anticancer

immune responses (92). In summary, the successful development

of STM2457 provides a crucial research foundation for targeting

BCa treatment and holds significant potential in BCa therapy. By

inhibiting m6A modification and blocking the stability and

expression of oncogenic genes, it can effectively suppress the

progression of BCa.
6.2 RNA-targeted therapy

Currently, there are few reports on RNA-targeted therapies for

BCa; however, targeting METTL3 presents significant potential for

BCa treatment, particularly in the realms of small interfering RNA

(siRNA) (93)and antisense oligonucleotides (ASO) (94).

6.2.1 SiRNA
siRNA technology can specifically silence the expression of

target genes and has emerged as a promising treatment for cancer

(95). By designing specific siRNAs to target the Mettl3 gene, it may

be possible to inhibit the proliferation and invasion of BCa cells or

enhance their chemosensitivity. Although there are few reports on

siRNA targeting Mettl3 in BCa, the use of siRNA delivered by

nanocarriers has become a new focus in cancer therapy (96). Studies

have demonstrated that siRNA-mediated silencing of the METTL3

gene can significantly inhibit the proliferation and invasive capacity
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of BCa cells. In vitro experiments have shown that METTL3

knockdown leads to cell cycle arrest and increased apoptosis. In

mouse models, siRNA-mediated silencing of the METTL3 gene

significantly inhibits BCa tumor growth and metastasis (16, 64).

However, the lack of effective in vivo delivery carriers remains a

major challenge in translating siRNA into therapeutic drugs (97).

Liu et al. found that utilizing natural halloysite nanotubes (HNTs)

for nucleic acid delivery can address issues related to the low

efficiency, rapid degradation, and toxicity of siRNA. HNT-

encapsulated siRNA is more stable in serum, has a longer

circulation time in the bloodstream, is more readily absorbed by

BCa cells, and accumulates in BCa tumors (98). These findings

provide valuable insights for the study of siRNA targeting Mettl3 in

the treatment of BCa.

6.2.2 ASO
ASOs are single-stranded DNA or RNAmolecules that can bind

to target mRNA through complementary base pairing, leading to

mRNA degradation or the inhibition of translation (99). Li et al.

discovered that in castration-resistant prostate cancer (CRPC),

targeting METTL3 with ASO technology can significantly reduce

the mRNA levels of METTL3, thereby diminishing its regulatory

effects on downstream genes such as harvey rat sarcoma viral

oncogene homolog (HRAS) and mitogen-activated protein kinase

kinase 2 (MEK2), which in turn inhibits the proliferation and drug

resistance of CRPC cells (100). Although there are currently no

direct studies supporting the application of ASOs targeting

METTL3 in BCa, research on ASOs for BCa treatment has

consistently garnered significant interest (101). Given its

molecular mechanism, the technological advancements in BCa

treatment, and its applications in other tumors, this area warrants

further investigation.

RNA-targeted therapies present an innovative approach for

targeting METTL3 in BCa (88). Compared to traditional small

molecule inhibitors, RNA-based therapies offer higher specificity

and greater design flexibility, making them a promising therapeutic

strategy (102). By utilizing technologies such as siRNA and ASO,

the expression of METTL3 can be effectively reduced, its oncogenic

effects can be inhibited, and consequently, the growth and

metastasis of BCa can be suppressed. However, RNA-targeted

therapies still encounter challenges related to delivery efficiency,

off-target effects, and clinical translation (103). In the future,

advancements in delivery technologies, chemical modifications,

and precision medicine are expected to enhance the efficacy of

RNA-targeted therapies, positioning them as a vital option for BCa

treatment and providing patients with more precise and effective

therapeutic solutions.
6.3 Combination treatment strategies

BCa is a complex disease associated with high incidence and

mortality rates if not treated optimally. The primary treatment

options include surgery, chemotherapy, radiotherapy, and

immunotherapy; however, their effectiveness is often limited by
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patient-specific differences and drug resistance (2). In recent years,

the oncogenic mechanisms of METTL3, a key enzyme involved in

m6A methylation, have been extensively studied in BCa (104).

Research has shown that METTL3 promotes tumor progression

by stabilizing oncogenes, enhancing chemoresistance (17), and

regulating the tumor immune microenvironment. Consequently,

combination therapeutic strategies targeting METTL3 are emerging

as a new research direction. Mao et al., by using the RNA Molecule

Targeting (RM2Target) database, identified important regulatory

associations between 20 pairs of prognostic immune genes (PIGs)

and m6A regulators among the 28 PIGs identified. METTL3 and

virulence factor protein (VIRMA) play key roles in immune-related

m6Amodifications, indicating that the design of inhibitors targeting

METTL3 and VIRMA may represent a promising approach to

combining anti-m6A therapy with immunotherapy (105). METTL3

significantly influences the function of immune cell subpopulations,

including CD8+ T cells and myeloid-derived suppressor cells

(MDSCs), by regulating the m6A modification of RNA. This

regulation impacts the response to immunotherapy in BCa. In

CD8+ T cells, METTL3 enhances the stability and translational

efficiency of genes associated with the T cell receptor (TCR)

signaling pathway, thereby promoting their proliferation,

activation, and the expression of effector molecules, which

ultimately strengthens anti-tumor immunity (106). Furthermore,

METTL3’s regulation can decrease the expression of molecules

related to T cell exhaustion, thereby improving the efficacy of

immune checkpoint inhibitor therapies (107).Wang et al. found

that by altering the tumor microenvironment and recruiting CD8+

tumor-infiltrating lymphocytes (TILs), inhibiting m6A modification

can sensitize tumors to immunotherapy. The growth-inhibitory

effects of Mettl3/14-deficient tumors are comparable to those of

various combination immunotherapies, thus opening the door to

comb in i ng immuno th e r apy w i t h new l y d e v e l op ed

methyltransferase inhibitors for BCa treatment (106). In addition,

Wu et al. found that inhibiting METTL3 can improve anti-

programmed death protein 1 (PD-1) therapy in an m6A-

YTHDF2-dependent manner. METTL3 inhibition or knockout

affects tumor cell proliferation and tumor growth, with YTHDF2

playing a key role and enhancing antitumor effects in a T-cell-

dependent manner, indicating that YTHDF2 is a downstream

executor of STM2457’s antitumor effects (107). In MDSCs,

METTL3 enhances the expression of inhibitory factors through

m6A modification, thereby amplifying their immunosuppressive

effects on T cells. Simultaneously, it regulates the metabolic

pathways and differentiation of MDSCs, further bolstering the

tumor’s capacity to evade the immune response (108). The latest

studies have found that METTL3 increases C-X-C motif chemokine

ligand 5 (CXCL5) levels and inhibits C-C motif chemokine ligand 5

(CCL5) expression in an m6A-dependent manner, leading to

increased recruitment of MDSCs and reduced infiltration of CD8

+ T cells. Silencing or inhibiting METTL3 can restore immune cell

balance and significantly enhance the efficacy of anti-PD-1 therapy

(109). These studies have identified METTL3 as a key regulator of

the tumor immune microenvironment and a promising therapeutic

target for improving immunotherapy outcomes. However,
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combination therapies targeting METTL3 still face challenges

such as drug delivery efficiency, off-target effects, and toxicity

(110), which need to be further optimized and confirmed for

their safety and efficacy through clinical trials (111). These

explorations provide new perspectives and research directions for

the precision treatment of BCa.
7 METTL3 mediates drug resistance
and poor prognosis in BCa

Chemotherapy is a crucial strategy for treating MIBC and

metastatic BCa (112), particularly as adjuvant therapy before or

after surgery or in cases where surgery is not feasible. Combination

therapies, such as methotrexate, vinblastine, doxorubicin, and

cisplatin (MVAC), as well as GC, are considered the primary

treatment regimens for MIBC and metastatic BCa (113).

However, the emergence of cisplatin resistance significantly limits

therapeutic efficacy and adversely affects patient prognosis (114).

METTL3 may become a potential biomarker for BCa resistance and

prognosis assessment in BCa (18, 115), providing new targets for

clinical treatment. It has been found that in BCa tissues and cell

lines, a novel circRNA 0008399 (circ0008399), which is upregulated

by the eukaryotic translation initiation factor 4A3 (EIF4A3),

promotes the formation of the WTAP/METTL3/METTL14 m6A

methyltransferase complex by binding to WTAP. It regulates the

expression of target RNA through m6A modification and reduces

cisplatin sensitivity and tumor occurrence and development in BCa

(17). Meanwhile, Xu et al. found that the expression of circRNA

104797 (circ_104797) is upregulated in cisplatin-resistant BCa cells

and plays a key role in maintaining cisplatin resistance. In addition,

the demethylation of circ_104797 significantly enhances the efficacy

of cisplatin-mediated apoptosis. Bioinformatics analysis also

indicates potential interactions between circ_104797 and RNA-

binding proteins (RBPs), and these findings suggest that

METTL3-mediated m6A modification may regulate cisplatin

resistance in BCa (116). The latest research has found that in

cisplatin-resistant BCa cells, METTL3 stabilizes the mRNA of

ring finger protein 220 (RNF220) through m6A modification,

thereby promoting RNF220 protein expression. RNF220 can

promote the ubiquitination and degradation of phosphodiesterase

10A (PDE10A), leading to a decrease in PDE10A protein levels and

enhanced cisplatin resistance. At the same time, RNF220 can also

destroy the stability of PDE10A and promote PD-L1 expression,

leading to immune evasion. Therefore, METTL3 can indirectly

affect PDE10A and PD-L1 through RNF220 to regulate drug

resistance and immune evasion (117). Zhang et al. developed an

m6A subtype classifier from the perspective of m6A, using single-

sample gene set enrichment analysis(ssGSEA), estimation of

STromal and immune cells in MAlignant tumors using

expression data (ESTIMATE), microenvironment cell populations

counter (MCPcounter), the tumor immune dysfunction and

exclusion (TIDE) algorithm, Kaplan-Meier (K-M) survival curves,

and cox proportional hazards model (Cox) regression analysis to

identify patients with different prognostic risks and treatment
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responsiveness for precise treatment of BCa (118). It has also been

shown that by investigating the copy number variation (CNV)

status of 23 m6A methylation-related genes (MRGs) in the cancer

genome atlas (TCGA) of BCa patients, 24.51% of the 411 TCGA

BCa patients had mutations in these 23 genes, with METTL3

mutations being the most frequent, indicating that METTL3 is

one of the key m6A MRGs in BCa and is related to BCa survival

(119). Wang et al. used the TCGA database to study CNVs of all

known m6A regulatory genes and found that CNVs of METTL3,

METTL14, and METTL16 are associated with the molecular

characteristics of BCa patients, and CNVs of METTL3 are also

associated with the overall survival (OS) of BCa patients. Therefore,

METTL3 is a prognostic and immune-related biomarker for BCa

(120).Yan et al. discovered that melittin can selectively induce

apoptosis in BCa cells through a METTL3-dependent mechanism.

METTL3 facilitates the maturation of primary microRNA-146 (pri-

miR-146) via m6A modification, while microRNA-146a-5p (miR-

146a-5p) exerts oncogenic effects by regulating the NUMB protein

and NOTCH2 receptor (NUMB/NOTCH2) axis. Inhibiting

METTL3 or miR-146a-5p can enhance the antitumor effects of

melittin; thus, high expression levels of METTL3 and miR-146a-5p

are associated with BCa recurrence and poor prognosis (121).

Overall, targeting METTL3 may represent a promising

therapeutic strategy to overcome resistance in BCa and improve

patient outcomes.
8 Discussion

BCa is a highly heterogeneous malignant tumor characterized

by a complex pathogenesis, and its treatment outcomes are often

hindered by chemoresistance and high recurrence rates. In recent

years, epigenetic research has increasingly highlighted the

significant role of m6A RNA methylation in tumor initiation and

progression (122). As a key enzyme responsible for m6A

modification, METTL3 has attracted considerable attention for its

functions across various cancer types. In BCa, METTL3 exhibits

multifaceted oncogenic roles, significantly influencing patient

prognosis by promoting tumor cell proliferation, migration,

invasion, and chemoresistance. Studies have demonstrated that

METTL3 enhances tumor cell proliferation and invasion through

the MYC, inhibitor of nuclear factor kappa-B kinase subunit beta

(IKBKB), and RELA proto-oncogene, NF-kB subunit (RELA)

signaling pathways. Furthermore, METTL3 is closely associated

with chemoresistance in BCa (116) and poor patient outcomes

(119). These findings suggest that METTL3 not only serves as a

potential therapeutic target for BCa but also possesses clinical value

as a prognostic biomarker. Although the oncogenic roles of

METTL3 in BCa have been extensively documented, its specific

molecular mechanisms warrant further investigation. The

interactions of METTL3 with other m6A regulators, such as FTO

and ALKBH5, in either a synergistic or antagonistic manner remain

largely unexplored. While therapeutic strategies targeting METTL3

present promising prospects for BCa treatment, In the context of

combination therapy strategies for BCa, the role of METTL3 in
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ADC therapy, as well as ADC combined with immunotherapy,

requires further in-depth exploration. A multicenter, real-world

cohort study conducted by Hu et al. included 253 patients receiving

neoadjuvant treatment across 15 tertiary hospitals (98 patients in

combination therapy, 107 in chemotherapy, and 48 in

immunotherapy). The results indicated that neoadjuvant

combination therapy significantly outperformed single-agent

chemotherapy or immunotherapy, achieving the highest rates of

complete response and pathological downstaging. This finding

underscores the clear advantage of combination therapy in

enhancing patient prognosis (123). Furthermore, their latest

research confirmed that Disitamab Vedotin (RC48-ADC)

combined with immunotherapy exhibited good efficacy in

patients with MIBC who were not suitable for cisplatin. However,

the durability of this efficacy and its safety still need to be validated

through longer follow-up studies. Additionally, RC48-ADC is

currently primarily utilized domestically, and its global

application faces certain challenges, highlighting the importance

of future international collaborative studies (124). Currently, no

specific drugs have been clinically approved for the treatment of

BCa, and several challenges hinder the development of METTL3-

targeting drugs. Firstly, issues such as the delivery efficiency of

targeted therapies, off-target effects, potential toxic side effects, low

bioavailability, and insufficient specificity limit their practical

application in BCa treatment. Secondly, the limitations of existing

research data—including inadequate sample sizes, heterogeneity in

experimental design, and inconsistencies in results—result in a lack

of comprehensive understanding of METTL3’s mechanisms.

Addit ional ly , there are chal lenges with the research

methodologies themselves, such as limitations in the sensitivity

and specificity of m6A modification detection techniques, which

compromise the reliability of the findings. Therefore, to effectively

translate METTL3 from basic research to clinical application,

continuous improvements are necessary in drug development,

data accumulation, and methodological optimization.

Nevertheless, therapeutic strategies aimed at METTL3 offer new

avenues for precision treatment of BCa, although their clinical

translation necessitates more comprehensive research.
9 Conclusions and future prospects

In recent years, research onm6A RNAmethylation has deepened,

gradually revealing the role of METTL3, a key enzyme for

methylation, in BCa has gradually been revealed. Existing studies

indicate that METTL3 promotes the proliferation, migration,

invasion, and chemoresistance of BCa cells by regulating the

stability and translation efficiency of oncogenes and tumor

suppressor genes through m6A modification. Additionally, it

facilitates immune evasion by modulating the tumor immune

microenvironment. These functions position METTL3 as a

significant potential target for BCa treatment and a crucial

molecular marker for predicting patient prognosis. Although

significant progress has been made in understanding the oncogenic

role and molecular mechanisms of METTL3, many questions remain
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to be explored. First, how METTL3 collaborates with or opposes

other m6A regulators in BCa and the specific networks and

mechanisms of its action are still unclear. whether there are

differences in the expression characteristics and functional roles of

METTL3 in different BCa subtypes requires further investigation.

Secondly, the current accumulation of research data and the existing

methodological limitations require further enhancement.

Additionally, therapeutic strategies targeting METTL3 remain in

the exploratory phase. The development of highly specific, low-

toxicity targeted drugs, along with the assessment of their

combined effects with existing treatment modalities, necessitates

further validation through preclinical and clinical studies. However,

the advancement of METTL3-targeted drugs encounters significant

challenges, including low bioavailability, off-target effects, and the

absence of efficient delivery systems. Moreover, the limited sample

sizes and heterogeneity in the experimental designs of current studies

restrict the broader applicability of the findings. Addressing these

issues will establish a solid foundation for the clinical application of

METTL3 in bladder cancer. With the continuous advancement of

RNA epigenetic tools and technologies, therapeutic strategies

targeting METTL3 are anticipated to be clinically translated in

BCa. By integrating multi-omics data, including genomics,

transcriptomics, and epigenetics, the precise role of METTL3 in

BCa progression can be further elucidated, providing a foundation

for the development of personalized treatment plans. Furthermore, as

a prognostic marker for BCa, the clinical diagnostic value of METTL3

requires additional validation, particularly in predicting disease

recurrence, metastatic risk, and sensitivity to chemotherapy and

immunotherapy. Overall, therapeutic strategies targeting METTL3

not only have the potential to overcome chemoresistance in BCa but

may also enhance the efficacy of existing immunotherapy outcomes,

thereby improving overall survival rates and quality of life for

patients. In the future, a comprehensive exploration of the

molecular mechanisms of METTL3 and the promotion of its

clinical application will yield more precise and effective solutions

for the diagnosis and treatment of BCa.
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