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SMF-net: semantic-guided 
multimodal fusion network 
for precise pancreatic 
tumor segmentation in 
medical CT image 
Wenyi Zhou1†, Ziyang Shi1†, Bin Xie1, Fang Li2, Jiehao Yin1, 
Yongzhong Zhang1*, Linan Hu2*, Lin Li1*, Yongming Yan1, 
Xiajun Wei2, Zhen Hu2, Zhengmao Luo2, Wanxiang Peng2, 
Xiaochun Xie2 and Xiaoli Long2 

1School of Electronic Information and Physics, Central South University of Forestry and Technology, 
Changsha, China, 2Department of Radiology, Zhuzhou Hospital Affiliated to Xiangya’ School of 
Medicine, Central South University, Zhuzhou, China 
Background: Accurate and automated segmentation of pancreatic tumors from 
CT images via deep learning is essential for the clinical diagnosis of pancreatic 
cancer. However, two key challenges persist: (a) complex phenotypic variations 
in pancreatic morphology cause segmentation models to focus predominantly 
on healthy tissue over tumors, compromising tumor feature extraction and 
segmentation accuracy; (b) existing methods often struggle to retain fine-
grained local features, leading to performance degradation in pancreas-
tumor segmentation. 

Methods: To overcome these limitations, we propose SMF-Net (Semantic-

Guided Multimodal Fusion Network), a novel multimodal medical image 
segmentation framework integrating a CNN-Transformer hybrid encoder. The 
framework incorporates AMBERT, a progressive feature extraction module, and 
the Multimodal Token Transformer (MTT) to fuse visual and semantic features for 
enhanced tumor localization. Additionally, The Multimodal Enhanced Attention 
Module (MEAM) further improves the retention of local discriminative features. 
To address multimodal data scarcity, we adopt a semi-supervised learning 
paradigm based on a Dual-Adversarial-Student Network (DAS-Net). 
Furthermore, in collaboration with Zhuzhou Central Hospital, we constructed 
the Multimodal Pancreatic Tumor Dataset (MPTD). 

Results: The experimental results on the MPTD indicate that our model achieved 
Dice scores of 79.25% and 64.21% for pancreas and tumor segmentation, 
respectively, showing improvements of 2.24% and 4.18% over the original 
model. Furthermore, the model outperformed existing state-of-the-art 
methods  on  the  QaTa-COVID-19  and  MosMedData  lung  infection  
segmentation datasets in terms of average Dice scores, demonstrating its 
strong generalization ability. 
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Conclusion: The experimental results demonstrate that SMF-Net delivers 
accurate segmentation of both pancreatic, tumor and pulmonary regions, 
highlighting its strong potential for real-world clinical applications. 
KEYWORDS 

medical image segmentation, multimodal feature fusion, semi-supervised learning, 
convolution transformer-based network, pancreatic tumor detection 
 

1 Introduction 

Pancreatic cancer is projected to surpass colorectal cancer by 
2040, becoming the second leading cause of cancer-related deaths 
after lung cancer, with a mere 12% five-year survival rate expected 
(1). Largely asymptomatic nature or vague symptoms, and the lack 
of early diagnostic biomarkers lead to the late detection of the 
disease when it gotten worse, even the high fatality rate of 
pancreatic cancer (2, 3). This emphasizes the urgent need for new 
therapeutic strategies to benefit the majority of patients. However, 
manual labeling of complex abdominal computed tomography 
(CT) images is time-consuming and prone to overlooking 
small lesions. 

To address these challenges, P-MoLE, a personalized federated 
learning approach, enables collaborative model training across 
institutions without sharing sensitive data, enhancing diagnostic 
performance while preserving privacy (4) is highlights the promise 
of AI-assisted medical image segmentation in improving early 
detection and diagnosis of pancreatic cancer. 

Therefore, developing an accurate and efficient medical 
segmentation model, which can  reduce time and  reliance  on
medical expertise, as well as make diagnosis faster and more 
accurate, is crucial for computer-aided diagnosis (5). However, 
due to the low contrast of pancreatic tissue in CT images and 
high inter-individual variability, segmentation accuracy remains 
limited. The rapid advancement of deep learning has marked a 
transformative era in medical image analysis. Medical image 
segmentation, as a pivotal technology, has garnered growing 
02 
interest. Its primary objective is to precisely delineate anatomical 
structures in images, which is critical for disease diagnosis, 
treatment planning, and subsequent research. 

Since 2012, numerous deep learning-based segmentation 
algorithms have been developed, including AlexNet (6), VGG-Net 
(7), GoogleNet (8), ResNet (9), DenseNet (10), FCNN (11), and U-
Net (12). Nevertheless, accurate segmentation of pancreatic tumors 
and organs remains challenging due to: (a) the significant variability 
in pancreatic and tumor phenotypes and distribution among 
patients, (b) poor tumor-to-pancreas and tumor-to-background 
contrast, and (c) the typically small size and deep-seated location 
of most tumors within the pancreatic region. 

Recently, multimodal segmentation algorithms have emerged as 
a promising solution. Unlike single-modal approaches, these 
methods employ two or more input modalities to enhance 
segmentation performance. In medical imaging, multimodal 
segmentation includes image-to-image fusion (e.g., CT-MRI 
integration to extract complementary features) and image-to-text 
fusion (e.g., incorporating radiological annotations to augment 
feature learning), as depicted in Figure 1. 

In multimodal segmentation research, Radford et al. (2021) 
introduced CLIP (13), which reformulates image-text matching as a 
pixel-level text alignment task. By leveraging pixel-text score maps to 
guide dense prediction models, CLIP achieves significant 
improvements over single-modal segmentation. However, its 
reliance on contrastive learning with 4 million pixel-text pairs leads 
to substantial computational and data demands, hindering practical 
deployment. To mitigate this, Zhao Yang et al. proposed ViLT (14), 
FIGURE 1 

Existing multimodal fusion methods. 
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replacing CLIP’s visual encoder with a convolution-free architecture. 
This modification drastically reduces computational costs while 
preserving performance, offering a more efficient framework for 
vision-language model deployment. Subsequent studies further 
advanced image-text alignment techniques. For instance, Dandan 
Shan et al. developed C2FVL (15), incorporating text annotations 
with lesion counts and spatial descriptors to refine visual feature 
alignment, enabling precise COVID-19 lung segmentation. 

Despite these advances, image-text segmentation networks often 
struggle to fully exploit cross-modal complementary features due to 
inadequate modeling and insufficient attention mechanisms, limiting 
their ability to retain fine-grained local representations. 

To tackle this challenge, Li et al. designed LVIT (16), a hybrid 
CNN-Transformer architecture that integrates image and text features 
via a ViT fusion module while preserving local structures through the 
PLAM attention mechanism. Similarly, Fuying Wang et al. proposed 
MGCA (17), employing hierarchical alignment to progressively match 
visual and linguistic features across semantic scales. Their bidirectional 
cross-attention strategy further enhances multi-granularity token 
matching, optimized via contrastive learning. Rahman et al. 
introduced the Medical Image Segmentation Transformer (MIST), 
which enhances local and global feature modeling by integrating a 
convolutional attention mixing (CAM) decoder into a hierarchical 
transformer framework (18). More recently, the TAV model 
introduces a triguided attention module to capture visual and 
textual correlations across modalities, achieving 2–7% performance 
gains (19). An attention gate further refines feature fusion by 
suppressing redundancy. Additional approaches, such as CDDFuse 
(20) and  ConVIRT (21), have explored alternative strategies for robust 
image-text feature extraction. Nevertheless, effectively fusing 
multimodal representations remains an open challenge in the field. 

In addition to the challenge of effectively fusing image and text 
features, another critical limitation is the scarcity of high-quality 
multimodal (image-text) medical datasets. Currently available 
public multimodal medical datasets remain extremely limited, 
presenting significant challenges for training deep learning 
models. Furthermore, developing custom-built multimodal 
datasets poses considerable difficulties, as this process requires not 
only expert annotation of medical images but also the generation 
and precise alignment of corresponding textual descriptions - an 
inherently labor-intensive task. Consequently, the efficient creation 
and utilization of multimodal datasets has emerged as a pressing 
research priority (22). 

While most current research focuses on pancreatic organ 
segmentation, few studies address the joint segmentation of 
pancreas and tumors. This research gap stems from two key 
challenges: (a) Pancreatic tumors are typically embedded in or 
near the pancreas, showing similar contrast to both pancreatic and 
surrounding tissues, making them difficult to identify accurately; (b) 
Tumors exhibit substantial inter-patient variability in both 
phenotypic characteristics and spatial distribution patterns. To 
confront these challenges, Pan and Bi et al. (23) developed a 
dynamic instance weighting approach that selectively emphasizes 
complex tumor instances based on guidance from simpler cases, 
thereby effectively transferring learned features between different 
Frontiers in Oncology 03	
complexity levels. Meanwhile, Li and Liu et al. (24) proposed a 
temperature-guided framework comprising three key components: 
balanced temperature loss, rigid temperature optimization, and soft 
temperature indication. This system dynamically adjusts the 
learning focus between tumor and pancreatic features, 
maintaining segmentation accuracy for healthy pancreatic tissue 
while improving tumor delineation. 

To overcome these limitations, we present SMF-Net: a dual-path 
U-Net architecture integrating a dual-learner adversarial framework to 
enable precise segmentation of pancreatic tumors in CT imaging. The 
proposed network comprises two complementary branches (1): a U-
shaped convolutional neural network (CNN) pathway that processes 
visual inputs and generates segmentation outputs, and (2) a  U-shaped  
multimodal transformer (MTT) branch that performs cross-modal 
feature fusion. The MTT module, which is designed to interface with 
AMBERT (25), employs noise suppression while leveraging inter-
modal semantic relationships to enhance textual feature extraction 
from AMBERT. Our architecture exhibits strong compatibility with 
both visual and textual features thanks to the strategically positioned 
Multimodal Enhanced Attention Module (MEAM) at the CNN skip 
connections. These MEAM units enable balanced feature 
representation across modalities while preserving critical 
anatomical details. 

Additionally, we implement a semi-supervised learning paradigm 
to optimize resource utilization during training while enhancing 
model generalizability. Our Dual-learner Adversarial Network 
(DAS-Net) synergizes consistency regularization with adversarial 
training objectives. To mitigate data scarcity, a clinically annotated 
multimodal dataset of pancreatic tumors was compiled through 
collaboration with radiologists at Zhuzhou Central Hospital, 
containing paired CT scans and diagnostic reports. These 
contributions collectively advance multimodal medical segmentation 
research while delivering practical clinical solutions. 

The main contributions of this work are as follows: 
 

•	 SMF-Net architecture: We propose a novel CNN-

Transformer hybrid architecture for multimodal 
segmentation called SMF-Net, which integrates an 
AMBERT text encoder to extract multi-scale textual 
features. The incorporated Multimodal Transformer 
(MTT) module enhances cross-modal feature extraction, 
while our Multimodal Enhanced Attention Module 
(MEAM) effectively preserves complementary image and 
text information. This design enables the comprehensive 
learning of pancreatic anatomical boundaries and more 
accurate tumor localization. 

•	 DAS-Net framework: We have developed DAS-Net (Dual 
Adversarial Student Network), a semi-supervised, dual-
learner, adversarial framework that integrates stability-
constrained consistency regularization and discriminator-

guided adversarial self-training synergistically. This unique 
combination significantly improves the utilization of 
unlabeled data during model training. 

•	 Dataset construction: Due to the specialized knowledge 
required for medical image annotation, the cost of 
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obtaining data labels is high and the amount of data is often 
limited. To enrich the training data, we collaborated with 
Zhuzhou Central Hospital to create a dataset comprising 
CT images of 86 pancreatic cancer patients alongside the 
relevant textual data. 

•	 Comprehensive evaluation: Extensive validation on our 
custom-collected, multimodal pancreatic tumor dataset 
demonstrates state-of-the-art segmentation performance. 
Cross-dataset  evaluations  on  QaTa-COV19  and  
MosMedData further confirm the model’s strong

generalization capabilities across different imaging 
protocols and disease manifestations. 
2 Related work 

In this section, we examine three key methodological 
components: text-image feature fusion approaches, attention 
mechanisms, and semi-supervised learning techniques. First, we 
discuss the significance of text-image feature fusion in medical 
image segmentation and review existing methods, followed by the 
presentation of our proposed multimodal feature fusion module 
with its functional benefits. Subsequently, we analyze the critical 
role of attention mechanisms in multimodal data processing and 
introduce a novel cross-modal multi-enhanced attention 
mechanism. Finally, we investigate semi-supervised learning 
applications in medical image segmentation, with particular 
emphasis on our dual-student adversarial network framework. 

Text-image feature fusion methods: Multimodal feature fusion 
represents a prominent research direction in multimodal 
information processing. Distinct modalities exhibit different 
representation characteristics, and naive fusion approaches may 
introduce information redundancy. Effective fusion strategies can 
significantly enrich feature representations. Current computer 
vision applications, including image captioning and segmentation, 
extensively employ such techniques. 

Early research primarily relied on basic fusion operations such 
as Hadamard product, element-wise addition, or simple 
concatenation of heterogeneous features. While computationally 
simple, these methods lack theoretical sophistication. Subsequent 
advances have produced more sophisticated fusion paradigms, 
including feature-level (26), decision-level (27), hybrid-level 
(28), and model-level fusion (29), which constitute current state-
of-the-art approaches. Our framework employs feature-level 
(early) fusion, which provides complementary semantic 
information while preserving original image characteristics with 
computational efficiency (30). However, early fusion may propagate 
noise and artifacts. To address this, we developed a Multimodal 
Text-Transformer (MTT) module specifically designed for 
compatibility with the AMBER language model. The MTT 
module effectively extracts textual features while suppressing 
noise contamination and optimally leveraging cross-modal 
semantic relationships. 
tiers in Oncology 04
Attention Mechanisms: Originally inspired by human 
cognitive processes, attention mechanisms have become 
fundamental components in deep learning architectures for 
adaptive feature selection. Bahdanau et al. first formalized 
attention mechanisms for neural machine translation in 2014 
(31), with subsequent adaptation to computer vision by Wang 
et al. (32). The Transformer architecture (33) represents  a
landmark implementation using exclusively attention-based 
computations. Current research has diversified attention 
mechanisms into several variants, including standard attention, 
self-attention, and cross-attention (34–40). However, existing 
multi-scale attention approaches (41, 42) frequently exhibit scale-
specific bias, neglecting complementary information across 
different scales. Our proposed Multi-modal Enhanced Attention 
Mechanism (MEAM) addresses this limitation by preserving fine-
grained local features while effectively integrating multi-

scale representations. 
Semi-supervised Learning Approaches: As a well-established 

paradigm in machine learning, semi-supervised learning has gained 
renewed interest in medical image segmentation due to its ability to 
leverage both labeled and unlabeled data (43). Contemporary 
methods fall into two principal categories: regularization-based 
approaches and pseudo-labeling techniques. The former employs 
unlabeled data through consistency constraints, adversarial 
training, co-training paradigms, or entropy minimization, with 
consistency regularization demonstrating particular promise in 
medical imaging applications (44). The latter generates pseudo-
labels from model predictions on unlabeled data, subsequently 
incorporating them into the training set, that has shown 
empirical success across various segmentation tasks (45–48). 

Both paradigms present inherent limitations. Regularization-
based methods require careful design of data augmentation 
strategies to produce meaningful sample variations; excessive 
perturbations may degrade model performance, while insufficient 
variations yield ineffective regularization. Pseudo-labeling methods 
risk error propagation when incorrect predictions are treated as 
ground truth during training. Furthermore, divergent perturbations 
across  co-trained  sub-networks  may  induce  prediction  
inconsistencies, exacerbating pseudo-label uncertainty. To 
mitigate these issues, we extend the dual-student framework (49) 
by incorporating an attention-equipped discriminator network, 
proposing the Dual-Adversarial-Student Network (DAS-

Net) architecture. 
Despite the significant progress made in multimodal medical 

image segmentation, existing methods still face key challenges. 
Traditional text-image fusion often leads to redundant or weakly 
aligned features, attention mechanisms may suffer from scale bias and 
incomplete cross-modal interaction, and semi-supervised learning 
approaches are vulnerable to pseudo-label noise and instability from 
inconsistent augmentations. Our framework addresses these 
challenges by proposing the MTT module for robust noise-
suppressed fusion, the MEAM attention mechanism for effective 
multi-scale integration, and the DAS-Net framework to stabilize 
semi-supervised learning with dual-student co-training enhanced by 
	 frontiersin.org 
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an attention-based discriminator. These contributions collectively 
improve feature representation quality, learning stability, and 
segmentation accuracy beyond existing approaches. 
3 Materials and methods 

3.1 Data collection 

Abdominal CT imaging reveals considerable anatomical 
variability, with substantial inter-image differences in structural 
morphology, dimensional characteristics, and tissue density. 
Abdominal CT imaging presents considerable anatomical 
complexity, with substantial variations in structural morphology, 
dimensional characteristics, and tissue density across patients 
(Figure 2). To establish a comprehensive multimodal pancreatic 
tumor dataset, we selected three representative cases from our 
institutional collection, demonstrating tumors in distinct anatomical 
locations: the pancreatic head (Case 1), body (Case 2), and tail (Case 
3). The pancreatic body lesion (Case 2) proved particularly challenging 
for detection, exhibiting both small tumor volume (mean diameter 
nearly 2 cm) and low contrast enhancement. 

The improved dataset comprises two parts: (a). A filtered 
dataset from the Medical Segmentation Decathlon (MSD) (50), 
including 235 sets of CT images with pancreatic and tumor labels 
from patients, after excluding 47 sets of duplicate or unclear 
background segmented data. This dataset is provided by 
Frontiers in Oncology 05 
Memorial Sloan Kettering Cancer Center (New York, NY, USA) 
and poses a challenge due to the imbalance in labeling small 
pancreatic tumor structures within a large background. (b). 
Original CT images in DICOM format from 108 pancreatic 
cancer patients, including non-contrast, arterial, and venous 
phases, provided by Zhuzhou Central Hospital. Under radiologist 
supervision, we implemented rigorous quality control to exclude 
non-diagnostic images based on the following criteria: a) duplicate 
examinations, b) excessive motion artifacts (n=14), c) inadequate 
spatial resolution (n=8), retaining 86 qualifying cases. All pancreatic 
lesions were manually segmented using 3D-Slicer, with tumor 
dimensions measured across three orthogonal planes. The 
resulting annotations and quantitative measurements (maximum 
diameter, volume) were systematically recorded in standardized 
metadata files. All annotations were verified by radiologists. 
Ultimately, this study’s pancreatic tumor medical dataset contains 
321 CT images of pancreatic cancer patients with pancreas and 
tumor annotations. In the experiment, 35 randomly selected CT 
images from the 321 sets were used as the test set to evaluate model 
performance, with the remaining sets used as the training set. 

The segmentation targets of this paper are pancreatic organs 
and pancreatic tumors. Due to the pancreas’s complex anatomical 
position, tumors significantly impact surrounding organs (51). 
Based on the location characteristics of tumors in the annotated 
patient CT images, we classified them into four types:(a). Pancreatic 
head cancer, where the tumor is located in the head of the pancreas, 
usually appearing as a localized mass or enlargement in the 
FIGURE 2 

CT images of 3 patients were selected from the self-constructed dataset. Each case displays (left to right): three magnified axial slices, 3D 
reconstruction, and associated clinical annotations. Pancreatic anatomy is demarcated by green dashed boundaries, with yellow dashed contours 
highlighting tumor regions. 
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pancreatic head region on CT images. (b). Tumor located in the 
body and tail of the pancreas, usually showing lower contrast 
compared to surrounding tissues and probably causing local 
enlargement of the pancreas. (c). Tumor located in the tail of the 
pancreas without spreading, small in size with uneven density, 
depending on the tissue composition and necrosis degree of the 
tumor. (d). Tumor located in the tail of the pancreas with spreading, 
large lesion area, appearing as a localized high-density area on 
CT images. 
3.2 Deep learning method 

To overcome the segmentation challenges posed by the small 
size, irregular shape, and complex spatial distribution of pancreatic 
tumors, we propose SMF-Net, a novel framework for accurate 
pancreas and tumor segmentation in medical images. We employ 
a hybrid CNN-Transformer encoder as the backbone network for 
feature extraction and introduce the MEAM (Multi-modal 
enhanced attention mechanism) to integrate high-level semantic 
features with low-level fine-grained spatial features. This fusion 
mechanism establishes long-range dependencies, improves feature 
discriminability, and enables effective cross-scale feature fusion 
 

 

3.2.1 U-MTT Branch 
As illustrated in Figure 3A, our backbone architecture 

comprises two U-shaped networks combining CNNs and 
Transformers, where the U-shaped Transformer (52) represents 
our proposed MTT module. This U-shaped MTT module is 
specifically designed for multimodal feature fusion between text 
and image representations. The module initially processes text 
embeddings from the AMBERT pre-trained language model, 
which have undergone both fine-grained (Fg-encoder) and 
coarse-grained (Cg-encoder) encoding. The fusion process can be 
formally expressed as shown in Equations 1–3: 

x text = Y  AMBERT(input text) (1) 

x img = Y  DownCNN,1(input img) (2) 

Y DownMTT = MTT(x img,  x text) (3) 

here inputimg and inputtext denote the input image and text data 
streams respectively, ximg corresponds to the features extracted by the 
first Down CNN layer, xtext represents the text features encoded by 
AMBERT, and YDownMTT indicates the fused features generated by the 
MTT module. Architecturally, each MTT module maintains the 
standard transformer encoder configuration, containing multi-head 
self-attention mechanisms and MLP layers, along with conventional 
convolutional operations and activation functions. In the subsequent 
processing stages, each Down MTT layer (i ∈ {1,2,3}) incorporates 
both the hierarchical features from the preceding Down MTT 
module and the corresponding feature maps from the parallel 
Down CNN pathway are formulated as shown in Equation 4: 
Frontiers in Oncology 06
 

 

 

Y DownATT,i+1 = MTT(Y DownMTT,i + x  img,i+1) (4) 

The processed features are then propagated through Up MTT 
modules to the MEAM component, where they undergo integration 
with the corresponding Down CNN features before being processed 
by the Up CNN modules. 

3.2.2 U-CNN branch 
Figure 3A illustrates the U-shaped CNN branch responsible for 

processing image inputs and generating the final segmentation 
output. Each CNN module incorporates sequential Conv, 
BatchNorm (BN), and ReLU activation operations. Between 
consecutive DownCNN modules, MaxPool layers perform feature 
downsampling. The transformation at each DownCNN level is 
defined as shown in Equations 5, 6: 

Y DownCNN,1 = Y  DownCNN(input img) (5) 

Y DownCNN,i+1 = MaxPool(Y DownCNN,i) (6) 

where YDownCNN denotes the input to the i-th DownCNN 
module, which undergoes processing through both the CNN 
operations and MaxPool downsampling to produce YDownCNN ,i+1. 
These hierarchical features then combine with corresponding 
UpMTT features through residual connections, creating cross-
modal representations. To maintain balanced contribution from 
both modalities while preserving critical feature information for 
segmentation accuracy, we introduce the MEAM module. The 
integrated features subsequently propagate through the MEAM-

enhanced pathway, progressively upsampling via UpCNN modules 
to yield the final segmentation output. 

3.2.3 Match AMBERT MTT 
Figure 3B presents the AMBERT-aligned MTT fusion module, 

designed to enhance text feature extraction from AMBERT while 
capturing cross-modal semantic relationships between textual and 
visual information. This fusion mechanism effectively leverages 
inter-modal feature interactions to boost performance. The 
processing pipeline first transforms input text through AMBERT’s 
dual-path extraction, obtaining both coarse-grained and fine-
grained textual representations (YAMBERT ). These text features 
then undergo transformation via our custom CTBN layer - a 
sequential combination of Conv2d, BatchNorm, and ReLU 
operations - before being combined with image features (Ximg ) via 
element-wise multiplication. The integrated features are further 
processed by a Vision Transformer (ViT) (53) module to produce 
the final output (YMTT ). The complete transformation can be 
formally expressed as shown in Equation 7: 

" # Y 
Y MTT = Y ViT X img ⊗ Y CBTN(Y AMBERT(X text)) (7) 

x 

where Ximg and Xtext denote the image and text inputs 
respectively, YAMBERT represents AMBERT’s hierarchical text 
features, YCBTN and YViT correspond to the CTBN and ViT 
 front
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transformation operations. The MTT fusion module generates 
more  comprehensive  text  representations  compared  to  
conventional multimodal fusion approaches, demonstrating 
superior capability in modeling text-image semantic relationships. 

3.2.4 Multi-modal enhanced attention 
mechanism 

Figure 3C illustrates the MEAM module, which maintains 
balanced consideration of both modality inputs while preserving 
Frontiers in Oncology 07 
original feature representations. Drawing inspiration from CBAM 
(54) mean-maximum fusion strategy, MEAM employs parallel 
pooling pathways. The processing begins with 2D convolutional 
transformation followed by nonlinear activation, after which 
features undergo parallel Average Pooling (AP) and Max Pooling 
(MP) operations. These pooled features then undergo additional 2D 
max pooling (P_M) for salient feature extraction. The processed AP 
and MP features are then concatenated with residual connections, 
followed by another 2D max pooling operation. These three 
FIGURE 3 

Overall network structure of SFM-Net. 
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processed feature streams are then integrated via residual 
concatenation to preserve original feature characteristics. 
Incorporating concepts from CLAB (55), we implement a simplified 
CLAB layer for final feature alignment. The aligned features are then 
combined with original inputs through element-wise multiplication to 
retain critical feature information. The complete MEAM operation 
can be formally expressed as shown in Equation 8: 

Y 
=Y MEAM X ⊗ Y CLAB ½AP PM + MP  PM + (AP + MP)  PM 

(8) 
x 

where X denotes input features, AP and MP represent average-
and max-pooled features respectively, PM indicates 2D max 
pool ing ,  YCLAB corresponds  to  the  feature  al ignment  
transformation, and Y represents the final output. Through this 
architecture, MEAM effectively combines multi-scale pooling 
operations with residual connections and feature recombination 
to maximize information utilization from original inputs. 

3.2.5 Semi-supervised dual-student adversarial 
learning method 

As previously discussed, semi-supervised learning approaches 
are crucial for mitigating data scarcity challenges in medical image 
segmentation. Illustrated in Figure 4A, our proposed Dual 
Adversarial Student Network (DAS-Net) addresses the limited 
availability of annotated multimodal medical data by effectively 
leveraging both scarce labeled samples and abundant unlabeled data 
to enhance segmentation accuracy. 

The architecture incorporates two structurally identical 
discriminator networks within the dual-learner framework. 
Discriminator D operates on reliable pseudo-labels generated from 
unlabeled data during self-training, enabling robust quality assessment 
of predictions across both labeled and unlabeled samples. The 
adversarial training paradigm alternates between generators and 
discriminators, progressively improving the segmentation network’s 
ability to produce high-confidence predictions (approaching unity) for 
unlabeled data. The resulting segmentation objective function is 
formulated as shown in Equation 9: 

∧∧∧0 1 
Lsemi (yu, yema) +  Ladv1(D1(xu, yu), 1) ∧ 

L(q)S = LS(yi, yi) +  l@ A 
∧ 

+Ladv2(D2(xu, yu), 1) 

(9) 

The objective functions of discriminators D1 and D2 can be 
defined as shown in Equations 10, 11: 

  
∧∧ 

L(q)D1
= Ladv1 D1(xi, yi),  1) + Ladv1(D1(xu, yu), 0 (10) 

        
∧∧ 

(11) L(q)D2
= Ladv2 D2 xema, yema ,  1 + Ladv2 D2 xu, yu , 0

Where Ls is the Dice loss, Lsemi is the Mean Squared Error 
(MSE) loss, Ladv1 and Ladv2 are multi-class cross-entropy losses. xi 
and yi correspond to the input image training data and its true 

∧∧ 
and xema correspond to the input unlabeled data 

and noise perturbations. y and y are the segmentation prediction u i 

labels, while xu 
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∧ 
results for labeled and unlabeled data, respectively, and yema is the 
segmentation prediction result from the teacher model under EMA 
weight propagation. The weighting coefficient is defined in a 
gradually increasing Gaussian curve manner according to 
reference (56), and can be expressed as shown in Equation 12: 

(-5 (1-I)2)l = d e (12) 

Where I is the number of training epochs for the model. In the 
training results of the mean teacher method, the weight parameters of 
the teacher model are the EMA accumulation of the student model 
parameters (57), which can be defined as shown in Equation 13: 

q 
0 
= aqt

0 
−1 + (1  − a)qt (13) t 

Where q 
0 

represents the parameters to be updated for the t 

teacher model, qt is the weight parameters of the student model, 
and a is the hyperparameter for the smoothing coefficient. The 
value of a determines the dependency relationship between the 
teacher and student models. According to references (58) and 
practical experiments, the best performance is achieved when 
a =0.999. 

The proposed Dual Adversarial Student Network (DAS-Net) 
framework  initializes  two  architecturally  identical  yet  
independently trained student models with synchronized 
parameters. During training, each branch maintains its own 
we i gh t  upda t e s  wh i l e  e x ch ang i n g  l e a r n ed  f e a t u r e  
representations through a shared information channel. To 
maintain prediction consistency between branches and ensure 
training stability, we impose regularization constraints on the 
unlabeled data processing pipeline. The framework processes 
labeled data through supervised loss computation while 
simultaneously extracting valuable feature representations 
from unlabeled images via consistency constraints. These 
mechanisms  are  further  enhanced  through  adversarial  
learning components. 

The comprehensive loss function for DAS-Net combines 
weighted contributions from both student networks (Student A 
and Student B), each comprising three key components: supervised 
loss, unsupervised consistency loss, and adversarial loss. Both 
branches share identical loss formulations, with Student A’s total 
loss La expressed as shown in Equation 14: 

La = La 
seg + l1 · Lcons

a + l2 · Lsta
a + l3 · L

a (14)adv

Where Lseg represents the supervised loss, which includes the 
cross-entropy loss and the Dice loss. Lcons denotes the loss function 
for the consistency constraint. Lsta represents the stabilization 
constraint loss for Student A, and Ladv expresses the adversarial 
loss for Student A. The parameters l1, l2, and l3 are the weighting 
coefficients used to balance the constraints. (See Section 4.4.3 for 
specific experiments).
 

Consistency Loss (La
 
cons , l1): This term minimizes prediction 

discrepancies for the same unlabeled sample under different 
perturbations (e.g., Gaussian noise, rotation). However, 
excessively high l1 values can induce oversensitivity 
perturbations, reducing model robustness (59).

to 
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Stabilization  Loss  (Lasta , l2):  This  selectively  applies  
consistency constraints exclusively to high-confidence pseudo-
labels. Setting l2 too high with low confidence thresholds 
introduces label noise, whereas overstringent thresholds reduce 
valid samples for learning. 

Adversarial Loss (La 
adv , l3): A discriminator aligns feature 

distributions between labeled and unlabeled data. Due to the 
inherent instability of adversarial training convergence, this loss 
typically requires significantly lower weighting (empirically l3< 0.1) 
compared to other components. 
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The supervised loss function can be expressed as shown in 
Equation 15: 

LCE (xi ,yi)+DICE(xi ,yi)Lseg = (15)
2 

Where the Lseg loss function combines the cross-entropy loss LCE 

and the Dice similarity coefficient to simultaneously focus on both 
positive and negative samples. The formula for the cross-entropy loss 
function in the supervised loss is as shown in Equation 16: 

La 
CE = −o log Sa(xl )(i,j,c) (16) yl(i,j,c) 

i,j,c 
FIGURE 4 

(A) DAS-Net overall network framework. (B) The overview architecture of the semi-supervised SMF-Net. 
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For the unlabeled images, the segmentation network Student A is 
applied twice to generate two prediction results, SaT (xu) and  T (Sa 
xu). The pixel-level consistency error ea ∈ Rhxw can be calculated, 
which is used to compute the consistency and stabilization losses as 
shown in Equation 17: 

ea(xu)(i,j) = (Sa(T (xu))(i,j) − T (Sa(xu))(i,j))
2 (17) 

Where Sa represents one of the student networks, and xu denotes 
the input unlabeled data. The Euclidean distance is used to measure the 
consistency of the predictions, where a smaller value of ea indicates 
greater stability of the sample. To leverage the semantic information 
from the unlabeled data sample xu , consistency constraints are applied 
to each student branch. For the unlabeled image xu , segmentation

networks Sa and Sb are used to generate two segmentation results, 
SaT (xu) and  T (Saxu). Consequently, the formula for calculating the 
consistency  loss function is as shown  in  Equation 18: 

Lacons =
1 

oea(xu)(i,j) (18)
h x w 

h,w

i,j

To enhance the stability of model training, a stabilization 
constraint is applied to the sample when the semantic 
information of the input sample matches the label and the 
prediction confidence exceeds a predefined threshold. For the 
Student A branch, the formula for calculating the pixel 
stabilization loss is as shown in Equation 19: ( 

a 

la 
½ea(x) < eb(x) 1Lmse(x), r = rb = 1  

sta(x) =  
raLmse(x), ra 、 rb ≠ 1 

(19) 

Where Lmse is the Mean Squared Error used to measure the 
consistency between the two predicted outputs. The specific 
expression is as shown in Equation 20: 

Lmse(xu)(i,j) = (Sa(T (xu))(i,j) − Sb(T (xu))(i,j))
2 (20) 

The overall stabilization loss function is calculated as shown in 
Equation 21: 

laLasta(xu) =  
1 
o sta(xu)(i,j) (21)

h x w 

h,w

i,j

In conclusion, we present a novel multimodal hybrid architecture 
that synergistically combines CNN and Transformer features within a 
dual U-shaped network framework, implemented through our proposed 
semi-supervised Dual Adversarial Student learning paradigm 
(Figure 4B). This comprehensive approach effectively addresses the 
fundamental challenges of limited annotated data in medical image 
analysis while leveraging the complementary strengths of CNN and 
Transformer architectures for robust multimodal segmentation. 
4 Experiments 

4.1 Experimental environment 

To verify the performance of SMF-Net, we conducted necessary 
comparative experiments and ablation studies. The approach 
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presented in this chapter is implemented using the PyTorch 
framework. The main server specifications are as follows: the 
operating system is Ubuntu 20.04.12 LTS, the CPU is an Intel(R) 
Xeon(R) Gold 5218, the GPU is an NVIDIA NTX4090 24G, and the 
memory capacity is 256GB. The training and validation sets are 
divided from the original training set, ranging from 10% to 50%. 

During experimentation, only basic data augmentation strategies 
were employed, including random rotation, scaling, flipping, and 
brightness adjustment. To ensure fair comparison across all methods, 
identical input dimensions, preprocessing protocols, and training loss 
functions were applied to all three datasets without utilizing 
additional pre-training data. The Adam optimizer was used with an 
initial learning rate of 3e-4 for the MosMedData+ and QaTa-COV19 
datasets, and 1e-3 for the MPTD dataset, while maintaining a 
consistent momentum of 0.99. An early stopping mechanism is 
employed, terminating the training if the model’s performance does 
not improve within 100 epochs. Additionally, considering the varying 
scales of the datasets, different batch sizes were configured: with input 
resolution fixed at 256×256, batch sizes were set to 24 for 
MosMedData+ and MPTD, and 16 for QaTa-COV19. 
 

4.2 Loss function and evaluation index 

4.2.1 Dice (Dice coefficient) 
The Dice coefficient measures the similarity between two samples, 

with values closer to 1 indicating higher similarity. In image 
segmentation tasks, a high Dice coefficient (e.g., 0.8 or higher) 
suggests good segmentation performance. It is calculated as shown in 
Equation 22: 

  
N C   1 2 pij ∩ yij

Dice = oo ·     = 1  − LDice (22)
NC   +   )i=1 j=1 ( pij yij
 

 

4.2.2 MIoU (Mean Intersection over Union) 
MIoU, or Mean Intersection over Union, is an indicator used to 

measure the effectiveness of medical image segmentation. It calculates the 
overlap between the segmentation result predicted by the model and the 
actual segmentation label. By computing the intersection and union of 
the predicted results for each category with the real labels, the proportion 
is determined, and the average proportion across all categories is 
obtained. A higher MIoU value indicates that the prediction is closer 
to  the true value, reflecting better segmentation performance. The 
formula for calculating MIoU is as shown in Equation 23: 

  
N C   1 pij ∩ yij

mIoU ·   (23) = oo   
i=1 j=1 NC pij ∪ yij
4.2.3 95HD (95% Hausdorff distance) 
The Hausdorff Distance (HD) is used to measure the distance 

between two subsets in a space. In the field of medical image 
segmentation, is it is particularly important to quantify the difference 
between predicted values and ground truth segmentation values. As it 
effectively captures the utmost discrepancy between the predicted and 
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ground truth segmentation outcomes, HD is frequently employed for 
measuring the performance of models when it comes to segmenting 
boundary regions. Its expression is as shown in Equation 24: 

  
H(A, B) =  max max m injja − bjj , max m injjb − ajj

a∈A b∈B b∈B a∈A 

(24) 

Where ||·|| is the distance norm between point set A and point 
set B. In all experiments, the segmentation accuracy and 
performance of the model are assessed by DSC and HD. 

4.2.4 MAE (Mean Absolute Error) 
When the output predicted by the segmentation model is a 

probability map, the MAE can evaluate the error between the 
predicted probabilities and the true labels. MAE provides a 
numerical measure of the prediction error for each pixel, reflecting 
the average performance of the model at the pixel level. The formula 
for calculating MAE is as follows, where the true label of the i-th pixel 
is denoted and the predicted probability of the i-th pixel is described, 
and n is the total number of image pixels as shown in Equation 25. 

n ∧ 

n 
1 oMAE = yi − y (25) 
i=1 i 
4.3 Contrast experiment 

4.3.1 Comparison with current state-of-the-art 
fully supervised methods 

Due to the lack of public multimodal pancreatic datasets, we 
evaluated our model’s performance on smaller and more 
challenging lesions using our in-house multimodal pancreatic 
tumor dataset (MPTD) in comparative and ablation experiments. 
SMF-Net was compared against five fully supervised single-modal 
segmentation methods (U-Net, ATT-UNet, UNet++, TransUNet, 
Swin-Unet) and three multimodal methods (ViLT, LViT-NT 
[without text], LViT-WT [with text]). For semi-supervised 
experiments, we used 50% labeled and 25% unlabeled training data. 

As shown in Table 1, under 100% label rate, SMF-Net 
outperformed all five single-modal baselines on MPTD. At 50% 
label rate, our model achieved a mean Dice score of 67.61%, 
surpassing UNet++ and TransUnet, demonstrating performance 
comparable to fully supervised single-modal methods. At full 
supervision, SMF-Net improved the tumor segmentation Dice 
score by 3.82% over Swin-Unet (the best single-modal method), 
validating the efficacy of text-guided feature learning. 

In multimodal comparisons (Table 1), SMF-Net achieved a 
5.37% higher mean Dice score than ViLT and a 3.35% improvement 
over LViT-WT in tumor segmentation. Thus, SMF-Net consistently 
surpasses state-of-the-art (SOTA) methods in both single and 
multimodal settings. 

The prediction results are presented in Figure 5, demonstrating 
the superior segmentation performance of our proposed model 
compared to UNet++, TransUNet and LViT-WT. Although there 
are some differences in the segmentation results, particularly in the 
Frontiers in Oncology 11 
shape and size of the tumors, the predicted results from the 
proposed model closely resemble the actual annotated results. 

4.3.2 Comparison of semi-supervised methods 
As shown in Table 2, we evaluated  the segmentation

performance of Dual-Student-SMF-Net across varying label rates, 
using BERT-based LViT (60) as the baseline. Comparisons included 
LViT variants with (LViT-WT) and without (LViT-NT) text 
guidance. Results demonstrate that both our method and LViT-
WT consistently surpass LViT-NT, validating the efficacy of text-
enhanced segmentation. 

As illustrated in Figure 6, we present representative 
segmentation results from SMF-Net under semi-supervised 
learning. Given the pancreas’ small size relative to other organs, 
where minor segmentation errors can significantly impact 
performance, our method demonstrates robust accuracy. Notably, 
the proposed Dual Adversarial Student Network (DAS-Net) enables 
SMF-Net to maintain excellent segmentation quality even with only 
50% supervised training. 
4.4 Ablation experiment 

Our primary contributions include: (a) a Multi-granularity 
Text-Target fusion module (MTT) that aligns coarse-to-fine 
textual features, (b) a Multi-level Enhanced Attention Mechanism 
(MEAM) for cross-modal representation learning, and (c) their 
integration with a semi-supervised dual-student framework. We 
validate these innovations through two ablation studies on the 
MPTD dataset, examining: text feature extraction efficacy and 
MEAM component contributions. 

4.4.1 Text feature extraction 
Table 3 presents comparisons using BERT-based LViT as 

baseline. Here, LViT-NT and OUR-NT denote configurations 
where text features were disabled (replaced with non-informative 
constants). Results demonstrate that text features improved tumor 
Dice scores by 1.83% for LViT-WT and 3.06% for our model, 
confirming their segmentation-enhancing effect. Notably, our text-
enabled model outperformed LViT-WT by 2.8% in Dice coefficient, 
establishing its superior segmentation capability. 

4.4.2 MTT and MEAM module 
Table 4 presents our proposed multimodal text-image fusion 

segmentation method with cross-modal reinforced attention 
(MEAM). The results demonstrate MEAM’s consistent performance 
gains for both BERT and AMBERT architectures, highlighting its 
generalization capability and robustness. Notably, the AMBERT 
+MEAM configuration achieves the maximum improvement of 
2.61% in tumor Dice score over the BERT baseline. The integrated 
multimodal fusion approach (AMBERT+MEAM+MTT) delivers a 
4.55% enhancement in tumor segmentation Dice score compared to 
the baseline. 

Moreover, the integration of MEAM and MTT significantly 
enhances the feature extraction capability of the model, enabling it 
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to focus more effectively on the morphology and boundary features 
of the pancreas and tumors. This improvement allows the model to 
more accurately capture tumor characteristics in complex medical 
image backgrounds and avoid incorrect predictions (as shown 
in Figure 7). 
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4.4.3 Loss weight settings for DAS-Net 
Table 5 presents an ablation study on the loss weight 

configurations (l1, l2, l3) in DAS-Net. The results demonstrate 
that the baseline configuration (0.5, 0.2, 0.05) achieves superior Dice 
scores for both pancreatic parenchyma and tumor lesions, 
TABLE 1 DSC and HD of the different methods based on the MPTD dataset. 

Method Label ratio (%) Pancreas (%) Tumor (%) DSC (%) 95HD (Voxel) 

U-Net 100 67.67 50.60 59.13 20.61 

Att-UNet 100 69.81 52.74 61.27 18.02 

UNet++ 100 72.12 55.03 63.57 17.84 

TransUNet 100 75.30 59.23 67.26 13.27 

Swin-Unet 100 75.72 60.39 68.05 15.68 

ViLT 100 74.52 58.19 66.36 17.82 

LViT-NT 100 76.37 59.26 67.82 16.51 

LViT-WT 100 77.01 60.03 68.52 14.51 

Ours 100 79.25 64.21 71.73 9.59 

Ours 50 76.93 58.29 67.61 11.65 
The best scores are highlighted. 
FIGURE 5 

Qualitative comparison among the segmentation results obtained using UNet++, TransUNet, LViT-WT, and our model. The pancreas is marked in green, and 
the tumor is marked in yellow. Inaccurate segmentation areas are outlined with white dashed lines. Three distinct cases are presented, enlarged from the 
axial view to show more details. From top to bottom, the tumors were located in the pancreatic head, body, and tail of the pancreas. 
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TABLE 2 Semi-supervised experimental comparison of the different methods based on the MPTD dataset. 

Method Label ratio (%) Pancreas (%) Tumor (%) DSC (%) 95HD (Voxel) 

LViT-NT 25 67.85 45.19 56.52 20.63 

LViT-WT 25 69.45 47.38 58.42 17.96 

Ours 25 71.46 50.72 61.09 14.12 

LViT-NT 50 72.43 54.13 63.28 18.63 

LViT-WT 50 73.93 56.02 64.97 16.79 

Ours 50 76.93 58.29 67.61 11.65 
F
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The best scores are highlighted. 
FIGURE 6 

Demonstration of segmentation results of SMF-Net trained with 75% dual-student semi-supervised method. The pancreas is marked in green, and 
the tumor is marked in yellow. Coronal, sagittal and transverse views of the CT segmentation results of four different cases are shown separately, as 
well as three-dimensional visualizations. 
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validating the efficacy of this weighting scheme in enhancing 
segmentation performance. 
4.5 Generalization experiment 

To further validate our model’s generalizability and the 
effectiveness of incorporating textual information for improved 
segmentation accuracy, we conducted additional experiments on 
the QaTa-COV19 and MosMedData+ datasets. The QaTa-COVID
19 dataset (61), developed by researchers from Qatar University and 
Tampere University, comprises 9,258 COVID-19 chest X-ray 
images. The MosMedData dataset (62) contains 2,729 CT scan 
slices of lung infections. 

To further validate the generalization of our model and assess 
how the introduction of text information enhances segmentation 
accuracy, we conducted additional experiments on the QaTa
COV19 and MosMedData datasets. These datasets are publicly 
available and were previously described. In these experiments, our 
model was compared against the current state-of-the-art (SOTA) 
methods, encompassing five fully supervised single-modal and five 
fully supervised multimodal segmentation methods. 

As shown in Table 6, on the QaTa-Covid19 dataset, our model 
improved the Dice score by 5.36% and the MIoU score by 5.64% 
over the second-best-performing nnUNet model. Remarkably, even 
with only 25% of training labels, our model still exceeded the 
performance of other state-of-the-art methods. These results 
underscore the critical role of textual information in enhancing 
model performance beyond unimodal approaches. Additionally, the 
MTT fusion module—which combines coarse and fine-grained text 
features—exhibited exceptional effectiveness, with our model 
achieving a 2.12% higher Dice score and a 4.66% higher MIoU 
score than LViT and LViT-TW, respectively. The corresponding 
visualization is provided in Figure 8. 

Table 7 shows that the segmentation metrics on the MosMedData 
dataset are lower compared to those on the QaTa-Covid19 dataset, 
which may be due to the smaller size of the MosMedData dataset, 
which is about a quarter of the sample size of the QaTa-Covid19 data. 
This result shows the necessity of improving the text feature extraction 
and fusion methods. Comparative experiments with multimodal 
segmentation methods show that all fully supervised methods on 
the MosMedData dataset achieve scores of more than 70%, 
confirming the importance of text features to segmentation 
performance. However, our method is 4.16% higher than the LViT 
method and more than 6.73% higher than the CLIP text feature 
Frontiers in Oncology 14 
extraction method, which verifies the effectiveness of using coarse-
grained and fine-grained text features to enhance the segmentation 
results. The visualization results are shown in Figure 8. 
5 Discussion 

5.1 Innovative aspects of SMF-Net 

This work proposes SMF-Net, a novel dual-path CNN-

Transformer architecture for accurate pancreas tumor segmentation 
by effectively integrating visual and textual modalities. The 
architecture combines a U-shaped CNN pathway with a 
Multimodal Transformer (MTT) branch to facilitate enhanced 
cross-modal feature fusion. A key innovation is the Multimodal 
Enhanced Attention Module (MEAM), embedded at CNN skip 
connections, which balances complementary image-text information 
while preserving critical anatomical details.  

To address challenges of limited annotated data in medical 
imaging, we develop DAS-Net, a semi-supervised dual-learner 
adversarial framework that synergistically integrates consistency 
regularization with adversarial training to maximize unlabeled data 
utilization and improve model generalizability. Furthermore, we 
curate a clinically annotated multimodal dataset containing paired 
CT scans and diagnostic reports from 86 pancreatic cancer patients, 
providing valuable training resources. Extensive evaluations on this 
dataset as well as cross-dataset validations on QaTa-COV19 and 
MosMedData demonstrate SMF-Net’s state-of-the-art segmentation 
performance and robust generalization, highlighting its practical 
clinical potential. 
TABLE 3 Ablation experiments on the text feature extraction module based on the MPTD dataset. 

Method Param (M) FLOPs (G) Pancreas (%) Tumor (%) DSC (%) 

LViT-NT 28.0 54.0 76.37 59.26 67.82 

Ours-NT 35.3 60.4 78.19 61.15 71.17 

LViT-WT 29.7 54.1 77.01 60.03 68.52 

Ours 65.6 63.2 79.25 64.21 71.73 
The best scores are highlighted. 
TABLE 4 Ablation experiments on the MEAM module based on the 
MPTD dataset. 

Method FLOPs 
(G) 

Pancreas 
(%) 

Tumor 
(%) 

BERT 54.1 77.01 60.03 

BERT+MEAM 57.3 76.79 61.27 

AMBERT 60.4 76.16 60.51 

AMBERT+MEAM 68.1 78.04 62.27 

AMBERT+MEAM+MTT 63.2 79.25 64.21 
The best scores are highlighted. 
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5.2 Limitations and future work 

5.2.1 Training data dependence 
Although our model demonstrates strong performance, its 

effectiveness on certain challenging cases—such as patients with 
organ deformities or tumor metastases—falls short compared to 
results on public datasets. This limitation likely stems from the 
inherent dependency of Transformer-based architectures on large-
scale annotated data for optimal training and convergence. Given 
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the scarcity of extensive labeled datasets in medical imaging, the 
model’s generalization capacity is constrained. Future research 
should focus on improving robustness and generalizability 
through approaches like self-supervised learning or advanced data 
augmentation methods that reduce reliance on annotated samples. 
Moreover, future work will aim to generalize SMF-Net to diverse 
imaging and text modalities, enhance its adaptability for multi-

organ segmentation, and extend its application to broader tumor 
segmentation tasks to better support clinical decision-making. 
TABLE 5 Ablation experiments on the loss weight settings for DAS-Net based on the MPTD dataset. 

(l1,  l2,  l3) Label ratio (%) DSC (%) Description 

(0.5, 0.5, 0.05) 50 63.79 Noisy pseudo-label amplification 

(0.2, 0.2, 0.05) 50 64.58 Underutilized unlabeled data 

(0.8, 0.2, 0.05) 50 66.21 Fine-detail loss 

(0.5, 0.2, 0.1) 50 67.15 Adversarial training saturation 

(0.5, 0.2, 0.05) 50 67.61 Baseline performance 
The best scores are highlighted. 
FIGURE 7 

Comparison with the mis segmentation of original model. The pancreas is marked in green, and the tumor is marked in yellow. Red dashed circles 
indicate areas of incorrect segmentation. 
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5.2.2 Feasibility of clinical application 
The current SMF-Net framework requires textual input during 

inference, restricting its practical deployment scenarios. To 
overcome this limitation, future work could explore integrating 
large language models to automatically generate relevant textual 
annotations from image data. This advancement would enable fully 
automated multimodal inference without manual text input, 
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thereby broadening the model’s applicability and usability in real-
world clinical environments. 

6 Conclusion 

Given the diagnostic significance of CT imaging and pathology 
report text in clinical practice, we present a novel multimodal hybrid 
TABLE 6 On the QaTa-Covid19 dataset, our model’s semi-supervised and fully supervised comparative experiments with state-of-the-art single-
modal and multi-modal segmentation methods. 

Method Label ratio (%) DSC (%) MIoU (%) 95HD (Voxel) MAE (Voxel) 

U-Net 100 79.02 69.46 8.93 0.0875 

UNet++ 100 79.62 70.25 8.48 0.0663 

nnUNet 100 80.42 70.81 7.02 0.0206 

TransUNet 100 78.63 69.13 7.53 0.0219 

Swin-Unet 100 78.07 68.34 7.07 0.0238 

C2FVL 100 78.45 69.14 6.92 0.0543 

CLIP 100 79.81 70.66 8.70 0.0637 

ViLT 100 79.63 70.12 6.79 0.0712 

LViT-NT 100 81.12 71.37 6.28 0.0182 

LViT-WT 100 83.66 75.11 5.70 0.0139 

Ours 100 85.78 76.45 5.15 0.0096 

LViT-WT 25 80.88 71.98 5.75 0.0463 

Ours 25 81.79 73.06 5.40 0.0121 
The best scores are highlighted. 
FIGURE 8 

Visualization of QaTa-Covid19 and MosMedData dataset. 
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CNN-Transformer architecture, termed the Semantic-Guided 
Multimodal Fusion Network (SMF-NET), for simultaneous 
pancreas and tumor segmentation. To integrate textual and visual 
features, we introduce a Multimodal Text-Transformer (MTT) 
module that strengthens text feature extraction while highlighting 
semantic correlations between textual and imaging data. A dual-
modality cross-attention module is further designed to maximize 
feature preservation by equally weighting contributions from both 
modalities. We also propose a Dual Adversarial Student Network 
(DAS-Net) framework for knowledge distillation and curate a 
multimodal pancreatic tumor dataset (MPTD) tailored for 
segmentation tasks. Extensive evaluations on an in-house MPTD 
dataset (86 patients) demonstrate SMF-NET’s superior pancreatic 
segmentation performance across varying training data partitions. 
Additional validation on the QaTa-COVID-19 and MosMedData 
lung datasets confirms its generalizability for multimodal organ 
segmentation. Experimental results indicate that SMF-NET achieves 
precise delineation of both pancreatic and pulmonary structures, 
underscoring its potential for clinical deployment. 
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TABLE 7 On the MosMedData dataset, our model’s semi-supervised and fully supervised comparative experiments with state-of-the-art single-modal 
and multi-modal segmentation methods. 

Method Label ratio (%) DSC (%) MIoU (%) 95HD (Voxel) MAE (Voxel) 
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