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In clinical practice, the development of personalized treatment strategies for

cervical cancer is hindered by the limited accuracy of drug response prediction,

partly due to missing modalities in multi-omics data. We present MKDR, a deep

learning framework that integrates variational autoencoder-based modality

completion with knowledge distillation to transfer information from complete

omics data to incomplete samples. MKDR-Student achieves state-of-the-art

performance On cervical cancer cell lines, with an MSE of 0.0034 (34% lower

than Xgboost), R² of 0.8126, and MAE of 0.0431, while maintaining high

Spearman (0.8647) and Pearson (0.9033) correlations. Data ablation

experiments highlight the contributions of knowledge distillation and modality

completion: removing the teacher increases MSE by 23%, and VAE reduces error

by 15% with 40% missingness. Interpretability analysis shows balanced feature

contributions from gene expression (38%), copy number variation (30%), and

mutation data (32%), indicating effective multi-omics learning and integration by

the student model. Under limited-input conditions, MKDR’s accuracy drops less

than 5%, supporting its robustness and potential for clinical application.
KEYWORDS

multi-omics, cervical cancer, drug response prediction, knowledge distillation,
modality completion
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Introduction

Cervical cancer remains a major malignancy among women

worldwide, with approximately 604,000 new cases and 341,000

deaths reported in 2020 (1). Despite progress in HPV vaccination

and early screening, significant variability in treatment response

persists due to the high heterogeneity of molecular subtypes and the

tumor microenvironment. Precision medicine aims to tailor

therapies based on individual molecular profiles, with drug

response prediction (DRP) playing a key role in estimating

treatment efficacy before administration (2). Recently, various

deep learning approaches have been proposed to improve

prediction accuracy and safety by integrating multi-omics data

and drug structures (3).

Furthermore, integrating multi-omics data—such as gene

expression, DNA methylation, and mutation profiles—can

improve drug response prediction by providing a more

comprehensive view of tumor biology (4, 5). Models such as

GADRP (6), DeepCDR (7), and MOLI (8) have shown strong

performance through multi-omics integration. However, these

models generally assume complete data across all modalities,

limiting their robustness in real-world scenarios. For example,

GADRP uses graph convolutional networks and autoencoders to

integrate omics data with drug structures for drug response

prediction. While effective on complete datasets, its performance

drops sharply when methylation data are missing (6). Similarly,

DeepCDR employs a hybrid GCN framework and achieves a PCC

of 0.923 on the GDSC dataset, but it heavily relies on methylation

features and lacks robustness under missing-data conditions (7). As

a late-fusion model, MOLI requires complete input across all omics

modalities; when data are missing, imputation is used, which

introduces accumulated errors and increases RMSE by up to 15%

(8). BANDRP integrates gene expression, mutation, methylation,

and pathway features with drug fingerprints using bilinear

attention. Despite strong predictive performance (PCC = 0.9382),

it shows limited robustness when key omics modalities are missing

(9). However, in real-world clinical settings—especially when using

patient-derived samples—the acquisition of complete multi-omics

data is often limited by high cost, technical barriers, and biological

complexity (4, 10). As a result, many samples exhibit missing

modalities or insufficient sequencing depth, particularly in

valuable human-derived tissues. For example, although TCGA

has profiled over 11,000 cancer cases, only a small subset includes

complete multi-omics layers such as genomics, transcriptomics,

methylation, and proteomics (11). This problem is more severe in

female-specific cancers like cervical cancer, where full multi-omics

profiles are especially rare (12). Moreover, variability in sequencing

depth further complicates integration. In proteomics, for instance,

up to 50% of peptide measurements may be missing due to

inconsistent detection during mass spectrometry (13–16). These

challenges significantly hinder the development of robust drug

response models, as missing modalities often contain essential

biological information.

Current approaches for handling modality missingness, such as

data imputation and multimodal fusion networks, have achieved
Frontiers in Oncology 02
success in image recognition and natural language processing.

However, they still face significant challenges in drug response

prediction (17, 18). The fundamental reason lies in the fact that the

correlations between clinical omics modalities are heavily

influenced by biological heterogeneity (18). High-dimensional

omics data are inherently complex and costly to acquire, and

their missingness is often non-random (missing not at random,

MNAR). For example, mutation status can be decisive for targeted

therapy responses, while methylation patterns are closely associated

with drug resistance mechanisms (19, 20). Modality missingness

weakens signal recognition and increases bias, compromising the

reliability of personalized treatment (8, 21). However, most drug

response models assume complete omics data, overlooking real-

world missingness and limiting clinical applicability. Knowledge

distillation (22), originally developed for model compression, has

recently been applied to multimodal learning to enhance

generalization under missing modality conditions. For instance,

KL4MTL (Ahn et al., 2019) (23) introduced a KD framework in

multi-task learning to enforce consistent representations across

tasks. In parallel, generative approaches such as MIDAS (24)

employ variational autoencoders (VAEs) to impute missing omics

modalities in single-cell data, demonstrating the feasibility of cross-

modality reconstruction. More recently. MCKD (25) integrates KD

with cross-modal meta-learning by adaptively weighting the

importance of each modality, achieving robust prediction under

partial modality missingness. However, these methods still fall short

in addressing the unique challenges of drug response prediction in

clinically realistic scenarios, where data are scarce and

biologically heterogeneous.

To address these challenges, we propose MKDR, a modular

deep learning framework that integrates a VAE-based modality

completer, a knowledge distillation module, and a cross-modal

attention mechanism. This architecture enables the student model

to make accurate predictions under incomplete omics conditions by

learning from a teacher model trained on complete data. Notably,

MKDR achieves strong performance even when only a single omics

modality is available, with MKDR-Student reaching a PCC of

0.9033 in cervical cancer drug response prediction. These results

demonstrate the framework’s potential as a generalizable and

deployable solution for real-world precision oncology scenarios.
Materials and methods

Datasets

This study constructs a drug response prediction model based

on high-quality public datasets by integrating multi-omics profiles

from the Cancer Cell Line Encyclopedia (CCLE) and drug response

data from the PRISM Repurposing dataset. CCLE provides

comprehensive omics data, including copy number variation

(CNV), mutation (MU), and gene expression (GE), with 761,

7806, and 16,384 features respectively, to characterize the

molecular states of cancer cell lines (26).The PRISM dataset

contains IC50 measurements for 1,448 compounds tested across
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578 human cancer cell lines, representing one of the largest high-

throughput drug sensitivity screening platforms available to date (6,

27). To assess generalizability beyond the PRISM training cohort,

we additionally conducted external validation experiments using

the GDSC (28) SISO cervical cancer cell line and the TCGA-CESC

(29) patient cohort.

This study focuses on 15 cervical cancer cell lines, from which a

total of 6,935 valid drug–cell line response pairs were extracted from

the PRISM dataset. To eliminate scale differences and enhance

model stability, IC50 values were log-transformed, and outliers were

removed using the interquartile range (IQR) method, which is

widely adopted in related studies (6). The molecular structures of

drugs were represented using canonical SMILES strings and

standardized with the RDKit toolkit. The SMILES sequences were

then tokenized to tra in a sequence-based molecular

representation model.
Methods

Overview of the MKDR framework

To address the challenge of incomplete omics data in clinical

drug response prediction, we propose MKDR (Multi-Omics

Modality Completion and Knowledge Distillation for Drug

Response Prediction), an end-to-end deep learning framework

designed to unify preclinical and clinical prediction tasks. MKDR

comprises five key modules: (1) a Transformer-based encoder for
Frontiers in Oncology 03
multi-omics features, (2) an LSTM-based drug encoder for SMILES

representations, (3) a cross-modality attention fusion module, (4) a

VAE-based modality completion module, and (5) a knowledge

distillation module that enables robust student model training

under missing-modality scenarios. As illustrated in Figure 1,

MKDR integrates these components to extract meaningful drug-

cell line representations, complete missing data, and transfer

knowledge from complete to incomplete settings, enabling

accurate and deployable drug response prediction in cervical cancer.
Multi-omics feature encoder

To capture the molecular characteristics of cervical cancer, we

employ three Transformer encoders to process gene expression

(GE), copy number variation (CNV), and mutation (MU) data (30).

Each encoder captures long-range dependencies within its modality

through stacked self-attention layers:

EGE = TransformerGE(XGE)

ECNV = TransformerCNV (XCNV )

EMU = TransformerMU (XMU )

where EGE , ECNV , EMU denote the high-dimensional

embeddings of the genomic, CNV, and mutation data,

respectively. The extracted representations provide a

comprehensive molecular view of the sample and serve as input
FIGURE 1

Overview of MKDR framework.
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to the multi-modal fusion stage. Each encoder uses multi-head self-

attention to compute attention weights as:

Attention(Q,  K ,  V) = softmax(
QKT

ffiffiffi

d
p )V

where
Fron
• Q=WQX (queries),

• K=WKX (keys),

• V=WVX (values),

• ddd is the feature dimension,

• WQ, WK, WV are learnable projection matrices.
This mechanism enables the model to learn key gene

interactions in a data-driven manner, without relying on

predefined biological networks.
Drug structure encoder

To represent drug molecules at a structural level, we encode

canonical SMILES strings using a sequence-based LSTM

architecture (31). Each SMILES sequence S = s1,  s2,   · ··,  sn�,
where si a tokenized atom or substructure, is embedded into a

learnable space and passed through a bi-directional LSTM:

Hdrug = LSTM(E(S))

Here, E(S) denotes the embedded token sequence, and Hdrug is

the final molecular representation derived by mean-pooling or the

last hidden state of the LSTM. This module captures sequential

dependencies in chemical structure, enabling the model to

distinguish subtle molecular differences affecting drug response.
Cross-modality fusion module

After obtaining representations from the multi-omics and drug

encoders, we fuse them using a cross-modality attention

mechanism. In this module, omics features serve as keys and

values, while the drug representation acts as the query:

Z = Attention(Q = Hdrug, K = ½Hgex; Hcnv; Hmu�,
 V = ½Hgex; Hcnv; Hmu�)

This design allows the model to focus on the most drug-relevant

molecular signals in the cell line, effectively bridging the gap between

compound structure and cellular response. The fused representation

Z is passed to the regression layer for IC50 prediction.
Modality completion via VAE

To address missing omics modalities in real-world clinical

datasets, we employ a Variational Autoencoder (VAE) to

complete absent omics features. The VAE takes observed gene
tiers in Oncology 04
expression Xgex as input and reconstructs the missing CNV and

mutation vectors:

z ∼ qf(z Xgex),  X
0
cnv ,X

0
mu = pq(X

�
�

�
�z)

The VAE is trained by minimizing the standard variational loss:

LVAE = Eqf (z X)½logpq (Xj jz)−DKL(qf (z X)j j p(z))�j

This enables robust inference of missing omics under

incomplete conditions, improving the student model ’s

representation quality and downstream performance. We

quantitatively evaluated the reconstruction accuracy using PCC,

R², MSE, MAE, and AUROC (Supplementary Table S1), and further

analyzed the effect of KD temperature on imputation performance

(Supplementary Figure S1).
Knowledge distillation module

To transfer knowledge from preclinical models trained on

complete omics to clinically realistic settings with partial inputs,

we adopt a teacher-student knowledge distillation framework. The

teacher model is trained with full omics and learns a high-capacity

representation for IC50 prediction. The student model, which

operates on incomplete inputs (e.g., GEX only), is guided by the

teacher’s output via distillation loss:

LKD = a · Ltask + (1 − a) · KL(PteacherjjPstudent)
Here, Ltask is the standard prediction loss, and KL divergence

ensures that the student mimics the teacher’s softened predictions.

This mechanism enhances the student model’s robustness in the

presence of missing data while maintaining lightweight

deployment capacity.
Evaluation metrics

To comprehensively evaluate the performance of drug response

prediction models, we adopted six widely used metrics: mean

squared error (MSE), root mean squared error (RMSE), mean

absolute error (MAE), coefficient of determination (R²), Pearson

correlation coefficient (PCC), and Spearman correlation

coefficient (SCC).
• MSE and RMSE measure the average squared and root-

squared deviation between predicted and true IC50 values,

respectively, reflecting both accuracy and outlier sensitivity.

• MAE calculates the average magnitude of prediction errors

regardless of direction, providing an interpretable measure

of overall error.

• R² evaluates the proportion of variance in the true IC50

values explained by the predicted values, indicating the

model’s explanatory power.

• PCC and SCC assess the linear and rank-order correlation

between predicted and observed responses, respectively,
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and are especially important for preserving the biological

relevance of response patterns across samples.
All metrics were computed on the held-out test set, and lower

values for MSE, RMSE, and MAE, along with higher values for R²,

PCC, and SCC, indicate better model performance.
Data splitting strategy

Following prior studies on drug sensitivity prediction using

large-scale pharmacogenomic datasets such as GDSC and PRISM

(1–3), we adopted a stratified data splitting strategy to ensure robust

evaluation. Specifically, we randomly divided the drug–cell line

pairs into training (80%), validation (10%), and test (10%) subsets,

maintaining consistent drug and cell line distributions across

each split.

To simulate clinical data limitations and evaluate model

robustness under low-resource conditions, we also constructed

subsampled training sets with decreasing proportions of the full

training data (1/16, 1/8, 1/4, 1/2), while keeping the validation and

test sets unchanged. All experiments were repeated with fixed

random seeds to ensure reproducibility.
tiers in Oncology 05
Result

Performance evaluation of drug response
prediction models

We compared several mainstream models on cervical cancer

cell lines using the PRISM dataset, focusing on their accuracy,

stability, and generalization across different sample sizes. We

evaluated several traditional machine learning methods (Lasso,

SVR, RF), deep learning-based models (DeepCDR (7), GADRP

(6), BANDRP (9)), and our proposed MKDR framework. We also

compared the performance of the MKDR teacher model (with full-

modal input) and the student model (with modality-completed

input) to further assess MKDR adaptability in modality-

missing scenarios.

With full training data, both MKDR-Student and MKDR-

Teacher outperformed traditional machine learning and deep

learning models across six metrics (MSE, RMSE, MAE, R², PCC,

and SCC) (Figures 2A–F). For error-based metrics, MKDR-Student

achieved an MSE of only 0.0034, representing a ~17% reduction

compared to Random Forest (RF, 0.0041), and showing clear

advantages over Lasso (0.0141), SVR (0.0056), and deep models

such as GADRP (0.0046), DeepCDR (0.0045), and BANDRP
FIGURE 2

Drug response prediction accuracy of MKDR and baseline models on cervical cancer cell lines. (A–F) Performance comparison under full training data across
six metrics (MSE, RMSE, MAE, R², PCC, SCC), showing MKDR-Student and MKDR-Teacher outperforming all baseline models. (G–L) Model robustness under
reduced training sizes (1/16 to full), where MKDR-Student consistently maintains superior performance across all metrics compared to traditional and deep
learning methods.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1622600
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2025.1622600
(0.0044) (Figure 2A, Table 1). For RMSE andMAE, MKDR-Student

achieved the lowest values of 0.0581 and 0.0431, respectively

(Figures 2B, C), confirming its strength in minimizing numerical

errors. For correlation-based metrics, MKDR-Student also stood

out with an R² of 0.8126, surpassing RF (0.7588), GADRP (0.7435),

BANDRP (0.7475), and DeepCDR (0.7440) (Figure 2D, Table 1),

reflecting its superior fit. MKDR-Student also achieved the highest

PCC (0.9033) and SCC (0.8647) (Figures 2E, F), indicating both

high prediction accuracy and stronger biological interpretability via

consistent sample ranking.

To mimic data scarcity common in real-world clinical studies,

we constructed training subsets ranging from 1/16 to the full dataset

and evaluated model performance across six metrics (Figures 2G–

L). Most baseline models experienced sharp degradation as data

volume decreased, with DeepCDR and BANDRP showing

substantial fluctuations due to their dependence on complete

multi-omics inputs and large training sets. In contrast, MKDR-

Student maintained stable error and correlation metrics across all

sample sizes, highlighting its robustness to data scarcity. Under the

extreme 1/16 condition, MKDR-Student preserved an R² > 0.51,

while Lasso, SVR, and other models dropped to near-zero. It also

outperformed all baselines at each scale, achieving 40–50% lower

MSE and RMSE than BANDRP at 1/8 data size. This robustness

stems from MKDR’s two key components: a VAE-based modality

completion module that infers missing omics features from gene

expression, and a knowledge distillation module that transfers

learned representations from a full-modality teacher model.

Interestingly, MKDR-Student occasionally outperforms the

Teacher model. This may be due to the student’s exposure to a

wide range of incomplete modality scenarios during training, which

encourages the learning of more generalizable and robust

representations. In contrast, the Teacher model is optimized for

full-modality inputs and may be more prone to overfitting specific

feature patterns (32, 33). Together, these mechanisms mitigate

overfitting and enhance generalization under limited supervision.

MKDR’s resilience and its ability to preserve sample ranking make

it particularly suited for clinical deployment, especially in early-

stage precision oncology trials where multi-omics data are often
Frontiers in Oncology 06
sparse or incomplete. To further assess its generalization ability, we

additionally validated MKDR-Student on the GDSC SISO cervical

cancer cell line and the TCGA-CESC patient cohort. The model

achieved a PCC of 0.7682 for IC50 prediction on SISO and an

AUROC of 0.635 for cisplatin response classification in cisplatin-

treated patients (n = 99) on TCGA-CESC, demonstrating robust

performance across both preclinical and clinical settings

(Supplementary Tables S2, S3).
Variations in the drug response prediction
landscape and accuracy differences across
different drugs

To understand the representational advantages of MKDR, we

analyzed the evolution of its learned features in comparison to

BANDRP, a strong and stable baseline known for its multimodal

encoding capabilities. To analyze the evolution of representation

learning, we extracted latent features from three stages of each

model: (1) initial omics and drug embeddings, (2) fused

representations after multimodal integration, and (3) final latent

vectors used for IC50 prediction. In addition to visualizing these

latent spaces, we compared the MSE of MKDR (teacher and

student) with BANDRP across several common anticancer drugs

(e.g., Methotrexate, Pemetrexed) and clinically relevant cervical

cancer treatments (e.g., Topotecan, Paclitaxel, Docetaxel (34).

We visualized the evolution of learned representations in

MKDR-Teacher (Figure 3A), MKDR-Student (Figure 3B), and

BANDRP (Figure 3C) to assess their ability to encode and

interpret drug response. In the raw feature space (left column), all

models showed entangled distributions with no clear separation

between sensitive and non-sensitive samples, indicating unextracted

biological signals. After omics–drug fusion (middle column),

MKDR models formed distinct clusters, with classes diverging in

different directions—suggesting effective integration of biological

and chemical information. In contrast, BANDRP retained partial

structure, but class overlap remained substantial. In the final latent

space for IC50 prediction (right column), MKDR-Teacher achieved
TABLE 1 Performance comparison of different models for drug response prediction on cervical cancer cell lines (PRISM dataset).

Methods Dataset Split MSE RMSE MAE R2 PCC SCC

XGB 5-fold 0.0051 0.0713 0.0561 0.6987 0.8592 0.8592

SVM 5-fold 0.0056 0.0751 0.0596 0.6657 0.8200 0.8200

RF 5-fold 0.0041 0.0638 0.0485 0.7588 0.8712 0.8712

LR 5-fold 0.0135 0.1162 0.0899 0.1998 0.4541 0.4541

Lasso 5-fold 0.0141 0.1189 0.0921 0.1618 0.4023 0.4023

BANDPR 5-fold 0.0044 0.0663 0.0516 0.7475 0.8690 0.8587

DeepCDR 5-fold 0.0045 0.0673 0.0510 0.7440 0.8732 0.8197

GADRP 5-fold 0.0046 0.0681 0.052 0.7435 0.8672 0.8153

MKDR-Teacher 5-fold 0.0039 0.0626 0.0476 0.7957 0.8922 0.8495

MKDR-Student 5-fold 0.0034 0.0581 0.0431 0.8126 0.9033 0.8647
The bold values highlight the accuracy of the student model in MKDR.
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the sharpest class boundaries, with MKDR-Student closely

following, reflecting successful knowledge transfer. These findings

confirm that the distillation-based MKDR architecture improves

feature separability, interpretability, and robustness—while also

supporting model compression and generalization under limited

multi-omics conditions (35, 36).

Additionally, bar plots on the right side of Figure 3 compare

IC50 prediction MSEs across ten representative anticancer drugs

(Figure 3D). MKDR-Teacher achieved the lowest error on 7 out of

10 drugs (e.g., 0.0011 for Methotrexate, 0.0023 for Pemetrexed),

showing strong cross-drug generalizability. MKDR-Student, though

lighter, reached comparable accuracy (e.g., 0.0012 and 0.0027 for

the same drugs), confirming efficient knowledge transfer. In

contrast, BANDRP exhibited consistently higher errors (e.g.,

0.0071 for Paclitaxel, 0.0099 for Topotecan), highlighting its

limitations in modeling heterogeneous responses and fusing

complex multi-omics features. Together, these results underscore

the advantage of MKDR’s distillation strategy in achieving robust,

generalizable performance across diverse drug scenarios.
Ablation study and robustness evaluation
of the MKDR model

To further validate MKDR’s performance, we conducted

ablation studies to quantify the contributions of its core

components—knowledge distillation, modality completion, and

feature compression—to drug response prediction. These modules
Frontiers in Oncology 07
collectively enhanced model adaptability and stability under

complex multi-omics conditions (Figure 4A).

We first evaluated the contributions of different MKDR modules

—knowledge distillation, modality completion, and feature

compression—through ablation studies (Figure 4A). The full model

achieved the best performance across all normalized metrics, with R²

close to 1 (0.98), and low MSE (0.24), RMSE (0.34), and MAE (0.29),

demonstrating strong predictive accuracy. Removing any module led

to a systematic decline, confirming their complementary effects.

Notably, excluding knowledge distillation (MKDR-NK) resulted in

the largest performance drop (MSE up to 0.295, ~23% higher),

underscoring the teacher model’s critical role in feature transfer. In

contrast, modality completion contributed more to robustness: even

without distillation, the model retained high R² (~0.92) and lowMAE

(~0.33), outperforming the distillation-only variant. This supports

the view that handling missing omics data directly is more effective

for stability than transfer-based learning alone—consistent with the

consensus in multi-modal learning that “missing information is the

primary source of perturbation” (37).

We further evaluated MKDR’s prediction stability and

robustness under different module settings and compression

levels. As shown in Figure 4B, the full MKDR model exhibited

the most compact error distribution (median MSE ~0.0034), while

removing knowledge distillation (MKDR-NK) or modality

completion (MKDR-NM) increased variance. The MKDR-FNKM

variant showed the widest error range (~0.009), indicating severe

instability. Among all modules, modality completion played a

greater role in controlling sample-wise variance, while distillation
FIGURE 3

Evolution of the drug response prediction space and accuracy comparison across drugs in different models. (A–C) Visualization of feature evolution
in BANDRP (A), MKDR-Teacher (B), and MKDR-Student (C), including original features, omics–drug fusion features, and the final latent vectors used
for prediction. Samples are colored by IC50 values to reflect model alignment with drug sensitivity gradients. (D) MSE comparison across cervical
cancer-related and commonly used anticancer drugs, showing that both MKDR variants consistently outperform BANDRP, especially on clinically
relevant treatments such as Topotecan, Paclitaxel, and Docetaxel.
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enhanced output consistency. Under feature compression

(Figure 4C), MKDR maintained consistent performance down to

20% of its original feature dimension (RMSE < 0.062, MAE <

0.045). Slight performance gains at 80–60% compression suggest

improved signal-to-noise ratio via redundant feature removal. In

contrast, MKDR-NKM degraded rapidly below 40% (RMSE ~0.071,

MAE > 0.050), accompanied by large fluctuations—revealing poor

generalization under constrained representations. Regression fitting
Frontiers in Oncology 08
(Figures 4D, E) confirmed these trends. MKDR outputs aligned well

with true labels across the full response range, showing high

sensitivity and diagonal consistency. In contrast, MKDR-NKM

exhibited response collapse, with 83% of predictions concentrated

in the IC50 0.3–0.7 mM range and a 2.1-fold increase in low-

response deviation (p = 0.012), impairing the model’s ability to

capture extremes. These issues align with earlier findings on

increased variance and compression sensitivity.
FIGURE 4

Ablation study and robustness evaluation results of the MKDR model. (A) Ablation of core modules (knowledge distillation, modality completion, feature
reduction) shows that all components contribute to optimal performance, with the full model achieving the best metrics. (B) Error distribution across
ablated variants indicates that removing modality completion or distillation increases variance, while the full model remains stable. (C) Performance
under different feature compression levels shows MKDR retains stability even at 20% dimensionality, unlike variants lacking core modules. (D, E)
Regression fits show MKDR outputs align well with true labels, while MKDR-NKM collapses toward the center and fails to capture extremes.
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Overall, these results highlight the complementary roles of

knowledge distillation, modality completion, and feature

compression in enhancing MKDR’s stability, compression

tolerance, and clinical discrimination capability. This modular

design supports deployment in real-world multi-omics scenarios

and precision medicine under resource-limited conditions.
Interpretable drug response prediction
with teacher and student models

To evaluate the interpretability of MKDR in multi-omics

integration, we analyzed input feature importance using the

Integrated Gradients method. This technique quantifies each

feature’s contribution to the prediction outcome, enabling insight

into the roles of different omics modalities. We compared the

feature attribution patterns of the teacher and student models to

assess whether knowledge distillation and modality completion

al low the student to recover biological ly meaningful

representations. This analysis also helps identify key omics

features that drive drug response prediction.

We first compared the reliance on different omics modalities

between the teacher and student models. In the teacher model with

full multi-omics input, gene expression (GEX) contributed the most

to prediction (42.13%), while CNV and mutation accounted for

20.22% and 37.65%, respectively—indicating a preference for

transcriptomic signals. In contrast, the student model, despite

receiving only GEX input, achieved a balanced attribution across

modalities through modality completion and knowledge

distillation, with feature importance at 36.06% (GEX), 31.85%

(CNV), and 32.09% (mutation).This shift from expression

dominance to multi-modal synergy suggests that the student

effectively inherits the teacher’s semantic structure and

reconstructs missing modality representations, enabling

biologically meaningful integration and improved generalization.

Feature importance distributions are shown in Figure 5A.

We further analyzed the top 20 most important features in the

MKDR-Student model to assess whether multi-omics knowledge was

effectively learned. Among them, 7 features originated from the

mutation (MU) modality, highlighting the relevance of mutation

signals in predicting cervical cancer drug response. This aligns with

prior studies linking mutation-driven mechanisms to cervical cancer.

For example, CXCL14 is frequently silenced by promoter

hypermethylation induced by HPV E7 oncoproteins, weakening

antitumor immune responses (38, 39). Its loss also downregulates

MHC-I and impairs CD8+ T cell activation, promoting immune

evasion. Another top-ranked feature, MTUS1, acts via the PTENP1/

miR-19b/MTUS1 axis to suppress proliferation and invasion in

cervical cancer and is often downregulated in aggressive tumors (40).

To verify whether the student model reconstructs multi-omics

information, we visualized the full distribution of feature importance

derived from Integrated Gradients. As shown in Figures 5C, D, the

student model’s importance scores across GEX, CNV, and MU

resemble those of the teacher model, despite being trained only on

GEX. This close alignment indicates that modality completion
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enables reliable inference from missing inputs. Notably, the student

model’s emphasis on mutation features correlates strongly with the

high MU ranking observed in Figure 5B, confirming that mutation-

derived signals were indeed used in prediction. Additionally, the

training curve of the modality completion module (Figure 5E) shows

a rapid loss decrease within the first 100 epochs followed by

convergence, indicating successful reconstruction and a stable

foundation for downstream representation learning.

In conclusion, MKDR effectively internalizes multi-omics

knowledge even with incomplete inputs. By integrating modality

completion and knowledge distillation, it assigns meaningful

importance to both expression and mutation features, achieving

structural generalization and mechanistic recovery in drug response

prediction. These results reinforce MKDR’s promise for robust,

interpretable multi-omics modeling.

While MKDR has demonstrated robust performance across

various evaluations, certain limitations should be acknowledged in

the context of our study scope. This work specifically focuses on

cervical cancer cell lines to assess the feasibility of multi-omics

integration under missing-modality conditions. Accordingly, the

dataset consists of 15 well-characterized cell lines, which may

influence generalizability to broader clinical populations. Although

the model performs well under simulated real-world scenarios, future

validation using patient-derived datasets and prospective clinical data

would further substantiate its translational relevance. These

directions extend beyond the scope of the current study but

represent important avenues for future investigation.
Discussion

In this study, we proposed MKDR, a multi-omics framework

that demonstrates strong predictive performance, robustness, and

interpretability under incomplete data conditions in cervical cancer.

By integrating modality completion and knowledge distillation,

MKDR maintains high accuracy not only with complete inputs

but also under scenarios of missing modalities and feature

compression, offering a new paradigm for precision medicine

under multi-modal data scarcity.

First, in overall performance evaluation, the MKDR-Student model

consistently outperformed traditional machine learning and deep

learning baselines across MSE, MAE, and R² metrics—and even

slightly surpassed the teacher model. In simulated clinical scenarios

lacking certain omics inputs, the student model effectively reproduced

full-modality representations via completion and distillation. MKDR

also showed strong generalization across individual drugs: for 7 out of

10 clinically relevant anticancer compounds (e.g., Topotecan, Paclitaxel,

Pemetrexed), the teacher model achieved the lowest prediction error,

with the student closely matching its accuracy. These results suggest that

MKDR is not overly dependent on input completeness or specific signal

structures and thus generalizes well across heterogeneous drug–feature

spaces. To further evaluate the clinical applicability of MKDR, we

validated its predictions on TCGA-CESC patients by assessing the

association between predicted drug sensitivity scores and treatment

response categories derived from RECIST annotations. While IC50
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values provide important insights into drug potency in preclinical

settings, they may not fully capture therapeutic efficacy in vivo due to

the lack of immune–tumor interactions, stromal context, and inter-

patient variability (41). The ability of MKDR to transfer learned

representations from cell lines to patients suggests that its latent space

may capture biologically conserved response features, offering a

promising route to bridge preclinical–clinical discrepancies in drug

response prediction. Although the current study focuses on drug

response prediction across cervical cancer as a whole, we acknowledge

that future investigations should explore model performance across

HPV subtypes (e.g., HPV16/18) and histological subtypes (e.g.,

squamous vs. adenocarcinoma), as these factors may influence

molecular profiles and treatment sensitivity. We also suggest

incorporating in vivo assays or patient-derived xenograft models in

future studies to complement our in silico findings.

Beyond performance, MKDR’s representational trajectory reveals

deeper modeling advantages. In a three-stage latent space

comparison, the student model, starting from GEX-only input,
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gradually aligns with the teacher’s fused embedding and ultimately

forms clearly separable clusters in the predictive space. This structural

convergence validates the synergy between modality completion and

distillation and highlights the model’s ability to extract meaningful

biological signals within a nonlinear embedding space.

MKDR also exhibits strong interpretability. Feature attribution

analysis via integrated gradients revealed that key mutation-derived

features (e.g., CXCL14, MTUS1) received high importance scores in

the student model. Literature evidence supports their biological

relevance: CXCL14 is silenced via HPV E7-induced promoter

hypermethylation (38), impairing immune recognition, while

MTUS1 functions as a tumor suppressor and is downregulated in

invasive cervical cancer (40). These findings validate the plausibility

of MKDR’s reconstructed omics signals and point to its potential in

mechanism discovery and biomarker identification. These findings

suggest that MKDR not only identifies predictive features but also

captures biologically meaningful associations aligned with known

drug mechanisms. Notably, MKDR shows high accuracy for key
FIGURE 5

Interpretability analysis and key feature contributions of the teacher and student models. (A) Distribution of input feature contributions across omics
modalities (GEX, CNV, MU) for teacher and student models, showing modality-level attribution alignment. (B) Top 20 most influential features ranked
by integrated gradient scores, highlighting consistent GEX and MU contributions across both models. (C, D) Feature attribution heatmaps from
teacher (C) and student (D) models, demonstrating consistent modality-aware importance and successful transfer of interpretability via distillation
and completion. (E) Training loss curve of the teacher model, confirming convergence and stability.
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drugs like Topotecan and Paclitaxel (Figure 3D). For Topotecan,

Integrated Gradients highlight DNA repair and cell cycle genes,

aligning with its known mechanism of inducing replication-related

DNA breaks through topoisomerase I inhibition (42).

In summary, MKDR achieves accurate drug response

prediction while addressing three core challenges: incomplete

omics, feature compression, and biological interpretability. Its

modular architecture and cross-modal reasoning make it well

suited for large-scale drug screening, translational modeling—

demonstrating the practical utility of multi-modal AI frameworks

in precision oncology.
Conclusion

In this study, we proposed the MKDR framework for drug

response prediction, which integrates modality completion and

knowledge distillation into a unified learning model designed to

address scenarios with incomplete multi-omics information. In

modeling drug responses for cervical cancer, MKDR achieved

state-of-the-art performance in terms of prediction accuracy,

model stability, structural compression compatibility, and feature-

level interpretability. The model demonstrated excellent

generalization and practical applicability across settings with

missing modalities, low-dimensional features, and diverse drug

backgrounds, making it particularly suitable for real-world clinical

data characterized by sparsity and limited sample size.

Future work may further extend MKDR to other cancer types

and incorporate additional omics modalities (such as proteomics

and spatial transcriptomics), along with validation using

translational medicine datasets for patient-level prediction,

support ing more act ionable individual ized treatment

recommendations. Moreover, as current evaluations are limited to

cervical cancer, the scalability and effectiveness of MKDR on larger

drug response datasets and in clinical applications warrant further

investigation through extensive experimental validation.
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