
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Arka Bhowmik,
Memorial Sloan Kettering Cancer Center,
United States

REVIEWED BY

Shigao Huang,
Air Force Medical University, China
Marc Boubnovski Martell,
Imperial College, United Kingdom

*CORRESPONDENCE

Hongbo Guo

guomutong@126.com

Hui Zhu

drzhuh@126.com

†These authors have contributed equally to
this work

RECEIVED 19 May 2025
ACCEPTED 26 September 2025

PUBLISHED 13 October 2025

CITATION

Liu Z, Zheng C, Jia Z, Zhao C, Liu X, Shao W,
Chen F, Zhu H and Guo H (2025)
Deep learning radiomics model of epicardial
adipose tissue for predicting postoperative
atrial fibrillation after
lung lobectomy in lung cancer patients.
Front. Oncol. 15:1623248.
doi: 10.3389/fonc.2025.1623248

COPYRIGHT

© 2025 Liu, Zheng, Jia, Zhao, Liu, Shao, Chen,
Zhu and Guo. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 13 October 2025

DOI 10.3389/fonc.2025.1623248
Deep learning radiomics model
of epicardial adipose tissue for
predicting postoperative atrial
fibrillation after lung lobectomy
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Objective: To develop and validate a deep learning (DL) radiomics model based

on epicardial adipose tissue (EAT) for identifying high-risk lung cancer patients

with postoperative atrial fibrillation after lung lobectomy.

Methods: A total of 1,008 patients from two centers were included. Handcrafted

and DL radiomics features were extracted from the preoperative contrast-

enhanced chest CT images of EAT. Clinical features and handcrafted and DL

radiomics signatures were integrated to construct predictive models using the

logistic regression algorithm as the baseline model. Twenty DL radiomics models

were constructed through various combinations of machine learning algorithms

and resampling techniques. The post hoc Nemenyi test was employed to

compare the predictive performance in terms of the area under the receiver

operating characteristic curve (AUC), G-mean, and F-measure.

Results: Advanced age and male sex were identified as independent risk factors

for POAF. The DL radiomics model, integrating clinical features, handcrafted

radiomics signature, and DL radiomics signature, outperformed the clinical

model, achieving AUC values of 0.890 (95% CI: 0.816–0.963), 0.876 (95% CI:

0.755–0.997), and 0.803 (95% CI: 0.651–0.955) in the training, testing, and

validation cohorts, respectively. The results of the post hoc Nemenyi tests

indicated that neither machine learning algorithms nor resampling techniques

significantly improvedmodel performance, as measured by the AUC, G-mean, or

F-measure.
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Conclusion: The DL radiomics model based on preoperative EAT images

effectively identifies high-risk lung cancer patients with POAF following lung

lobectomy and offers a novel tool for risk stratification.
KEYWORDS

postoperative atrial fibrillation, deep learning radiomics, epicardial adipose tissue, lung
lobectomy, lung cancer
1 Introduction

Lung lobectomy is the most common operation performed for

lung cancer patients. Postoperative atrial fibrillation (POAF) is a

common complication following lung lobectomy, with incidence

rates ranging from 5.2% to 17.6% (1–4). Although POAF is often

considered transient and self-limiting, it is significantly associated with

prolonged hospital stays, increased risk of stroke, and higher mortality

rates (5–7). Studies have shown that perioperative strategies, such as the

administration of magnesium sulfate, preferential use of vasopressors

over inotropes, avoidance of red cell transfusion, and video-assisted

thoracoscopic surgery, may reduce POAF incidence (3, 8). Therefore,

accurate preoperative risk stratification and tailored perioperative

management are essential for improving outcomes and quality of life

in high-risk lung cancer patients.

Several clinical characteristics, including advanced age, male

sex, and procedural invasiveness, have been identified as key

predictors of POAF (7, 9). Although these risk factors have been

incorporated into predictive models, their performance remains

suboptimal, with area under the receiver operating characteristic

curve (AUC) values typically below 0.80 (3, 4, 10). Consequently,

improving the identification of high-risk patients with POAF is

warranted. Epicardial adipose tissue (EAT), a unique fat depot

located between the myocardium and the visceral layer of the

epicardium, has been suggested to play a role in the development

and progression of atrial fibrillation (11). West et al. demonstrated

that EAT volume could predict both in-hospital and long-term

post-cardiac surgery atrial fibrillation (12).

Radiomics, which extracts high-throughput quantitative

features from medical images, can provide disease-related

information beyond traditional quantitative features such as

volume and density (13, 14). Several studies have highlighted the

effectiveness of EAT radiomics models in predicting POAF (15–17).

The integration of deep learning (DL) radiomics features,

particularly 3D DL features, enhances radiomics by capturing

intricate structural patterns, thereby improving predictive model

performance (18, 19). Therefore, integrating radiomics and DL

analysis of EAT on preoperative CT images may offer a novel and

robust approach for predicting POAF following lung lobectomy.

In this study, we aimed to develop and validate a DL radiomics

model based on EAT to identify high-risk lung cancer patients for

POAF following lung lobectomy. Additionally, we systematically
02
evaluated the impact of various machine learning algorithms and

resampling techniques on model performance.
2 Materials and methods

2.1 Study cohorts

This study was approved by the Ethics Board of Shandong

Cancer Hospital and Institute, Shandong First Medical University

and Shandong Academy of Medical Sciences (SDTHEC

202411027), and Feicheng Hospital Affiliated to Shandong First

Medical University (2024039). Informed consent was waived due to

the retrospective design of the study.

Between 1 May 2023 and 31 October 2023, 890 consecutive lung

cancer patients who underwent lung lobectomy at, Shandong First

Medical University and Shandong Academy of Medical Sciences

(center 1) were enrolled. Additionally, 118 consecutive patients who

underwent lung lobectomy for lung cancer at Feicheng Hospital

Affiliated to Shandong First Medical University (center 2) between 1

May 2021 and 31 October 2023 were also included. The inclusion

criteria were as follows: 1) underwent lung lobectomy for lung

cancer and 2) preoperative contrast-enhanced chest CT performed

within 1 week before surgery. The exclusion criteria were as follows:

1) prior history of atrial fibrillation or atrial flutter, 2) prior history

of open heart surgery, 3) missing or incomplete clinical data, and 4)

inadequate CT image quality for analysis. The workflow of this

study is shown in Supplementary Figure S1.

Preoperative demographic data, comorbidities, electrocardiogram

findings, and hematologic examination results were collected from the

electronic medical record system. All patients underwent continuous

telemetry monitoring for at least 48 to 72 h postoperatively, with

extended monitoring as clinically indicated. POAF was defined as new-

onset atrial fibrillation lasting >5min, detected by continuous telemetry

or 12-lead electrocardiogram following lung lobectomy.
2.2 CT examination and image
preprocessing

All patients underwent contrast-enhanced chest CT

examination using a multidetector CT system within 1 week prior
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to surgery. The scanning parameters are shown in Supplementary

Table S1. Iodinated contrast agent (300 mg/mL) at a dose of 1.5 mL/

kg body weight was injected rapidly at a flow rate of 2 mL/s through

the patient’s elbow vein using a high-pressure syringe. Arterial

phase CT images were retrieved from the Picture Archiving and

Communication Systems for further evaluation. Normalization was

performed on all images based on the mean and variance.

EAT segmentation was automatically performed using the

TIMESlice software (version 4.19.0, https://slice-doc.netlify.app/)

(20). First, the pericardium was delineated from the diaphragm to

the pulmonary artery bifurcations. Then, a segmentation algorithm

based on a Hounsfield unit (HU) threshold (between −190 and −30

HU) was used to identify EAT. After the automatic segmentation of

EAT was completed, two experienced radiologists reviewed and

adjusted the volume of interest (VOI). EAT images are shown in

Supplementary Figure S2.
2.3 Radiomics feature extraction

The Python software (version 3.9.13, https://www.python.org/)

and the PyRadiomics package were used to extract handcrafted

radiomics features from the VOIs. A fixed bin width of 25 was set

for image discretization. Bicubic spline interpolation was used to

resample the original images to a voxel size of 1 mm × 1 mm ×

1 mm. Finally, a total of 1,130 handcrafted radiomics features were

extracted from each VOI of the original images and their

corresponding filtered, transformed images. The pretrained 3D

ResNet-18 model provided by torchvision, which was originally

trained on the Kinetics-400 dataset, was employed to extract 512 DL

features. To adapt the model to medical imaging data, the input

layer was modified to accept single-channel (grayscale) input

instead of the original three-channel (RGB) input. Additionally,

the final fully connected layer was removed to adapt the model for

use as a feature extractor.
2.4 Statistical analyses

2.4.1 Cohort splitting
Patients from center 1 were grouped by stratified random

sampling based on the clinical outcome (with or without POAF)

in a ratio of 7:3, with 623 and 267 patients in the training and testing

cohorts, respectively. The validation cohort comprised 118 patients

from center 2. Different resampling techniques, including random

oversampling (ROS), random oversampling examples (ROSE),

synthetic minority oversampling technique (SMOTE), and

Borderline-SMOTE (bSMOTE), were applied to the training

cohort to address the class imbalance distribution between

patients with and without POAF.

2.4.2 Radiomics signature construction
Radiomics feature selection and signature construction were

performed in the training cohort. First, the handcrafted and DL
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radiomics features were standardized using z-score normalization

to eliminate differences introduced by value scales between

radiomics features. The radiomics features in the testing and

validation cohorts were normalized based on the mean value and

standard deviation derived from the training cohort. The Spearman

or Pearson correlation coefficients for each pair of radiomics

features were calculated, and redundant features with a

correlation coefficient greater than 0.9 were removed. The max-

relevance and min-redundancy (mRMR) algorithm was

implemented to rank the importance of the radiomics features

and select the top 30 most significant features for subsequent

analysis. Subsequently, the least absolute shrinkage and selection

operator (LASSO) algorithm was applied to identify significant

radiomics features with non-zero coefficients. The handcrafted

and DL radiomics signatures were constructed using a linear

combinat ion of the final se lected features and their

corresponding coefficients.

2.4.3 Predictive models construction
The differences in the clinical features between patients in

different groups or cohorts were compared using the Student’s t-

test or Mann–Whitney U test for continuous variables and the chi-

squared test for categorical variables, as appropriate. Clinical

features potentially associated with POAF (P<0.05) were then

included in the multivariate logistic regression analysis to identify

the independent risk factors.

The clinical model and combined models, including the clinical +

handcrafted model, clinical + DL model, and clinical + handcrafted +

DL model, were constructed using the logistic regression (LR)

algorithm based on the selected clinical features and handcrafted and

DL radiomics signatures in the training cohort. Furthermore, several

machine learning algorithms, such as support vector machine (SVM),

random forest (RF), and eXtreme Gradient Boosting (XGBoost), were

also considered. The optimal hyperparameters of the classifiers were

determined through a five-fold cross-validation method.

2.4.4 Predictive models evaluation
The receiver operating characteristic (ROC) curves, AUC,

sensitivity, specificity, accuracy, G-mean, and F-measure were

used to assess the performance of the predictive models. The

optimal classification threshold was determined using the Youden

index (sensitivity + specificity − 1). The Delong test was used to

compare the AUC values between the combined models and the

clinical model. The net reclassification index (NRI) was also

calculated to evaluate the incremental value of handcrafted

radiomics signatures and DL radiomics signatures for POAF

prediction. The post hoc Nemenyi test was adopted to compare

the predictive performance of different combinations of resampling

techniques and machine learning algorithms, and the results were

visualized using critical difference (CD) plots.

The sample size was estimated using the “pmsampsize” package

(21). Statistical analyses were conducted using R software (version

4.1.1, https://www.r-project.org/). A P-value <0.05 was considered

statistically significant.
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3 Results

3.1 Patient characteristics

A total of 1,008 lung cancer patients from one high-volume

center (center 1, 890 patients) and one low-volume center (center 2,

118 patients) were included in this study, with 30 (3.4%) and 10

(8.5%) patients developing POAF, respectively. No significant

differences were observed between patients in the training and

testing cohorts (Supplementary Table S2). Compared to the training

cohort, the validation cohort had a significantly higher proportion

of POAF patients (8.5% vs. 3.4%, P=0.022) (Supplementary

Table S3).

In the training cohort, age (P=0.020), sex (P=0.003), history of

coronary heart disease (P=0.028), smoking history (P=0.021),

lymphocyte count (P=0.022), and use of calcium channel blockers

(P=0.046) were significantly different between patients with and

without POAF (Table 1). The multivariate analysis showed that age

(OR=1.079, 95% CI: 1.016–1.146, P=0.014) and male sex
Frontiers in Oncology 04
(OR=3.401, 95% CI: 1.125–10.286, P=0.030) were independent

risk factors for POAF. Furthermore, we found that in the three

cohorts, CHADS2 score, CHA2DS2-VASc score, and Passman score

showed no significant differences between POAF and non-POAF

patients (P<0.05). Clinical features between POAF and non-POAF

patients in the testing and validation cohorts are described in

Supplementary Tables S4 and S5.

We also adopted four different resampling techniques on the

training cohort to balance the distribution between patients with

and without POAF. The distribution of POAF and non-POAF

patients before and after applying different resampling techniques is

illustrated in Supplementary Figure S3.
3.2 Radiomics signature construction

We selected nine handcrafted radiomics features and five DL

radiomics features from the training cohort. The detailed

information on the selected features and their coefficients is
TABLE 1 Clinical features between patients with and without POAF in the training cohorts.

Features
Non-POAF
n=602

POAF
n=21

P-value

Sex 0.020

Female 285 (47.4) 4 (19.0)

Male 317 (52.6) 17 (81.0)

Age (years) 62 (56, 69) 68 (65, 72) 0.003

BMI (kg/m2) 24.2 (22.0, 26.7) 24.8 (21.7, 27.4)

Hypertension 183 (30.4) 10 (47.6) 0.151

DM 67 (11.1) 2 (9.5) 1.000

CAD 49 (8.2) 5 (23.8) 0.028

CVD 42 (7.0) 4 (19.4) 0.061

PAD 15 (2.5) 1 (4.8) 0.426

Smoking history 210 (34.9) 13 (61.9) 0.021

Heart rate (bpm) 68 (61, 76) 71 (67, 85) 0.081

WBC (109/L) 5.54 (4.51, 6.69) 5.76 (4.73, 7.01) 0.412

Neutrophil (109/L) 3.24 (2.44, 4.15) 3.45 (2.58, 4.83) 0.210

Lymphocytes (109/L) 1.65 (1.34, 1.98) 1.27 (1.16, 1.68) 0.022

Platelets (109/L) 231 (195, 276) 221 (192, 285) 0.896

CCB 76 (12.6) 6 (28.6) 0.046

Metoprolol 25 (4.2) 1 (4.8) 0.598

Neoadjuvant therapy 80 (13.3) 6 (28.6) 0.056

CHADS2 score ≥2 83 (13.8) 5 (23.8) 0.200

CHA2DS2-VASc score ≥5 17 (2.8) 1 (4.8) 0.465

Passman score ≥4 196 (32.6) 10 (47.6) 0.228
Categorical variables shown with frequency and percentage; continuous variables shown with median and interquartile range.
POAF, postoperative atrial fibrillation; BMI, body mass index; DM, diabetes mellitus; CAD, coronary heart disease; CVD, cerebrovascular disease; PAD, peripheral arterial disease; bpm, beats per
minute; WBC, white blood cell; CCB, calcium channel blocker.
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shown in Figure 1. In the original dataset, testing cohort, and

validation cohort, the handcrafted and DL radiomics signatures

were significantly elevated in patients with POAF (P<0.05;

Figure 1). The distribution of constructed handcrafted and DL

radiomics signatures between patients with and without POAF in

the other resampling datasets is demonstrated in Supplementary

Figure S4.
3.3 Model performance comparison

We constructed four predictive models using the LR algorithm

based on the independent clinical features and handcrafted and DL

radiomics signatures. As shown in Figure 2 and Table 2, the clinical

+ handcrafted + DL model, integrating clinical features and

handcrafted and DL radiomics signatures, demonstrated superior
Frontiers in Oncology 05
predictive performance in the training, testing, and validation

cohorts, with AUC values of 0.890, 0.876, and 0.803, respectively.

Furthermore, the Delong test showed that the AUC of the clinical +

handcrafted + DL model was significantly better than that of the

clinical model in the training (P=0.016), testing (P=0.043), and

validation (P=0.018) cohorts (Table 2). The NRI also indicated that

the classification accuracy of POAF prediction improved

significantly after integrating handcrafted and DL radiomics

signatures compared to the clinical model, with P-values of 0.025,

<0.001, and 0.004 in the three cohorts, respectively. Furthermore,

the G-mean and F-measure of the clinical + handcrafted + DL

model were higher than those of other models in all three

cohorts (Table 2).

In addition, we constructed 20 different clinical + handcrafted +

DL models using various combinations of resampling techniques

and machine learning algorithms. The post hoc Nemenyi test was
FIGURE 1

Composition features and distribution of constructed radiomics signatures. The selected handcrafted (A) and DL radiomics features (C). Violin plots
of the distribution of handcrafted (B) and DL radiomics signatures (D) in the three cohorts. *, P<0.05; **, P<0.01; ****, P<0.0001.
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employed to compare the predictive performance of these models.

The results showed that in the training cohort, the RF algorithm

significantly outperformed the LR algorithm in terms of G-mean

and F-measure, but not in terms of AUC. However, improvements

in AUC, G-mean, or F-measure resulting from resampling

techniques and machine learning algorithms were not statistically

significant in either the testing or validation cohorts. CD plots were

used to visualize the differences in AUC, G-mean, and F-measure

(Figure 3, Supplementary Figure S5, S6).
4 Discussion

In this study, we constructed a DL radiomics model through DL

and radiomics analysis based on preoperative CT images of EAT
Frontiers in Oncology 06
and validated its ability to identify high-risk lung cancer patients

with POAF following lung lobectomy. Compared to the clinical

model, the predictive performance of the DL radiomics model,

which integrates clinical features and handcrafted and DL

radiomics signatures, was significantly improved. Furthermore,

resampling techniques and machine learning algorithms did not

significantly improve model performance.

The incidence of POAF in center 1 was 3.4%, lower than that

reported in previous studies (1–4), which may be attributed to the

implementation of enhanced recovery after surgery protocols (22)

and a lower proportion of elderly patients. However, in the low-

volume center, the incidence of POAF was 8.5%, significantly

higher than that in center 1, demonstrating the good

transportability of the DL radiomics model. In this study, we

identified advanced age (P=0.014) and male sex (P=0.030) as
FIGURE 2

Receiver operating characteristic curves of four different predictive models constructed with no resampling technology and LR algorithm in the
training (A), testing (B), and validation (C) cohorts. The nomogram of the clinical + handcrafted + DL model (D).
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independent risk factors. In the three cohorts, the AUC values of the

clinical model were 0.737, 0.716, and 0.630, respectively, consistent

with the results of previous studies (3, 4, 10). Furthermore, the

Passman score, CHADS2 score, and CHA2DS2-VASc score have

been reported to identify high-risk patients with POAF (23–26).

However, no significant differences were observed between patients

with and without POAF in the three cohorts.

Artificial intelligence, particularly radiomics and deep learning,

has rapidly emerged as a transformative field in translational

oncology, serving as a critical bridge between medical imaging

and precision medicine (27–29). In the context of lung cancer,

radiomics has demonstrated broad application prospects in

diagnosis, treatment response evaluation, and prognosis

prediction (30–32). In recent years, the region of interest in

radiomics has extended beyond the tumor itself. Radiomics

features of EAT have been shown to effectively predict atrial

fibrillation, mortality in acute pulmonary embolism, and

myocardial ischemia (33–35). Our previous studies demonstrated

that the handcrafted radiomics signatures of EAT achieved

acceptable performance in predicting atrial fibrillation after

pulmonary endarterectomy and coronary artery bypass grafting

(16, 17). Therefore, radiomics analysis of EAT shows potential in

identifying POAF in patients undergoing lung lobectomy.

DL radiomics features, particularly 3D DL features, can improve

the performance of predictive models (18, 19). However, no relevant

studies have been conducted on the DL radiomics analysis of EAT. In

our study, we aimed to investigate the incremental value of handcrafted

and DL radiomics signatures in POAF prediction. We extracted 1,130

handcrafted radiomics features and 512 DL radiomics features from

each VOI, ultimately constructing handcrafted DL radiomics
Frontiers in Oncology 07
signatures after feature selection. The results of the Delong test and

NRI analysis demonstrated that the DL radiomics model, integrating

clinical features and handcrafted and DL radiomics signatures,

performed satisfactorily in all cohorts, with significantly better

predictive ability than the clinical model. However, the biological

interpretation of radiomic features remains largely unclear, which

limits a deeper understanding of their predictive mechanism and

potential clinical translation. A relevant study by Mancio et al. in

patients undergoing aortic valve replacement showed that a radiomics

model combining EAT features and volume effectively discriminated

preoperative POAF patients from those in sinus rhythm, achieving an

AUC of 0.80 (95% CI: 0.68–0.92). Furthermore, proteomic analysis in

that study revealed that POAF was associated with upregulation of

inflammatory and prothrombotic proteins, along with downregulation

of cardioprotective proteins with anti-inflammatory and antilipotoxic

functions (15). Unfortunately, due to the retrospective nature of our

study, we were unable to perform biologically validated assays (e.g.,

proteomics or histology) to explore the molecular correlates of the EAT

radiomic features identified here. In our previous study, EAT

segmentation was performed manually, which was time-consuming

and labor-intensive. In this study, we employed the TIMESlice software

to automatically segment EAT, significantly reducing the segmentation

time and facilitating its clinical application.

Currently, imbalanced data remain a significant challenge for

prediction models, often leading to prediction misclassification

(36). Previous studies have demonstrated that resampling

techniques and machine learning algorithms are effective methods

for addressing the imbalance problem (37–39). In this study, we

adopted the classical linear classification model constructed by the

LR algorithm as the baseline model. Additionally, machine learning
TABLE 2 Predictive performance of the models constructed with no resampling technology and LR algorithm.

Model AUC Sensitivity Specificity Accuracy G-mean F-measure

Training cohort

Model 1 0.737 (0.628–0.847) 0.667 0.764 0.761 0.245 0.159

Model 2 0.841 (0.758–0.925) 0.857 0.694 0.700 0.276 0.161

Model 3 0.866 (0.794–0.937) 0.905 0.713 0.719 0.299 0.178

Model 4 0.890 (0.816–0.963) 0.810 0.812 0.812 0.326 0.226

Testing cohort

Model 1 0.716 (0.570–0.862) 0.778 0.671 0.674 0.243 0.138

Model 2 0.815 (0.700–0.930) 1.000 0.535 0.551 0.265 0.131

Model 3 0.795 (0.637–0.952) 0.667 0.810 0.805 0.270 0.187

Model 4 0.876 (0.755–0.997) 0.667 0.961 0.951 0.500 0.480

Validation cohort

Model 1 0.630 (0.458–0.802) 0.700 0.574 0.585 0.304 0.222

Model 2 0.773 (0.632–0.914) 0.900 0.657 0.678 0.420 0.322

Model 3 0.757 (0.561–0.952) 0.500 0.954 0.915 0.500 0.500

Model 4 0.803 (0.651–0.955) 0.500 0.981 0.941 0.597 0.588
Model 1, clinical model; model 2, clinical + handcrafted model; model 3, clinical + DL model; model 4, clinical + handcrafted + DL model; AUC, the area under the receiver operating
characteristic curve; DL, deep learning.
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algorithms such as RF, SVM, and XGBoost, which have been

reported to effectively address imbalance problems, were also

selected (38, 40). Furthermore, considering the small number of

patients with POAF, we employed four oversampling methods to

balance the distribution of patients and ultimately constructed 20

different combination models. Currently, most studies only

compare numerical values, lacking comprehensive statistical

analysis. In our study, we employed the Friedman test and post

hoc Nemenyi test to compare the predictive performance of
Frontiers in Oncology 08
different combinations of resampling techniques and machine

learning algorithms, with results visualized using CD plots. The

results indicated that neither machine learning algorithms nor

resampling techniques significantly improved model performance

in terms of AUC. G-mean and F-measure are useful evaluation

metrics for imbalanced datasets. Unfortunately, we did not observe

significant improvements in terms of G-mean and F-measure with

machine learning algorithms and resampling techniques, contrary

to previous studies (37). However, the study by Hubert S. Gabryś
FIGURE 3

The area under the receiver operating characteristic (AUC) of different combinations of resampling techniques and machine learning algorithms in
the training (A), testing (B), and validation (C) cohorts. Critical difference (CD) plots of the performance rankings over different machine learning
algorithms by the post hoc Nemenyi test in terms of AUC in the training (D), testing (E), and validation (F) cohorts. CD plots of the performance
rankings over different resampling techniques by the post hoc Nemenyi test in terms of AUC in the training (G), testing (H), and validation (I) cohorts.
In CD plots, lower ranks correspond to better model performance, and the black bar represents the lack of statistical differences between machine
learning algorithms or resampling techniques.
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et al. found no advantage of resampling techniques in improving

model performance (41). Due to the specific clinical challenges and

the intrinsic characteristics of the data, there is no consensus on the

optimal combination of machine learning algorithms and

resampling techniques. Further research is required to

comprehensively compare the performance of various resampling

methods and machine learning algorithms.

This study has several limitations. First, due to the retrospective

study design, some potential clinical features associated with POAF

were not included, whichmay have limited the diagnostic performance.

Second, it is important to note that the data for this study were

retrospectively collected from two centers within a single healthcare

network. While this provided internal consistency in imaging

protocols, it may limit the generalizability of the findings.

Furthermore, the sample size of the external validation cohort was

limited, and future large-scale, multi-institutional prospective studies

involving external validation cohorts from independent networks are

essential to confirm the broad applicability of our model. Third, the

relatively low incidence of POAF in our cohort may constrain the

statistical power of the analysis and heighten the risk of model

overfitting. While we employed resampling methods applied to

alleviate class imbalance, further investigation into advanced feature

selection and systematic hyperparameter tuning may offer valuable

pathways for enhancing model generalizability and performance.

Finally, the biological significance of radiomics features, particularly

DL features, requires further investigation to enhance understanding

and clinical application. The utilization of gradient-weighted class

activation maps and perturbation-based explainable artificial

intelligence techniques and the integration of radiomic features with

other interpretable omics data, such as tissue metabolomics, all

represent promising potential avenues for enhancing model

interpretability (42–44).
5 Conclusion

In summary, the DL radiomics model based on preoperative

EAT images effectively identified high-risk lung cancer patients

with POAF following lung lobectomy and offers a novel tool for risk

stratification. Neither machine learning algorithms nor resampling

techniques significantly improved model performance in terms of

AUC, G-mean, and F-measure.
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