? frontiers ‘ Frontiers in Oncology

@ Check for updates

OPEN ACCESS

EDITED BY
Arka Bhowmik,

Memorial Sloan Kettering Cancer Center,
United States

REVIEWED BY

Shigao Huang,

Air Force Medical University, China
Marc Boubnovski Martell,

Imperial College, United Kingdom

*CORRESPONDENCE

Hongbo Guo
guomutong@126.com

Hui Zhu
drzhuh@126.com

"These authors have contributed equally to
this work

RECEIVED 19 May 2025
ACCEPTED 26 September 2025
PUBLISHED 13 October 2025

CITATION

Liu Z, Zheng C, Jia Z, Zhao C, Liu X, Shao W,
Chen F, Zhu H and Guo H (2025)

Deep learning radiomics model of epicardial
adipose tissue for predicting postoperative
atrial fibrillation after

lung lobectomy in lung cancer patients.
Front. Oncol. 15:1623248.

doi: 10.3389/fonc.2025.1623248

COPYRIGHT
© 2025 Liu, Zheng, Jia, Zhao, Liu, Shao, Chen,
Zhu and Guo. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Oncology

TvPE Original Research
PUBLISHED 13 October 2025
D01 10.3389/fonc.2025.1623248

Deep learning radiomics model
of epicardial adipose tissue for
predicting postoperative atrial
fibrillation after lung lobectomy
in lung cancer patients

Zhan Liu', Chong Zheng?®', Zongxiao Jia*', Chengwei Zhao*,
Xiangyu Liu?, Weipeng Shao?, Feng Chen?, Hui Zhu®

1:
and Hongbo Guo™
‘Department of Lung Surgical Ward I, Shandong Cancer Hospital and Institute, Shandong First
Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China,
2Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University
and Shandong Academy of Medical Sciences, Jinan, Shandong, China, *Department of Thoracic
Surgical, Feicheng Hospital Affiliated to Shandong First Medical University, Taian, Shandong, China,

“Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical
University and Shandong Academy of Medical Sciences, Jinan, Shandong, China

Objective: To develop and validate a deep learning (DL) radiomics model based
on epicardial adipose tissue (EAT) for identifying high-risk lung cancer patients
with postoperative atrial fibrillation after lung lobectomy.

Methods: A total of 1,008 patients from two centers were included. Handcrafted
and DL radiomics features were extracted from the preoperative contrast-
enhanced chest CT images of EAT. Clinical features and handcrafted and DL
radiomics signatures were integrated to construct predictive models using the
logistic regression algorithm as the baseline model. Twenty DL radiomics models
were constructed through various combinations of machine learning algorithms
and resampling techniques. The post hoc Nemenyi test was employed to
compare the predictive performance in terms of the area under the receiver
operating characteristic curve (AUC), G-mean, and F-measure.

Results: Advanced age and male sex were identified as independent risk factors
for POAF. The DL radiomics model, integrating clinical features, handcrafted
radiomics signature, and DL radiomics signature, outperformed the clinical
model, achieving AUC values of 0.890 (95% Cl: 0.816-0.963), 0.876 (95% ClI:
0.755-0.997), and 0.803 (95% CIl: 0.651-0.955) in the training, testing, and
validation cohorts, respectively. The results of the post hoc Nemenyi tests
indicated that neither machine learning algorithms nor resampling techniques
significantly improved model performance, as measured by the AUC, G-mean, or
F-measure.
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Conclusion: The DL radiomics model based on preoperative EAT images
effectively identifies high-risk lung cancer patients with POAF following lung
lobectomy and offers a novel tool for risk stratification.

postoperative atrial fibrillation, deep learning radiomics, epicardial adipose tissue, lung
lobectomy, lung cancer

1 Introduction

Lung lobectomy is the most common operation performed for
lung cancer patients. Postoperative atrial fibrillation (POAF) is a
common complication following lung lobectomy, with incidence
rates ranging from 5.2% to 17.6% (1-4). Although POAF is often
considered transient and self-limiting, it is significantly associated with
prolonged hospital stays, increased risk of stroke, and higher mortality
rates (5-7). Studies have shown that perioperative strategies, such as the
administration of magnesium sulfate, preferential use of vasopressors
over inotropes, avoidance of red cell transfusion, and video-assisted
thoracoscopic surgery, may reduce POAF incidence (3, 8). Therefore,
accurate preoperative risk stratification and tailored perioperative
management are essential for improving outcomes and quality of life
in high-risk lung cancer patients.

Several clinical characteristics, including advanced age, male
sex, and procedural invasiveness, have been identified as key
predictors of POAF (7, 9). Although these risk factors have been
incorporated into predictive models, their performance remains
suboptimal, with area under the receiver operating characteristic
curve (AUC) values typically below 0.80 (3, 4, 10). Consequently,
improving the identification of high-risk patients with POAF is
warranted. Epicardial adipose tissue (EAT), a unique fat depot
located between the myocardium and the visceral layer of the
epicardium, has been suggested to play a role in the development
and progression of atrial fibrillation (11). West et al. demonstrated
that EAT volume could predict both in-hospital and long-term
post-cardiac surgery atrial fibrillation (12).

Radiomics, which extracts high-throughput quantitative
features from medical images, can provide disease-related
information beyond traditional quantitative features such as
volume and density (13, 14). Several studies have highlighted the
effectiveness of EAT radiomics models in predicting POAF (15-17).
The integration of deep learning (DL) radiomics features,
particularly 3D DL features, enhances radiomics by capturing
intricate structural patterns, thereby improving predictive model
performance (18, 19). Therefore, integrating radiomics and DL
analysis of EAT on preoperative CT images may offer a novel and
robust approach for predicting POAF following lung lobectomy.

In this study, we aimed to develop and validate a DL radiomics
model based on EAT to identify high-risk lung cancer patients for
POAF following lung lobectomy. Additionally, we systematically
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evaluated the impact of various machine learning algorithms and
resampling techniques on model performance.

2 Materials and methods

2.1 Study cohorts

This study was approved by the Ethics Board of Shandong
Cancer Hospital and Institute, Shandong First Medical University
and Shandong Academy of Medical Sciences (SDTHEC
202411027), and Feicheng Hospital Affiliated to Shandong First
Medical University (2024039). Informed consent was waived due to
the retrospective design of the study.

Between 1 May 2023 and 31 October 2023, 890 consecutive lung
cancer patients who underwent lung lobectomy at, Shandong First
Medical University and Shandong Academy of Medical Sciences
(center 1) were enrolled. Additionally, 118 consecutive patients who
underwent lung lobectomy for lung cancer at Feicheng Hospital
Affiliated to Shandong First Medical University (center 2) between 1
May 2021 and 31 October 2023 were also included. The inclusion
criteria were as follows: 1) underwent lung lobectomy for lung
cancer and 2) preoperative contrast-enhanced chest CT performed
within 1 week before surgery. The exclusion criteria were as follows:
1) prior history of atrial fibrillation or atrial flutter, 2) prior history
of open heart surgery, 3) missing or incomplete clinical data, and 4)
inadequate CT image quality for analysis. The workflow of this
study is shown in Supplementary Figure SI.

Preoperative demographic data, comorbidities, electrocardiogram
findings, and hematologic examination results were collected from the
electronic medical record system. All patients underwent continuous
telemetry monitoring for at least 48 to 72 h postoperatively, with
extended monitoring as clinically indicated. POAF was defined as new-
onset atrial fibrillation lasting >5 min, detected by continuous telemetry
or 12-lead electrocardiogram following lung lobectomy.

2.2 CT examination and image
preprocessing
All patients underwent contrast-enhanced chest CT

examination using a multidetector CT system within 1 week prior
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to surgery. The scanning parameters are shown in Supplementary
Table S1. Iodinated contrast agent (300 mg/mL) at a dose of 1.5 mL/
kg body weight was injected rapidly at a flow rate of 2 mL/s through
the patient’s elbow vein using a high-pressure syringe. Arterial
phase CT images were retrieved from the Picture Archiving and
Communication Systems for further evaluation. Normalization was
performed on all images based on the mean and variance.

EAT segmentation was automatically performed using the
TIMESlice software (version 4.19.0, https://slice-doc.netlify.app/)
(20). First, the pericardium was delineated from the diaphragm to
the pulmonary artery bifurcations. Then, a segmentation algorithm
based on a Hounsfield unit (HU) threshold (between —190 and —30
HU) was used to identify EAT. After the automatic segmentation of
EAT was completed, two experienced radiologists reviewed and
adjusted the volume of interest (VOI). EAT images are shown in
Supplementary Figure S2.

2.3 Radiomics feature extraction

The Python software (version 3.9.13, https://www.python.org/)
and the PyRadiomics package were used to extract handcrafted
radiomics features from the VOIs. A fixed bin width of 25 was set
for image discretization. Bicubic spline interpolation was used to
resample the original images to a voxel size of 1 mm x 1 mm X
1 mm. Finally, a total of 1,130 handcrafted radiomics features were
extracted from each VOI of the original images and their
corresponding filtered, transformed images. The pretrained 3D
ResNet-18 model provided by torchvision, which was originally
trained on the Kinetics-400 dataset, was employed to extract 512 DL
features. To adapt the model to medical imaging data, the input
layer was modified to accept single-channel (grayscale) input
instead of the original three-channel (RGB) input. Additionally,
the final fully connected layer was removed to adapt the model for
use as a feature extractor.

2.4 Statistical analyses

2.4.1 Cohort splitting

Patients from center 1 were grouped by stratified random
sampling based on the clinical outcome (with or without POAF)
in a ratio of 7:3, with 623 and 267 patients in the training and testing
cohorts, respectively. The validation cohort comprised 118 patients
from center 2. Different resampling techniques, including random
oversampling (ROS), random oversampling examples (ROSE),
synthetic minority oversampling technique (SMOTE), and
Borderline-SMOTE (bSMOTE), were applied to the training
cohort to address the class imbalance distribution between
patients with and without POAF.

2.4.2 Radiomics signature construction
Radiomics feature selection and signature construction were
performed in the training cohort. First, the handcrafted and DL
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radiomics features were standardized using z-score normalization
to eliminate differences introduced by value scales between
radiomics features. The radiomics features in the testing and
validation cohorts were normalized based on the mean value and
standard deviation derived from the training cohort. The Spearman
or Pearson correlation coefficients for each pair of radiomics
features were calculated, and redundant features with a
correlation coefficient greater than 0.9 were removed. The max-
relevance and min-redundancy (mRMR) algorithm was
implemented to rank the importance of the radiomics features
and select the top 30 most significant features for subsequent
analysis. Subsequently, the least absolute shrinkage and selection
operator (LASSO) algorithm was applied to identify significant
radiomics features with non-zero coefficients. The handcrafted
and DL radiomics signatures were constructed using a linear
combination of the final selected features and their
corresponding coefficients.

2.4.3 Predictive models construction

The differences in the clinical features between patients in
different groups or cohorts were compared using the Student’s t-
test or Mann-Whitney U test for continuous variables and the chi-
squared test for categorical variables, as appropriate. Clinical
features potentially associated with POAF (P<0.05) were then
included in the multivariate logistic regression analysis to identify
the independent risk factors.

The clinical model and combined models, including the clinical +
handcrafted model, clinical + DL model, and clinical + handcrafted +
DL model, were constructed using the logistic regression (LR)
algorithm based on the selected clinical features and handcrafted and
DL radiomics signatures in the training cohort. Furthermore, several
machine learning algorithms, such as support vector machine (SVM),
random forest (RF), and eXtreme Gradient Boosting (XGBoost), were
also considered. The optimal hyperparameters of the classifiers were
determined through a five-fold cross-validation method.

2.4.4 Predictive models evaluation

The receiver operating characteristic (ROC) curves, AUC,
sensitivity, specificity, accuracy, G-mean, and F-measure were
used to assess the performance of the predictive models. The
optimal classification threshold was determined using the Youden
index (sensitivity + specificity — 1). The Delong test was used to
compare the AUC values between the combined models and the
clinical model. The net reclassification index (NRI) was also
calculated to evaluate the incremental value of handcrafted
radiomics signatures and DL radiomics signatures for POAF
prediction. The post hoc Nemenyi test was adopted to compare
the predictive performance of different combinations of resampling
techniques and machine learning algorithms, and the results were
visualized using critical difference (CD) plots.

The sample size was estimated using the “pmsampsize” package
(21). Statistical analyses were conducted using R software (version
4.1.1, https://www.r-project.org/). A P-value <0.05 was considered
statistically significant.
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TABLE 1 Clinical features between patients with and without POAF in the training cohorts.

Features ACIEE A1 e P-value
n=602 n=21

Sex 0.020

Female 285 (47.4) 4 (19.0)

Male 317 (52.6) 17 (81.0)
Age (years) 62 (56, 69) 68 (65, 72) 0.003
BMI (kg/m?) 242 (22.0, 26.7) 24.8 (21.7, 27.4)
Hypertension 183 (30.4) 10 (47.6) 0.151
DM 67 (11.1) 2 (9.5) 1.000
CAD 49 (8.2) 5(23.8) 0.028
CVD 42 (7.0) 4(19.4) 0.061
PAD 15 (2.5) 1(4.8) 0.426
Smoking history 210 (34.9) 13 (61.9) 0.021
Heart rate (bpm) 68 (61, 76) 71 (67, 85) 0.081
WBC (10°/L) 5.54 (4.51, 6.69) 5.76 (4.73, 7.01) 0.412
Neutrophil (10°/L) 3.24 (2.44, 4.15) 3.45 (2.58, 4.83) 0.210
Lymphocytes (10°/L) 1.65 (1.34, 1.98) 1.27 (1.16, 1.68) 0.022
Platelets (10°/L) 231 (195, 276) 221 (192, 285) 0.896
CCB 76 (12.6) 6 (28.6) 0.046
Metoprolol 25 (4.2) 1(4.8) 0.598
Neoadjuvant therapy 80 (13.3) 6 (28.6) 0.056
CHADS, score >2 83 (13.8) 5(23.8) 0.200
CHA,DS,-VASc score >5 17 (2.8) 1(4.8) 0.465
Passman score >4 196 (32.6) 10 (47.6) 0.228

Categorical variables shown with frequency and percentage; continuous variables shown with median and interquartile range.
POATF, postoperative atrial fibrillation; BMI, body mass index; DM, diabetes mellitus; CAD, coronary heart disease; CVD, cerebrovascular disease; PAD, peripheral arterial disease; bpm, beats per

minute; WBC, white blood cell; CCB, calcium channel blocker.

3 Results
3.1 Patient characteristics

A total of 1,008 lung cancer patients from one high-volume
center (center 1, 890 patients) and one low-volume center (center 2,
118 patients) were included in this study, with 30 (3.4%) and 10
(8.5%) patients developing POAF, respectively. No significant
differences were observed between patients in the training and
testing cohorts (Supplementary Table S2). Compared to the training
cohort, the validation cohort had a significantly higher proportion
of POAF patients (8.5% vs. 3.4%, P=0.022) (Supplementary
Table S3).

In the training cohort, age (P=0.020), sex (P=0.003), history of
coronary heart disease (P=0.028), smoking history (P=0.021),
lymphocyte count (P=0.022), and use of calcium channel blockers
(P=0.046) were significantly different between patients with and
without POAF (Table 1). The multivariate analysis showed that age
(OR=1.079, 95% CI: 1.016-1.146, P=0.014) and male sex
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(OR=3.401, 95% CI: 1.125-10.286, P=0.030) were independent
risk factors for POAF. Furthermore, we found that in the three
cohorts, CHADS, score, CHA,DS,-VASc score, and Passman score
showed no significant differences between POAF and non-POAF
patients (P<0.05). Clinical features between POAF and non-POAF
patients in the testing and validation cohorts are described in
Supplementary Tables S4 and S5.

We also adopted four different resampling techniques on the
training cohort to balance the distribution between patients with
and without POAF. The distribution of POAF and non-POAF
patients before and after applying different resampling techniques is
illustrated in Supplementary Figure S3.

3.2 Radiomics signature construction
We selected nine handcrafted radiomics features and five DL

radiomics features from the training cohort. The detailed
information on the selected features and their coefficients is
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FIGURE 1

Composition features and distribution of constructed radiomics signatures. The selected handcrafted (A) and DL radiomics features (C). Violin plots
of the distribution of handcrafted (B) and DL radiomics signatures (D) in the three cohorts. *, P<0.05; **, P<0.01; ****, P<0.0001.

shown in Figure 1. In the original dataset, testing cohort, and
validation cohort, the handcrafted and DL radiomics signatures
were significantly elevated in patients with POAF (P<0.05;
Figure 1). The distribution of constructed handcrafted and DL
radiomics signatures between patients with and without POAF in
the other resampling datasets is demonstrated in Supplementary
Figure S4.

3.3 Model performance comparison

We constructed four predictive models using the LR algorithm
based on the independent clinical features and handcrafted and DL
radiomics signatures. As shown in Figure 2 and Table 2, the clinical
+ handcrafted + DL model, integrating clinical features and
handcrafted and DL radiomics signatures, demonstrated superior
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predictive performance in the training, testing, and validation
cohorts, with AUC values of 0.890, 0.876, and 0.803, respectively.
Furthermore, the Delong test showed that the AUC of the clinical +
handcrafted + DL model was significantly better than that of the
clinical model in the training (P=0.016), testing (P=0.043), and
validation (P=0.018) cohorts (Table 2). The NRI also indicated that
the classification accuracy of POAF prediction improved
significantly after integrating handcrafted and DL radiomics
signatures compared to the clinical model, with P-values of 0.025,
<0.001, and 0.004 in the three cohorts, respectively. Furthermore,
the G-mean and F-measure of the clinical + handcrafted + DL
model were higher than those of other models in all three
cohorts (Table 2).

In addition, we constructed 20 different clinical + handcrafted +
DL models using various combinations of resampling techniques
and machine learning algorithms. The post hoc Nemenyi test was
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employed to compare the predictive performance of these models.
The results showed that in the training cohort, the RF algorithm
significantly outperformed the LR algorithm in terms of G-mean
and F-measure, but not in terms of AUC. However, improvements
in AUC, G-mean, or F-measure resulting from resampling
techniques and machine learning algorithms were not statistically
significant in either the testing or validation cohorts. CD plots were
used to visualize the differences in AUC, G-mean, and F-measure
(Figure 3, Supplementary Figure S5, S6).

4 Discussion

In this study, we constructed a DL radiomics model through DL
and radiomics analysis based on preoperative CT images of EAT
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and validated its ability to identify high-risk lung cancer patients
with POAF following lung lobectomy. Compared to the clinical
model, the predictive performance of the DL radiomics model,
which integrates clinical features and handcrafted and DL
radiomics signatures, was significantly improved. Furthermore,
resampling techniques and machine learning algorithms did not
significantly improve model performance.

The incidence of POAF in center 1 was 3.4%, lower than that
reported in previous studies (1-4), which may be attributed to the
implementation of enhanced recovery after surgery protocols (22)
and a lower proportion of elderly patients. However, in the low-
volume center, the incidence of POAF was 8.5%, significantly
higher than that in center 1, demonstrating the good
transportability of the DL radiomics model. In this study, we
identified advanced age (P=0.014) and male sex (P=0.030) as
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TABLE 2 Predictive performance of the models constructed with no resampling technology and LR algorithm.

F-measure

Sensitivity

Specificity Accuracy

Training cohort

Model 1 0.737 (0.628-0.847) 0.667 0.764 0.761 0.245 0.159
Model 2 0.841 (0.758-0.925) 0.857 0.694 0.700 0.276 0.161
Model 3 0.866 (0.794-0.937) 0.905 0.713 0.719 0.299 0.178
Model 4 0.890 (0.816-0.963) 0.810 0.812 0.812 0.326 0.226
Testing cohort
Model 1 0.716 (0.570-0.862) 0.778 0.671 0.674 0.243 0.138
Model 2 0.815 (0.700-0.930) 1.000 0.535 0.551 0.265 0.131
Model 3 0.795 (0.637-0.952) 0.667 0.810 0.805 0.270 0.187
Model 4 0.876 (0.755-0.997) 0.667 0.961 0.951 0.500 0.480
Validation cohort
Model 1 0.630 (0.458-0.802) 0.700 0.574 0.585 0.304 0.222
Model 2 0.773 (0.632-0.914) 0.900 0.657 0.678 0.420 0.322
Model 3 0.757 (0.561-0.952) 0.500 0.954 0.915 0.500 0.500
Model 4 0.803 (0.651-0.955) 0.500 0.981 0.941 0.597 0.588

Model 1, clinical model; model 2, clinical + handcrafted model; model 3, clinical + DL model; model 4, clinical + handcrafted + DL model; AUC, the area under the receiver operating

characteristic curve; DL, deep learning.

independent risk factors. In the three cohorts, the AUC values of the
clinical model were 0.737, 0.716, and 0.630, respectively, consistent
with the results of previous studies (3, 4, 10). Furthermore, the
Passman score, CHADS, score, and CHA,DS,-VASc score have
been reported to identify high-risk patients with POAF (23-26).
However, no significant differences were observed between patients
with and without POAF in the three cohorts.

Artificial intelligence, particularly radiomics and deep learning,
has rapidly emerged as a transformative field in translational
oncology, serving as a critical bridge between medical imaging
and precision medicine (27-29). In the context of lung cancer,
radiomics has demonstrated broad application prospects in
diagnosis, treatment response evaluation, and prognosis
prediction (30-32). In recent years, the region of interest in
radiomics has extended beyond the tumor itself. Radiomics
features of EAT have been shown to effectively predict atrial
fibrillation, mortality in acute pulmonary embolism, and
myocardial ischemia (33-35). Our previous studies demonstrated
that the handcrafted radiomics signatures of EAT achieved
acceptable performance in predicting atrial fibrillation after
pulmonary endarterectomy and coronary artery bypass grafting
(16, 17). Therefore, radiomics analysis of EAT shows potential in
identifying POAF in patients undergoing lung lobectomy.

DL radiomics features, particularly 3D DL features, can improve
the performance of predictive models (18, 19). However, no relevant
studies have been conducted on the DL radiomics analysis of EAT. In
our study, we aimed to investigate the incremental value of handcrafted
and DL radiomics signatures in POAF prediction. We extracted 1,130
handcrafted radiomics features and 512 DL radiomics features from
each VOI, ultimately constructing handcrafted DL radiomics
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signatures after feature selection. The results of the Delong test and
NRI analysis demonstrated that the DL radiomics model, integrating
clinical features and handcrafted and DL radiomics signatures,
performed satisfactorily in all cohorts, with significantly better
predictive ability than the clinical model. However, the biological
interpretation of radiomic features remains largely unclear, which
limits a deeper understanding of their predictive mechanism and
potential clinical translation. A relevant study by Mancio et al. in
patients undergoing aortic valve replacement showed that a radiomics
model combining EAT features and volume effectively discriminated
preoperative POAF patients from those in sinus rhythm, achieving an
AUC of 0.80 (95% CI: 0.68-0.92). Furthermore, proteomic analysis in
that study revealed that POAF was associated with upregulation of
inflammatory and prothrombotic proteins, along with downregulation
of cardioprotective proteins with anti-inflammatory and antilipotoxic
functions (15). Unfortunately, due to the retrospective nature of our
study, we were unable to perform biologically validated assays (e.g.,
proteomics or histology) to explore the molecular correlates of the EAT
radiomic features identified here. In our previous study, EAT
segmentation was performed manually, which was time-consuming
and labor-intensive. In this study, we employed the TIMESlice software
to automatically segment EAT, significantly reducing the segmentation
time and facilitating its clinical application.

Currently, imbalanced data remain a significant challenge for
prediction models, often leading to prediction misclassification
(36). Previous studies have demonstrated that resampling
techniques and machine learning algorithms are effective methods
for addressing the imbalance problem (37-39). In this study, we
adopted the classical linear classification model constructed by the
LR algorithm as the baseline model. Additionally, machine learning
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FIGURE 3

The area under the receiver operating characteristic (AUC) of different combinations of resampling techniques and machine learning algorithms in
the training (A), testing (B), and validation (C) cohorts. Critical difference (CD) plots of the performance rankings over different machine learning
algorithms by the post hoc Nemenyi test in terms of AUC in the training (D), testing (E), and validation (F) cohorts. CD plots of the performance
rankings over different resampling techniques by the post hoc Nemenyi test in terms of AUC in the training (G), testing (H), and validation (I) cohorts.
In CD plots, lower ranks correspond to better model performance, and the black bar represents the lack of statistical differences between machine

learning algorithms or resampling techniques.

algorithms such as RF, SVM, and XGBoost, which have been
reported to effectively address imbalance problems, were also
selected (38, 40). Furthermore, considering the small number of
patients with POAF, we employed four oversampling methods to
balance the distribution of patients and ultimately constructed 20
different combination models. Currently, most studies only
compare numerical values, lacking comprehensive statistical
analysis. In our study, we employed the Friedman test and post
hoc Nemenyi test to compare the predictive performance of

Frontiers in Oncology

different combinations of resampling techniques and machine
learning algorithms, with results visualized using CD plots. The
results indicated that neither machine learning algorithms nor
resampling techniques significantly improved model performance
in terms of AUC. G-mean and F-measure are useful evaluation
metrics for imbalanced datasets. Unfortunately, we did not observe
significant improvements in terms of G-mean and F-measure with
machine learning algorithms and resampling techniques, contrary
to previous studies (37). However, the study by Hubert S. Gabrys
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et al. found no advantage of resampling techniques in improving
model performance (41). Due to the specific clinical challenges and
the intrinsic characteristics of the data, there is no consensus on the
optimal combination of machine learning algorithms and
resampling techniques. Further research is required to
comprehensively compare the performance of various resampling
methods and machine learning algorithms.

This study has several limitations. First, due to the retrospective
study design, some potential clinical features associated with POAF
were not included, which may have limited the diagnostic performance.
Second, it is important to note that the data for this study were
retrospectively collected from two centers within a single healthcare
network. While this provided internal consistency in imaging
protocols, it may limit the generalizability of the findings.
Furthermore, the sample size of the external validation cohort was
limited, and future large-scale, multi-institutional prospective studies
involving external validation cohorts from independent networks are
essential to confirm the broad applicability of our model. Third, the
relatively low incidence of POAF in our cohort may constrain the
statistical power of the analysis and heighten the risk of model
overfitting. While we employed resampling methods applied to
alleviate class imbalance, further investigation into advanced feature
selection and systematic hyperparameter tuning may offer valuable
pathways for enhancing model generalizability and performance.
Finally, the biological significance of radiomics features, particularly
DL features, requires further investigation to enhance understanding
and clinical application. The utilization of gradient-weighted class
activation maps and perturbation-based explainable artificial
intelligence techniques and the integration of radiomic features with
other interpretable omics data, such as tissue metabolomics, all
represent promising potential avenues for enhancing model
interpretability (42-44).

5 Conclusion

In summary, the DL radiomics model based on preoperative
EAT images effectively identified high-risk lung cancer patients
with POAF following lung lobectomy and offers a novel tool for risk
stratification. Neither machine learning algorithms nor resampling
techniques significantly improved model performance in terms of
AUC, G-mean, and F-measure.
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