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Background/objectives: 18F-DOPA is an amino acid radiotracer with high uptake

in glioblastoma and low uptake in normal brain. Patients underwent pre-radiation

and post-radiation 18F-DOPA PET scans on a prospective clinical trial. This

analysis investigates quantitative image features correlated with prognosis and

treatment response to identify patients who benefit the most from dose-

escalated therapy.

Methods: Quantitative image features from 18F-DOPA PET scans of 58

glioblastoma patients were extracted from the high uptake region (TBR>2.0) in

both pre-RT and early post-RT follow-up PET images, which were then refined

using Pearson pair correlation. To explore the possibility to identify patients who

benefit the most from dose-escalated therapy, pre-irradiation features were

identified with univariate Cox regression analysis. Classifications with simple

threshold or with Decision Tree models were carried out to categorize patients

into distinct survival groups. Additionally, the features with notable changes

before and after RT were identified and the temporal patterns of these

changes between the survival groups were compared. Multivariates cox

analysis was performed to assess the prognostic value of delta features in

survival analysis.

Results: The pre-irradiation features demonstrated predictive capability in

distinguishing survival groups, yielding an accuracy of 0.78 on the reserved test

dataset. We also pinpointed eight quantitative features that exhibited a significant

difference before and after radiotherapy in patients with MGMT-unmethylated

glioblastoma. The change of the features presented different patterns between

the survival groups separated by median overall survival and the inclusion of delta

features can enhance the accuracy of survival analysis. Conversely, for patients
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with methylated MGMT, no feature displayed such significant changes between

preRT and early postRT.

Conclusions: Our study showcased the potential of employing quantitative

features derived from 18F-DOPA images to refine the stratification of patients

with unmethylated MGMT for dose escalated therapy. Moreover, the change of

these features can serve as valuable tools for monitoring treatment responses

following radiotherapy.
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Introduction

Glioblastoma (1) is typically treated with maximally safe surgical

resection followed by radiotherapy and concomitant and adjuvant

chemotherapy, with or without tumor treating fields (2, 3). Despite

these incremental advances in multimodality treatment, survival for

many patients remains poor with amedian survival of 15months after

diagnosis (4). The efficacy of treatment also showed strong correlation

with certain biomarkers, for example, patients with methylated O6-

methylguanine methyltransferase (MGMT) promoter often benefit

from temozolomide while patients with unmethylated MGMT do not

(5), although the heterogeneity of glioblastoma and variability in

MGMT expression across tumor regions complicates the correlation

between MGMT expression and treatment response (6, 7). The IDH

(isocitrate dehydrogenase) status is another important molecular

characteristic and prognostic indicator in glioblastoma. Mutant IDH

is generally associated with a better prognosis and longer survival than

IDH-wildtype glioblastoma (6, 8). Magnetic resonance imaging (MRI)

including T1 post-gadolinium and T2 series are the standard for

diagnosis, treatment planning and follow-up of glioblastoma, however

as the images providing only morphological information, their

sensitivity and capability to distinguish tumor from treatment effects

are limited (9, 10). Improvements in assessment of treatment response

and tumor progression may result from advances in imaging with

modalities such as advanced MRI (i.e. perfusion and diffusion MRI (4,

11–14) or PET with amino acid tracers (15–19). As one of the most

promising techniques, amino acid PET images provide more specific

uptake in tumor tissue than in areas of radiation-induced normal

tissue response (20, 21) and have been recommended for assessing

glioma progression (22, 23).

Quantitative analysis of amino-acid PET imaging is of significant

interest in glioblastoma diagnosis (24, 25) and monitoring (26, 27)

due to its ability to quantitatively capture tumor heterogeneity and

other prognostic information (28, 29). This analysis could utilize

radiomics or other mathematical tools to extract quantitative image

features. Traditional radiomics studies (24–27, 30) typically focus on

single-time-point data from patients treated with a standard protocol

(2). Although it is essential to provide prognostic prediction before

the start of therapy, information at a single time point could be
02
restrained in assessing treatment responses to interventions such as

radiotherapy (RT) while understanding treatment response is crucial

for the post-therapy management. Additionally, although biomarkers

like MGMT methylation are strong prognostic indicators of survival

(5), they are often excluded in radiomics analysis possibly due to

limited data availability. Given the varying survival rates of

glioblastoma patients, exploring the potential of quantitative

imaging to further stratify patients with the same biomarkers for

individualized treatment and post-treatment management is of

great interest.

To further improve treatment efficacy, clinical trials suggest that

radiation dose escalation targeted to tumor heterogeneity may enhance

patient survival (31, 32). However, not all patients benefit from

increased radiation doses, and higher doses inevitably raise normal

tissue toxicity and complicate post-therapy management. Therefore,

identifying patients who may benefit from dose escalation is essential

for personalized treatment. To address this challenge, in this study, we

extracted quantitative image features from 18F-DOPA PET images of

newly diagnosed glioblastoma patients undergoing dose-escalated RT

(DERT), at pre-RT and serial post-RT follow-up (FU) timepoints, then

performed single-time-point and time-series analyses on the extracted

quantitative features. We aimed to identify pre-irradiation radiomic

features to further stratify patients with the same MGMT methylation

status, in order to determine which patients may benefit most from

DERT for more individualized therapy. Additionally, we examined

changes in the quantitative features associated with overall survival

(OS), highlighting the survival-related response following DECT. Our

study is the first to stratify glioblastoma patients for dose escalation,

demonstrating the prognostic value of 18F-DOPA and its potential role

in monitoring treatment response.
Materials and methods

Patient cohort

This study included patients with newly diagnosed glioblastoma

treated with 18F-DOPA guided DERT (31) on an institutional

prospective phase II clinical trial (NCT01991977). Patients
frontiersin.org
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enrolled in the trial were treated with chemoradiation with a boost

to 76 Gy in 30 fractions guided by 18F-DOPA PET imaging,

followed by standard adjuvant temozolomide. Surgical resection

took place prior to the acquisition of any images investigated in this

study. Extent of resection was categorized as biopsy, subtotal

resection or complete resection. MGMT methylation status was

defined using a clinical, quantitative methylation-specific PCR

assay. The current study is a retrospective analysis of data curated

from that clinical trial (31). To simplify the impact from different

pathological biomarkers and because most patients in the trial had

wild-type IDH, the patients with mutant IDH status were excluded

in this study. All the patients in the trial with a pre-RT and at least

one FU 18F-DOPA PET/CT scan were included in this current

study. The first FU (FU1) images were acquired consistently at 1

month after completing RT with a mean of 32 days from the last

session of RT and a standard deviation of 6.5 days, and subsequent

FU frequency was determined for each patient based on clinical

judgement and availability. The second FU (FU2) has a mean of 82

days from the last session of RT with a standard deviation of 18

days. The distribution of FU1 and FU2 timeframes can be found in

Supplementary Figure S1. In this study, only the images at pre-RT,

FU1, and FU2 timepoints were considered. Patients were first

grouped based on their MGMT methylation status. Within each

methylation status grouping, median OS was used as a threshold to

classify patients into two subgroups: those with longer survival (LS),

defined as OS above the median, and those with shorter survival

(SS), defined as OS at or below the median. Informed consent was

obtained from all patients, and the study was approved by

Institutional Review Board (IRB) and complied with the

principles of the Helsinki declaration.
PET imaging and radiomics feature
extraction

PET imaging was conducted on either a GE Discovery 690XT or

a GE Discovery MI PET/CT system with matched spatial resolution,

following a strictly controlled protocol (31, 33). 18F-DOPA was

injected intravenously at a dose of 5 mCi ± 10%. PET sinograms

were reconstructed using a fully 3-dimensional iterative

reconstruction algorithm with corrections for attenuation, scatter,

randomness, deadtime, decay, and normalization applied. All PET

images were resampled into voxel dimensions of 2x2x2 mm.

PyRadiomics (34) was employed to extract 26 shape, 19 first-

order and 70 texture quantitative features from each scan,

adhering to the definitions outlined by the Image Biomarker

Standardization Initiative (35, 36). The list of extracted features is

reported in Supplementary Table S1. All shape features are reported

in voxel-based units. Additionally, relative delta features were

calculated, representing the percentage change of a quantitative

feature at a given FU timepoint compared to the pre-RT

measurement for each patient.

DFeature(t : FU) = 100*
Feature(t : FU) − Feature(t : pre − RT)

Feature(t : pre − RT)
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All features were extracted from the region of high SUV uptake,

where the tumor-to-normal-brain-tissue SUV ratio (TBR) exceeded

2.0. The SUVmean of the normal brain tissue was calculated on a

wedge of the contralateral brain (33). This high uptake region,

referred to as the region of interest (ROI) hereafter, corresponded to

the region of dense tumor and exhibited greater predictive value

compared to the entire tumor volume, as demonstrated in our prior

work (33). The use of an SUV-threshold-based autosegmentation

method also eliminated observer bias during tumor delineation.

ROIs in each scan were reviewed by an experienced medical

physicist and an experienced nuclear medicine physician to

exclude physiological uptake, for example striatal uptake.
Feature selection

To explore single timepoint classification into LS and SS

survival groups based on pre-RT images, only shape and first-

order features were utilized due to their straight-forward

interpretation and ease of generalization in future work. For

transparency, an exploratory Random Forest model including

feature importance analysis is provided in the Supplementary

Material. Although texture features may improve model

performance, restriction to shape and first order features may

improve reliability for datasets with limited size. These features

were first filtered with a pairwise correlation coefficient below 0.8,

followed by a univariate Cox regression analysis against OS. Only

the features with hazard ratio (HR) out of the range [0.99, 1.01] and

the p-value less than 0.05 were chosen.

To investigate features correlated to survival-associated

treatment response, the feature selection principle involves

utilizing features that undergo the most significant changes before

and after RT. Therefore, delta quantitative features were employed

on an individual variable basis. All extracted features, irrespective of

their predictive nature, were incorporated into the analysis. Feature

selection was guided by the magnitude of difference observed

between the two OS groups, categorized by median OS as the

threshold. Specifically, features were chosen if both mean and

median values demonstrated a difference of more than 50%

between the two survival groups for either FU1 or FU2, and the

p-value of the feature was smaller than 0.05 for the LS versus SS

comparison. Although all selected features underwent investigation,

only those with a pairwise correlation coefficient below 0.8 are

presented here to avoid redundancy.
Classification model on pre-RT images

To assess the predictive capability of quantitative features to

further stratify patients with the same biomarkers, we conducted

simple threshold-based classification with each identified feature

and also constructed classification models. Aiming to identify

patients who may benefit from DERT, the classification model

only utilizes the pre-RT images which were obtained before the

DERT started. For each MGMT methylation status, the patient
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cohort with were split randomly with 75:25 ratio into train and test

dataset. Given the modest size of the patient cohort in this study,

considerations for simplicity, interpretability and reproducibility

primarily dictated the choices of features and model algorithms. For

each identified feature, a simple threshold search was performed on

the train dataset to find out the cutoff for best accuracy, and that

threshold was applied to the reserved test dataset. For a more

complicated model, we opted to use the highly interpretable

Decision Tree (DT) Classifier (37), implemented in Scikit-Learn

python package (version 1.3.1) (38). The maximum depth of the DT

and the maximum number of leaf nodes were both set to 2. The

input features were restricted to those identified with univariate Cox

analysis, with no attempt made to employ additional features or

more complex algorithms to avoid overfitting concerns. Five-fold

cross-validation was applied in the model fitting on the train

dataset. The prediction on the test data is the average of the

predictions from the trained five-fold classification models.
Survival analysis with early FU images

After therapy, it becomes crucial to estimate how long a patient

might survive at each FU timepoint. This is expressed as remaining

survival (RS), defined as the time between a FU timepoint and the

patient’s death. Understanding RS enables timely interventions for

post-treatment management. RS reflects a combination of factors,

including pre-treatment disease characteristics, treatment response,

and tumor progression. For each patient, RS was calculated at each

FU timepoint and used as the survivals in our analysis. Using early

FU imaging, we conducted univariate and multivariate Cox

regression analysis to fit RS. To ensure simplicity and

reproducibility, we focused exclusively on the identified features

in the shape and first-order categories for this analysis. The number

of variables was limited to three to minimize the risk of overfitting.

By analyzing changes in the Concordance index (C-index) with the

inclusion of static and delta radiomic features at corresponding FU

timepoints, we evaluated the prognostic value of delta features in

predicting RS for patients in this cohort.
Frontiers in Oncology 04
Results

Patient

Table 1 displays the categorization of the IDH wild-type

patients based on their MGMT status and median OS. Additional

clinical details are available in the previous publication of the

clinical trial (31). Among patients with unmethylated MGMT, the

OS spanned from 5 to 41 months, with a median of 15 months. In

contrast, patients with methylated MGMT exhibited an OS ranging

from 17 months to over 74 months, with a median of 38 months.

The distribution of age and gender is detailed in Table 1, revealing

no discernible differences between the various survival groups. The

distribution of re-section extent for each subgroup and the p-value

of the group comparison is reported in Table 1. The p-values for the

age, gender distributions and resection extent between SS and LS

group are calculated with Mann-Whitney test.
Feature selection

With univariate Cox regression analysis, only two pre-RT

features were identified with strong correlation with OS for the

patients with unmethylated MGMT status. Their hazard ratios,

confidence interval (CI) and p-values are summarized in Table 2.

Maximum is the maximum value of Tumor to Brain Ratio

(TBRmax) reported in other literature (39–41). Skewness

measures the asymmetry of the distribution of values about the

mean TBR value. The same analysis was also applied to the cohort

with methylated MGMT status, but no feature satisfying the criteria

was identified.

Table 3 presents the delta features that exhibited a significant

difference before and after RT as well as between LS and SS groups.

Among patients with unmethylated MGMT, eight such features

were identified, whereas no delta feature was found to exhibit a

significant difference at the same level (more than 50% for both

mean and median) for patients with methylated MGMT. For a
TABLE 1 Epidemiology of the selected patients, categorized by MGMT methylation status and median OS.

MGMT methylation Methylated Unmethylated

Median OS [months] 38 15

Survival Group SS LS SS LS

Patient count 12 11 19 16

Male: Female 50%:50% 64%:36% 58%:42% 56%:44%

p-value: gender 0.543 0.422

Age [year]: Min: Max 42:68 39:74 42:77 19:70

Age [year]: Median 59 59 59 55

p-value: age 0.828 0.184

Resection: biopsy:subtotal:total 11%: 58%:32% 25%:31%:44% 8%:42%:50% 10%:45%:45%

p-value: resection 0.97 0.86
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concise reference, a simplified description of these features is

provided in Supplementary Table S2, although a detailed

mathematical definition can be found in the PyRadiomics

reference (34).
Classification modeling on pre-RT images

Based on the train dataset, the optimized threshold of TBRmax

was determined to be between [2.9, 3.2] for the MGMT

unmethylated cohort, which gave an accuracy of 0.73 on the train

dataset for LS/SS classification and 0.78 on the reserved test dataset.

The F1 score for TBRmax was 0.67 on the test dataset. The

optimized cutoff value of skewness was determined to be between

[0.65, 0.75] which gave an accuracy of 0.73 on the train dataset and

0.67 on the test dataset. The F1 score for skewness was 0.73 on the

test dataset. As a contrast, neither TBRmax nor skewness showed

prognostic value for the MGMT methylated cohort, with best

accuracy achieved of only 0.56.

To evaluate whether prognostic value could be improved with a

more complex model, decision tree models were constructed using

three different feature sets: Set 1 (TBRmax), Set 2 (Skewness) and Set

3 (TBRmax and Skewness). Training of the model with 5-fold cross

validation on the train dataset (Figure 1a) demonstrated that the

model with TBRmax still shows slightly better performance than

models with other sets, although the difference is not significant.
Frontiers in Oncology 05
When applying the DT model with TBRmax to the reserved test

dataset, an accuracy of 0.78 and a F1 score of 0.67 was obtained,

showing no improvement compared to the simple cutoff method.

With TBRmax = 3.0 as a cutoff, patients with unmethylated MGMT

are grouped into SS and LS survival categories, with their Kaplan-

Meier (KM) plots shown in Figure 1b. Additionally, the KM curve for

patients with methylated MGMT is provided for reference.
Time series of quantitative features

Figure 2 displays median values of delta radiomics features found

to have a significant difference for patients with unmethylated

MGMT status, organized by survival groups. This visualization

illustrates the changes over early FU time points. Demonstrating

the spread of data points, Figure 3 provides a detailed representation

of individual data points for two of the features, MeshVolume,

SurfaceVolumeRatio, and the DSurfaceVolumeRatio at pre-RT,

FU1, and FU2 time points. Additional plots showcasing other

selected radiomics features can be found in the Supplementary

Material (Supplementary Figures S2-S9). The Mann-Whitney Test

was used to calculate the p-value for each radiomic feature between

the two survival groups.

To visually illustrate tumor changes, co-registered PET images

for three example patients are shown in Figure 4 for time points

preRT, FU1, and FU2. Patient 1, who had a short OS, exhibited a

small change in tumor volume and SurfaceVolumeRatio at FU1, but

the tumor volume decreased and the SurfaceVolumeRatio increased

at FU2. Patient 2, who also had a short OS, showed a significant

increase in tumor volume after RT and nearly identical

SurfaceVolumeRatio at FU1, which then increased at FU2. Patient

3, who had a long OS, demonstrated a decrease in

SurfaceVolumeRatio at FU2. For reference, the FU1 timepoint with

respect to the last session of RT was consistently at 4 weeks for all

three example patients, and the FU2 timepoint with respect to the last

session of RT was 2, 2 and 3 months for the patients respectively.
TABLE 2 Summary of univariate Cox regression analysis for pre-RT
single timepoint features that have strong correlation with OS for IDH
wild-type patients with unmethylated MGMT status.

Feature HR
95%

CI lower
95%

CI upper
p-value

Maximum
(TBRmax)

1.33 1.07 1.66 0.01

Skewness 3.45 1.80 6.60 <0.01
TABLE 3 Delta features which showed a significant difference between pre-RT images and FU1 or FU2 images.

Delta feature number Category Features FU1 p-value FU2 p-value

Unmethylated MGMT

DF1
Shape

DMeshVolume 0.038 0.323

DF2 DSurfaceVolumeRatio 0.528 0.012

DF3 First order DEnergy 0.045 0.303

DF4

Texture

gldm_DGrayLevelNonUniformity 0.029 0.265

DF5 glrlm_DShortRunHighGrayLevelEmphasis 0.417 0.007

DF6 glcm_DContrast 0.928 0.027

DF7 glszm_DSmallAreaHighGrayLevelEmphasis 0.016 0.044

DF8 glszm_DZonePercentage 0.601 0.014
The first column is assigned feature number, the second column and the third column show the feature category and name. The last two columns show the p-value of the feature between LS and
SS comparison, in FU1 and FU2 image respectively.
P-value less than 0.05 are labeled in bold.
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Survival analysis for RS

Although RS is a dynamic value that updates at each follow-up

time point, it exhibits a clear correlation with OS. In the analyses of

pre-RT images described in Section 3.2, TBRmax(preRT) was

identified as a strong prognostic indicator for OS with a threshold

around 3.0. In the RS analysis, TBRmax(preRT) was therefore chosen

as the reference baseline. We further assessed the added value of delta

features at early FU timepoints. TBRmax(FU) is the TBRmax value

measured from FU images. The delta features were evaluated in

univariate Cox regression analysis or combined with TBRmax

(preRT) in multivariate analysis. While multiple combinations of

other delta radiomics features were investigated, none demonstrated

a stronger prognostic value than DSurfaceVolumeRatio(FU). For

clarity and simplicity, Table 4 summarizes the C-index for various

feature combinations at different timepoints, highlights the results for

DSurfaceVolumeRatio(FU), which gives the best achieved results

when combined with TBRmax(preRT).
Discussion

Glioblastoma, one of the most aggressive tumors, presents

significant treatment challenges. Achieving an optimal balance

between maximizing tumor control and minimizing toxicity is

critical. While dose escalation targeting tumor heterogeneity has

shown promising results, not all patients benefit equally. Identifying

those who are most likely to benefit from dose escalation is essential

for advancing individualized treatment. Additionally, informed

post-treatment management plays a vital role in maximizing

patient survival. Static medical images offer a momentary

snapshot of the tumor’s status. Examining the time series

evolution of these images provides a valuable opportunity to

investigate how the tumor responds to significant interventions,

such as radiation and chemotherapy. Delta features from
Frontiers in Oncology 06
quantitative imaging serve as a tool specifically designed to

discover and quantify these responses over time, capturing

imaging characteristics that are often imperceptible to the naked

eye. In our study, we extracted quantitative features from 18F-

DOPA PET images at multiple time points. We identified

interpretable pre-RT prognostic features that could further stratify

patients with similar pathological biomarkers for DERT.

Additionally, we examined significant changes in the quantitative

features between pre-RT and post-RT timepoints, evaluating their

prognostic value in predicting remaining survival after follow-up.

As consistently observed in various clinical studies, MGMT

methylation serves as a robust biomarker correlated with patient

survival (2, 5), a trend reaffirmed in this study. MGMT methylation

status is a strong prognosis biomarker for the OS in this study, with

significantly different median OS for patients with different MGMT

methylation status (Table 1). However, even with the same MGMT

unmethylated status, patients show a wide variation in OS and may

respond differently to DERT, as illustrated in Figures 1, 2. It is

valuable to further stratify patients using imaging biomarkers in

addition to MGMT status. Consistent with previous studies on

other amino acid PET tracers (e.g., 18FET) (40, 41), TBRmax was

identified in this study as a strong pre-irradiation prognostic

indicator for OS in patients with unmethylated MGMT. Using a

simple threshold of TBRmax = 3.0, these patients can be divided

into two distinct survival groups (Figure 1b). A slightly more

complex model (DT) does not offer superior performance in

accuracy for OS grouping. Among patients with high TBRmax,

the SS group had a median survival of 13 months, aligning with the

median OS of 13.5 months reported in historical cohorts without

dose escalation (31), suggesting limited benefit from dose escalation

when TBRmax is high. In contrast, the LS group had a significantly

longer median survival of 18 months compared to the historical

cohort (13.5 months). TBRmax does not show prognostic value to

predict OS of the patients with methylated MGMT in our study.

The median OS (38 months) of the methylated MGMT subgroup
FIGURE 1

ROI (magenta contour) where the TBR ratio exceeded 2.0 for three example patients with different OS at the time points of preRT, FU1 and FU2. The
patients with worse outcomes usually have increased SurfaceVolumeRatio.
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treated with DERT is significantly higher than that of the historical

cohort (23.3 months) (31), which may suggest that the patients with

methylated MGMT could benefit from dose escalation.

Different survival groups also exhibit different patterns of delta

features. We searched for the features showing a significant difference

in early FU time points after DERT. Table 2 reports 8 features

identified for the cohort with unmethylated MGMT, while no feature

was identified for the cohort with methylated MGMT at the early FU

timepoints focused on for this work. Notably, while texture features

may reflect certain special characteristics of tumors, they are less

intuitive to interpret and can be subject to variation in image quality.

For the cohort with unmethylated MGMT, Figure 2 illustrates the

different patterns of response of image features after DERT.

Generally, patients with shorter survival exhibit significant change

at FU2 time points, not at FU1. Conversely, patients with longer

survival demonstrated early responses in certain features, such as

tumor volume and energy, with a significant decrease observed at

FU1. This indicates that early tumor response to radiation may be a

positive prognostic factor. Notably, for features displaying significant

changes at FU2, the direction of change differed between the LS and

SS groups. For instance, SurfaceVolumeRatio and ZonePercentage

decreased at FU2 in the LS group but increased in the SS group. The

variation in the timing of the most substantial percentage change

suggests the presence of underlying biological mechanisms related to
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the radiosensitivity of tumors in different patients, highlighting the

need for further investigation. As an example, Figure 3 provides a

detailed illustration of the changes in tumor size and

SurfaceVolumeRatio, which are among the most interpretable and

robust features. SurfaceVolumeRatio has a strong correlation with

tumor shape heterogeneity. While the difference of the tumor sizes

between LS and SS groups decreased after treatment, the changes of

SurfaceVolumeRatio moved in different directions, indicating

different responses of the two groups after DERT. The enlarged

SurfaceVolumeRatio associated with SS suggested increasing shape

heterogeneity, which might be a prognostic indicator of treatment

response. Interestingly, this increase in SurfaceVolumeRatio is not

observed in patients with methylated MGMT, in either LS or SS

groups at FU1 or FU2, although the possibility of such changes at

later FU time points was not evaluated in this work. This may

indicate differential biologic response to treatment between cohorts.

These findings underscore the significance of considering temporal

changes in radiomic features and propose potential implications for

understanding tumor response and prognosis in the context of

treatment interventions. Delta radiomics can also benefit risk

analysis for the remaining survival at FU timepoints, as illustrated

in Table 4. With treatment effects such as radiation included necrosis,

the prognostic value of TBRmax may not hold in the FU images. For

example, a significant drop of C-index based on TBRmax(FU) is
FIGURE 2

(a) ROC curves for survival group classification of MGMT unmethylated patients based on identified radiomics features extracted from single
timepoint pre-RT 18F-DOPA PET images. The definitions of feature sets are described in the text. The shadow region depicts the 1 standard
deviation. (b) KM plots of OS of patients with unmethylated MGMT status, separated by TBRmax cutoff. For reference, KM plot of OS of MGMT
methylated patients is also plotted. The p value between any two groups is less than 0.01.
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observed at FU2, while including the delta radiomics can increase C-

index and boost the accuracy of risk analysis. Among all the identified

delta features, DSurfaceVolumeRatio at FU2 shows the most

prognostic value. The prognostic delta features provide an

opportunity to evaluate treatment response and offer the potential

to more effectively differentiate true progression from treatment

effects. This is particularly important in cases where traditional

criteria, often based on the size of the hyperintense region, may be

unreliable due to the effects of high-dose radiation therapy. By

leveraging these features, clinicians may enable the timely initiation

of salvage treatments while avoiding the premature discontinuation

of effective therapies or delays in addressing true progression.

In this study, quantitative image analysis was conducted for

both unmethylated and methylated MGMT cohorts, revealing

distinct phenotypes between the two groups. The features
Frontiers in Oncology 08
identified as prognostic for unmethylated MGMT (including

TBRmax) generally did not demonstrate prognostic value for

methylated MGMT. While further statistical validation is needed,

these findings suggest that imaging studies may need to be

conducted separately based on MGMT status, as image features

in PET images appear to evolve differently in cohorts with different

MGMT status.

Several limitations should be acknowledged in this study. Firstly,

the small sample size represents a primary constraint. Given that 18F-

DOPA PET imaging is an emerging technique not yet approved by the

FDA for glioblastoma, its availability, particularly for FU images, is

limited in USA. This imposes limitations on the complexity of

radiomics feature selection, modeling, and validation. For mitigation,

we chose the simple models based on the most reproducible and

interpretable features to avoid overfitting. The reported work would
frontiersin
FIGURE 3

Medians of the relative delta of (upper row) shape and first order radiomics features and (lower row) texture radiomics features (full feature names listed
in Table 3), separated by longer and shorter survival groups (OS > 15 months or OS <= 15 months), for patients with unmethylated MGMT status.
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benefit from validation and improvement through additional data,

which could be obtained from additional prospective trials utilizing the
18F-DOPA PET tracer. Secondly, this study tries to identify the features
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with the most significant changes before and after RT, instead of

identifying all the features which may exhibit difference with statistical

significance. With limited statistics, the threshold used to categorize the

difference has not been optimized and is subject to further

improvement in the future. Thirdly, the focus of this study is on a

single cohort of patients treated with DERT, and the applicability of the

identified features to other cohorts requires further investigation.

Fourthly, the timing of FU2 had a mean of 2.7 months following the

completion of RT with a standard deviation of 0.6 months. Although

we consider it as an acceptable variability given the constraints in

clinical settings and consistency with National Comprehensive Cancer

Network (NCCN) recommendations, reduced variability in the FU2

timepoint could be beneficial for quantitative imaging analysis. Finally,

the study primarily concentrates on shape and intensity features. While

texture features could offer critical and complementary information (as

possibly indicated by the exploratory Random Forest model presented

in the Supplementary Material), they are not extensively explored due

to concerns about interpretability and susceptibility to image quality. In
TABLE 4 Summary of C-index from Cox regression analysis with feature
sets at different time points.

Feature
set

Features
C-index

preRT FU1 FU2

1 TBRmax (preRT) 0.66 0.68 0.66

2 TBRmax (FU) N/A 0.68 0.61

3 DSurfaceVolumeRatio (FU) N/A 0.58 0.7

4
TBRmax (preRT),

DSurfaceVolumeRatio (FU)
N/A 0.68 0.73

5
TBRmax (preRT), TBRmax (FU),

DSurfaceVolumeRatio (FU)
N/A 0.69 0.73
FIGURE 4

Distribution of MeshVolume (top row), SurfaceVolumeRatio (middle row) and DSurfaceVolumeRatio (bottom row) of the patients with unmethylated
MGMT status, grouped by survival groups and plotted at different time points (left: pre-RT, middle: FU1, right: FU2), with p-value between longer and
shorter survival groups reported.
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the future, with the availability of more data, a revisit and deeper

exploration of texture features are warranted.
Conclusions

This study explores the potential to further stratify glioblastoma

patients using radiomics features derived from 18F-DOPA PET

images and applies delta radiomics features to better understand

early treatment responses. Leveraging the high sensitivity of 18F-

DOPA PET imaging for glioblastoma, the selected radiomics

features, especially TBRmax, from pre-RT images can effectively

stratify the patient cohort with un-methylated MGMT and wild-

type IDH1, identifying the patients who may benefit most from

DERT. The unique characteristics of delta features illuminate

distinct treatment response patterns among different survival

groups in glioblastoma patients. The observed varied trends in

the changes of radiomics feature provide insight into the evolving

heterogeneity of tumors following DERT. These findings furnish a

valuable tool for evaluating treatment efficacy at an individual

patient level and guiding targeted post-treatment interventions

when needed. The distinct response pattern also suggests that
18F-DOPA PET images have the potential to be utilized for

treatment adaptation during treatment courses.

Looking ahead, we will utilize time series data to separate

treatment effects from tumor progression, another important and

challenging problem in glioblastoma treatment. We will also expand

the research with the addition of MR images. Additionally, we also

aim to enlarge the cohort size by incorporating data from diverse

protocols and institutions, including the newly launched prospective

clinical trial (NCT05781321). This expansion will validate the

robustness of our models and prognostic features, paving the way

for the development of multi-variable models for more personalized

approaches to medicine. With various regimens, we will also

investigate whether radiation dose and fractionation influence

treatment response. We strongly believe that amino-acid PET

tracers, including 18F-DOPA, hold immense potential in enhancing

glioblastoma treatment and management, presenting exciting

opportunities for both research and clinical applications.
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