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Differentiation of AFP-negative 
hepatocellular carcinoma from 
other intrahepatic malignant 
lesions by a noninvasive 
predictive model based on 
Sonazoid contrast-enhanced 
ultrasound 
Qian Zhang1†, Zhilong Liu1†, Ruining Wang1, Lele Song1, 
Wenwen Fan1, Ping Liang2* and Liping Liu1* 

1Department of Interventional Ultrasound, First Hospital of Shanxi Medical University, Taiyuan, 
Shanxi, China, 2Department of Interventional Ultrasound, Fifth Medical Center of Chinese PLA General 
Hospital, Beijing, China 
Objectives: This study aimed to develop and validate a non-invasive predictive 
model, which was a reliable nomogram to accurately differentiate AFPN-HCC 
from other intrahepatic malignant lesions. 

Methods: This study enrolled 165 patients with malignant focal liver lesions, 
including AFPN-HCC (n=85) and other intrahepatic malignant lesions (n=80). 
Data were analyzed to screen for risk factors phase by using LASSO regression as 
well as univariate and multivariate logistic regression analysis. We constructed a 
model and developed a nomogram. Then using the area under the curve, 
Hosmer-Lemeshow test, calibration curves, decision curve analysis, and 1,000 
bootstraps to assess and internally validate the model performance. We 
calculated the optimal threshold, sensitivity, specificity, positive and negative 
predictive value, and accuracy of the prediction model. 

Results: LASSO and multivariate logistic regression analyses indicated that tumor 
number, necrosis in tumor, arterial phase enhancement pattern, arterial phase 
perfusion velocity, and Kupffer phase degree of washout were the significant 
predictors to differentiate AFPN-HCC from OM. The AUC was 0.886, and the 
AUC of internal validation was 0.865. The optimal critical value of the predicted 
value was 0.524, with a sensitivity of 82.35%, specificity of 85.00%, positive 
predicted value of 85.37%, negative predicted value of 81.93%, and an accuracy 
of 83.64%. The P value of the Hosmer-Lemeshow test was 0.592. The calibration 
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plots showed a high concordance of prediction. The decision curve analysis 
showed excellent net benefits. 

Conclusion: Our nomogram has excellent discrimination, calibration and clinical 
utility by combining SCEUS and clinical features, which may help clinicians 
improve the diagnostic performance for AFPN-HCC, contributing to 
individualized treatment. 
KEYWORDS 

AFP-negative,  hepatocellular  carcinoma,  contrast-enhanced  ultrasound,  
Sonazoid, nomogram 
1 Introduction 

Hepatocellular Carcinoma (HCC) accounts for 75%-85% of 
primary liver cancers, representing the sixth most prevalent cancer 
and the third leading cause of cancer-related mortality around the 
world (1, 2). HCC has caused 800,000 deaths worldwide, threatening 
human health and representing a major global healthcare challenge (3). 
What’s more, HCC has a lower 5-year survival rate of 18%, and a 
higher  5-year  recurrence rate of more than 70%  (4). Therefore, early 
detection and timely intervention is very important. 

Alpha-fetoprotein (AFP) is clinically used as the serological 
marker for the diagnosis of HCC, but about 30-40% of patients with 
HCC have normal serum AFP levels (< 20 ng/mL), which is known 
as AFP-negative HCC (AFPN-HCC) (5). It is easily to misdiagnose 
AFPN-HCC patients as other intrahepatic malignant lesions (OM), 
but the treatment modalities for them are not identical. Thus, early 
and accurate preoperative diagnosis and differentiation of AFPN
HCC from OM are especially essential for the clinical treatment 
options and prognosis optimization. 

The early diagnosis of AFPN-HCC relies on imaging, but 
conventional ultrasound is susceptible to interference from the 
background of liver cirrhosis, and has similar features with 
intrahepatic cholangiocarcinoma (ICC) and hepatic metastases, which 
poses a challenge to the clinical differential diagnosis. Contrast-enhanced 
ultrasound (CEUS) can provide finer hemodynamic information by 
real-time dynamically observing tumor microcirculatory perfusion. 
Sonazoid contrast-enhanced ultrasound (SCEUS) provides additional 
diagnostic information for liver lesions due to the advantages of long 
image enhancement time and unique Kupffer phase (KP), thus it can 
significantly improve the detection accuracy of liver tumors (6). 

Current studies focus on the diagnostic efficacy of CEUS LI-RADS 
classification on HCC, with less attention to AFPN-HCC. In this study, 
we analyzed the characteristics of SCEUS of AFPN-HCC to explore the 
key points of differentiation between AFPN-HCC and OM, established 
a preoperative noninvasive prediction model in order to provide a 
reliable basis for clinical differential diagnosis and treatment. 
02 
2 Methods 

2.1 Participants 

The study was approved by the Ethics Committee of the First 
Hospital of Shanxi Medical University (No. KYLL 2023-132) and 
complied with the Declaration of Helsinki. All enrolled patients 
signed an informed consent form. 

We collected patients with malignant focal liver lesions who 
underwent SCEUS before surgery from September 2020 to 
December 2024 (n=324). The inclusion criteria were as 
follows: (1) age > 18 years; (2) liver function classified as 
Child-Pugh class A; (3) no local or systemic treatment was 
received before the examination; (4) no allergies to any 
components of Sonazoid; (5) voluntary participation and 
signed informed consent; (6) a definitive pathological diagnosis 
by puncture or surgery; (7) preoperative serum AFP ≤ 20 ng/ml. 
Exclusion criteria were: (1) age ≤ 18 years; (2) patients with 
incomplete clinical or pathological data; (3) patients with poor-
quality ultrasound or SCEUS imaging (4) preoperative serum 
AFP > 20 ng/ml. We finally enrolled 165 participants as the study 
population. The flow chart of patient enrollment is shown 
in Figure 1. 
2.2 Baseline clinical data 

We collected the clinical data of 165 individuals diagnosed with 
liver malignant focal lesions, including three parts: demographic 
characteristics (such as age, gender, BMI), clinical characteristics 
(such as hypertension, diabetes mellitus), and serum laboratory 
information  (such  as  fasting  plasma  glucose,  alanine  
aminotransferase, aspartate aminotransferase, albumin, total 
bilirubin, gamma-glutamyl transferase, total cholesterol, 
triglyceride, high-density lipoprotein, low-density lipoprotein, and 
serum uric acid). 
frontiersin.org 
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2.3 Ultrasound examination 

Ultrasound examinations were performed with the Resona R9 
(Mindray, Shenzhen, China), equipped with a convex array 
broadband probe (SC6-1U). The patients took horizontal or left 
lateral position, with the abdomen exposed and the right arm raised 
to fully expose the liver area, scanned the liver. Then we observed 
and recorded the tumor information. Once the probe position was 
stabilized, the CEUS mode was switched, and the resulting images 
were visualized in a dual-screen format. Real-time dynamic imaging 
was carried out using the Sonazoid (GE, Boston, USA) with a 
mechanical index (MI) of 0.183. Sonazoid (0.01 ml/kg) was injected 
via the median elbow vein by croup injection, followed immediately 
by 5ml of saline, carefully timed and recorded continuously for 3 
min. Dynamic images were then saved for 10s at 1 min intervals 
until 12 min after the contrast agent was injected. All these images 
were saved on the hard drive for follow-up analysis. Vascular and 
post-vascular phases in CEUS of the liver (visualization post-
injection time) (7) were arterial phase (AP), 10-30s; portal venous 
phase (PVP), 30-120s; delay phase (DP), 2-10min; and KP, starting 
at 10 min. 

The following conventional ultrasound features were gleaned: 
tumor location, echo, size, number, boundary, morphology and 
envelope. Meanwhile, the following SCEUS features were also 
collected: (1) necrosis in tumor, defined as the presence of non-
enhancing areas inside the tumor in AP phase; (2) AP enhancement 
pattern, defined as rim-enhancement and overall-enhancement; (3) 
AP perfusion velocity, defined as quick or simultaneous enter; (4) 
AP enhanced level, defined as hyper-, iso- and hypo-enhancement; 
(5) AP enhanced homogeneity, defined as homogeneous and 
heterogeneous; (6) AP enhanced margin, defined as well- or 
poorly defined; (7) AP tumor morphology, defined as regular or 
irregular; (8) PVP and DP clearance velocity, defined as quick or 
simultaneous washout; (9) PVP and DP enhanced level, defined as 
Frontiers in Oncology 03 
hypo-, iso- and hyper-enhancement; (10) KP enhanced level, 
defined as hypo- or iso-enhancement; (11) KP degree of washout, 
with almost no contrast agent retention in the tumor defined as 
obvious washout, otherwise, it was mild/moderate washout. 

Data were completed independently by two researchers with 5 
years of experience in abdominal radiology, particularly in liver 
imaging. If disagreements occurred, the images were assessed by a 
third radiologist with 30 years of work experience. 
2.4 Sample size 

In the process of developing multivariate predictive models, the 
sample size is typically based on the proportion of the number of 
individuals of the outcome event to the number of candidate 
predictors, known as the events per variable (EPV). According to 
an empirical study, a thumb rule of at least 10 EPV was proposed 
and is widely accepted as a means to prevent over-fitting (8). 
Therefore, we could consider a maximum of 8 variables (85 
outcome events/10 EPV). All the available patients were included 
in this study. 
2.5 Statistical analyses 

All statistical tests were performed using the R statistical 
software (version 4.2.2) and the Free Statistics software (version 
2.1), with pathological results as the gold standard. A two-sided test 
P value of less than 0.05 was considered significant. 

Continuous variables with normal distribution were presented 
as means ± SD and analyzed by t-test. Non-normally distributed 
continuous variables were expressed as median and inter-quartile 
range and analyzed using the Mann-Whitney U test. Categorical 
factors are described as frequencies or proportions, and analyzed by 
FIGURE 1 

Flowchart shows selection criteria for the 165 patients in the study group. 
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c2 test. Inter-observer variability analysis was performed using 
kappa (k) statistic, as detailed in the Supplementary Table 1. The 
agreement was classified as follows: poor for 0-0.2, fair for 0.2-0.4, 
moderate for 0.4-0.6, good for 0.6-0.8, and excellent for values 
greater than 0.8. 

We used a robust high-dimensional prediction approach, the 
least absolute shrinkage and selection operator (LASSO) regression, 
to ascertain potential predictor variables for AFPN-HCC. Five-fold 
cross-validation was used to determine the best value of l. We chose 
Lambda=1se to determine the final candidate characteristics for the 
cross-validation results. The features selected in the LASSO 
regression model were used in univariate and multivariate logistic 
regression analysis to identify statistically significant predictors, 
which were then employed in the development of nomogram. 

We used the receiver operating characteristic curve and area 
under the curve (AUC) for assessing the differentiation of the 
nomogram, and the Hosmer-Lemeshow test for evaluating the 
calibration of the nomogram. Then we determined the optimal 
cutoff point for predicting nomogram by maximizing the Youden 
index, and calculated its sensitivity, specificity, accuracy, positive 
predictive value, and negative predictive value. We employed

bootstrap method for internal validation, in which 1000 samples 
were randomly selected from the original data for bootstrap 
replication. Finally, We calculated calibration AUC values and 
plotted calibration curves to evaluate the predictive capability of 
the nomogram. The decision curve analysis was used to evaluate the 
net clinical benefits. 
3 Results 

3.1 Participants characteristics 

A total of 324 patients with malignant focal liver lesions were 
enrolled in this study. After screening for study inclusion and 
exclusion criteria, 165 patients with AFPN-HCC were finally 
enrolled. The patient selection flowchart and grouping are shown 
in Figure 1. The baseline features of the subjects, grouped by AFPN
HCC and OM of the liver, were listed in Table 1. Among them, 85 
(51.52%) were patients with AFPN-HCC, while 80 (48.48%) were 
patients with OM, including hepatic metastases (n=55), ICC 
(n=12), hepatic lymphomas (n=7), hepatic neuroendocrine tumor 
(n=4), primary malignant hepatic mesothelioma (n=2). The age of 
the subjects was (62.08 ± 10.28) years, and 110 (66.67%) were male. 
Subjects in the AFPN-HCC group were more likely to be male, 
and were noted to have higher BMI, alanine aminotransferase, 
total bilirubin and high-density lipoprotein, while triglyceride 
were lower. In addition, they were tended to have a single 
lesion without necrosis, and the SCEUS features were overall 
homogeneous enhancement in the AP, iso-enhancement in the 
PVP and DP, and mild/moderate washout in the KP. Figure 2 
demonstrates SCEUS image of an example of well differentiated 
HCC, while Figure 3 shows a case of liver metastasis from 
pancreatic cancer. 
Frontiers in Oncology 04
3.2 Risk prediction nomogram 
development 

Of the above characteristics, 12 were chosen according to the 
nonzero coefficients calculated through LASSO logistic regression 
analysis (Figure 4). The selected characteristics included BMI, 
albumin, gamma-glutamyl transferase, high-density lipoprotein, 
tumor echo, envelope, necrosis in tumor, AP enhancement 
pattern, quick entry in AP, PVP and DP enhanced level, KP 
degree of washout. These characteristics were then included in 
the multivariate logistic regression analysis. 

Multivariate logistic regression analysis revealed that tumor 
number, necrosis in tumor, AP enhancement pattern, AP 
perfusion velocity and KP degree of washout were independent 
predictors of AFPN-HCC (Table 2). Therefore, we integrated these 
independent predictors to develop a predictive nomogram 
(Figure 5), with the higher score indicating the higher risk of 
AFPN-HCC. 
3.3 Performance and validation of the 
nomogram 

The receiver operating characteristic curve showed that the 
nomogram had an AUC of 0.886 (95% CI, 0.834-0.937) (Figure 6A). 
The best predictive value was 0.524, with a sensitivity of 82.35%, 
specificity of 85.00%, positive predictive value of 85.37%, negative 
predictive value of 81.93%, and accuracy of 83.64%. Furthermore, 
the Hosmer-Lemeshow test showed a good fit (P=0.592). The 
calibration curve showed high agreement between the predicted 
and the actual results when internal validation was performed using 
1,000 bootstrap samples (Figure 6B), and the AUC of internal 
validation was 0.865. An assessment of the decision curve analysis 
of the clinical utility of the nomogram showed that, with 3%–90% 
probabilities, the application of the nomogram resulted in a more 
significant net benefit in comparison with the treat-all or treat-none 
strategies (Figure 6C). 
4 Discussion 

AFP combination with imaging examinations such as 
ultrasound is an important means for clinical screening and 
diagnosis of HCC, but about one-third of HCC patients are AFP-
negative, which poses challenges in clinical diagnosis and 
differentiation (5). The treatment options and clinical prognosis 
of AFPN-HCC are different from OM, thus an accurate 
differentiation of AFPN-HCC is helpful in developing clinical 
treatment strategies and improving patient prognosis. 

In this study, we developed and validated a predictive model for 
preoperative noninvasive differential diagnosis of AFPN-HCC and 
OM, which was based on conventional ultrasound and SCEUS 
features, including tumor number, necrosis in tumor, AP 
enhancement pattern, AP perfusion velocity, and KP degree of 
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TABLE 1 Characteristics of 165 patients with focal liver lesions. 

Variables Total (n 165) OM (n 80) AFPN-HCC (n 85) P 

Age, years 62.08 ± 10.28 62.45 ± 9.66 61.73 ± 10.88 0.654 

Gender 0.015 

Female 55 (33.33) 34 (42.5) 21 (24.71) 

Male 110 (66.67) 46 (57.5) 64 (75.29) 

BMI, kg/m2 23.60 ± 3.54 22.98 ± 3.56 24.18 ± 3.44 0.029 

Fasting plasma glucose, mmol/L 6.46 ± 2.57 6.86 ± 2.87 6.09 ± 2.20 0.055 

Alanine aminotransferase, U/L 27.00 (17.00, 44.00) 21.00 (15.75, 41.00) 31.00 (19.00, 52.00) 0.017 

Aspartate aminotransferase, U/L 30.00 (22.00, 50.00) 27.00 (19.75, 53.25) 33.00 (25.00, 50.00) 0.078 

Albumin, g/L 37.68 ± 7.59 38.09 ± 9.02 37.28 ± 5.96 0.492 

Total bilirubin, umol/L 15.70 (11.00, 26.60) 13.50 (9.38, 21.60) 17.60 (12.50, 27.60) 0.032 

Gamma-glutamyl transferase, U/L 61.00 (29.00, 118.00) 63.00 (29.00, 138.00) 58.00 (35.00, 102.00) 0.222 

Total cholesterol, mmol/L 4.37 ± 1.21 4.38 ± 1.18 4.35 ± 1.25 0.847 

Triglyceride, mmol/L 1.23 (0.85, 1.87) 1.56 (0.93, 1.95) 1.11 (0.76, 1.72) 0.012 

High-density lipoprotein, mmol/L 1.10 ± 0.34 1.04 ± 0.35 1.15 ± 0.32 0.04 

Low-density lipoprotein, mmol/L 2.75 ± 0.89 2.77 ± 0.87 2.73 ± 0.92 0.77 

Serum uric acid, umol/L 311.75 ± 127.87 294.14 ± 141.02 328.32 ± 112.46 0.086 

Hypertension 0.501 

No 89 (53.94) 41 (51.25) 48 (56.47) 

Yes 76 (46.06) 39 (48.75) 37 (43.53) 

Diabetes 0.054 

No 109 (66.06) 47 (58.75) 62 (72.94) 

Yes 56 (33.94) 33 (41.25) 23 (27.06) 

Tumor location 0.525 

Left lobe 45 (27.27) 20 (25.00) 25 (29.41) 

Right lobe 120 (72.73) 60 (75.00) 60 (70.59) 

Tumor echo 0.196 

Hypo-echoic 109 (66.06) 50 (62.50) 59 (69.41) 

Iso-echoic 24 (14.55) 10 (12.50) 14 (16.47) 

Hyper-echoic 32 (19.39) 20 (25.00) 12 (14.12) 

Tumor size 4.23 ± 2.30 4.57 ± 2.63 3.91 ± 1.90 0.064 

Tumor number < 0.001 

Single 82 (49.70) 23 (28.75) 59 (69.41) 

Multiple 83 (50.30) 57 (71.25) 26 (30.59) 

Boundary 0.418 

Well defined 94 (56.97) 43 (53.75) 51 (60) 

Poorly defined 71 (43.03) 37 (46.25) 34 (40) 

Morphology 0.072 

Regular 118 (71.52) 52 (65) 66 (77.65) 

(Continued) 
F
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TABLE 1 Continued 

Variables Total (n 165) OM (n 80) AFPN-HCC (n 85) P 

Irregular 47 (28.48) 28 (35) 19 (22.35) 

Envelope 0.147 

Without 90 (54.55) 39 (48.75) 51 (60) 

With 75 (45.45) 41 (51.25) 34 (40) 

Necrosis in tumor < 0.001 

Without 78 (47.27) 16 (20) 62 (72.94) 

With 87 (52.73) 64 (80) 23 (27.06) 

Arterial phase enhancement pattern < 0.001 

Rim 25 (15.15) 21 (26.25) 4 (4.71) 

Overall 140 (84.85) 59 (73.75) 81 (95.29) 

Arterial phase perfusion velocity 0.058 

Quick enter 158 (95.76) 74 (92.5) 84 (98.82) 

Simultaneous enter 7 ( 4.24) 6 (7.5) 1 (1.18) 

Arterial phase enhanced level 0.486 

Hyper-enhancement 152 (92.12) 73 (91.25) 79 (92.94) 

Iso-enhancement 11 ( 6.67) 5 (6.25) 6 (7.06) 

Hypo-enhancement 2 ( 1.21) 2 (2.5) 0 (0) 

Arterial phase enhanced homogeneity < 0.001 

Homogeneous 67 (40.61) 22 (27.5) 45 (52.94) 

Heterogeneous 98 (59.39) 58 (72.5) 40 (47.06) 

Arterial phase enhanced margin 0.079 

Well defined 73 (44.24) 41 (51.25) 32 (37.65) 

Poorly defined 92 (55.76) 39 (48.75) 53 (62.35) 

Arterial phase tumor morphology 0.891 

Regular 104 (63.03) 50 (62.5) 54 (63.53) 

Irregular 61 (36.97) 30 (37.5) 31 (36.47) 

Portal venous phase and delayed phase clearance velocity 0.875 

Quick washout 127 (76.97) 62 (77.5) 65 (76.47) 

Simultaneous washout 38 (23.03) 18 (22.5) 20 (23.53) 

Portal venous phase and delay phase enhanced level < 0.001 

Hypo-enhancement 99 (60.00) 60 (75.00) 39 (45.88) 

Iso-enhancement 62 (37.58) 19 (23.75) 43 (50.59) 

Hyper-enhancement 4 ( 2.42) 1 (1.25) 3 (3.53) 

Kupffer phase enhanced level 0.063 

Hypo-enhancement 147 (89.09) 75 (93.75) 72 (84.71) 

Iso-enhancement 18 (10.91) 5 (6.25) 13 (15.29) 

Kupffer phase degree of washout < 0.001 

Obvious 68 (41.21) 48 (60) 20 (23.53) 

Mild /Moderate 97 (58.79) 32 (40) 65 (76.47) 
F
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washout. We used an integrated analytical methodology including 
LASSO, univariate and multivariate logistic regression analyses. The 
model showed good diagnostic ability in separating AFPN-HCC 
from OM, with the AUC, sensitivity and specificity of 0.886, 82.35% 
Frontiers in Oncology 07 
and 85.00%, respectively. The calibration curve indicated that the 
predicted results were in high agreement with the actual results 
when 1,000 bootstrap samples were used for internal validation. It 
demonstrated the necessity of its application in timely identification 
A B C 

FIGURE 2 

SCEUS image of a well differentiated HCC. Male, 61 years old, AFP=8.95 ng/ml. A slightly iso-echoic lesion of approximately 1.4*1.4 cm in size 
(arrow) with poorly defined boundary and regular morphology was seen in S5. It showed overall rapid and homogeneous hyper-enhancement in the 
AP (A), iso-enhancement with no significant washout in the PVP (B), and mild washout in the KP (C). The final pathological diagnosis was well 
differentiated HCC. 
A B C 

FIGURE 3 

SCEUS image of a liver metastasis from pancreatic cancer. Male, 67 years old. A slightly hypo-echoic lesion of about 4.0*3.8 cm in size (arrow) with 
well-defined boundary and regular morphology was seen in S5. The AP (A) showed a rapid rim ring of hyper-enhancement, the PVP (B) showed 
hypo-enhancement, and the KP (C) was obviously washout. Definitive pathologic diagnosis was liver metastasis from pancreatic cancer. 
A B 

FIGURE 4 

Features election using LASSO binary logistic regression model. (A) Log (lambda) value of 34 features in the LASSO model. A coefficient profile plot 
was produced against a log (lambda) sequence. (B) Parameter selection in the LASSO model uses five-fold cross-validation through minimum 
criterion. Partial likelihood deviation (binomial deviation) curves and logarithmic (lambda) curves are plotted. Minimum standard and 1-SE of the 
minimum standard are used to draw a vertical dashed line at the optimal value. Optimal lambda produces 12 nonzero coefficients. LASSO, least 
absolute shrinkage and selection operator. 
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of AFPN-HCC. Compared with previous studies, which mainly 
relied on CT or MRI image characteristics, our study is unique in 
using features in SCEUS for modeling for distinguishing AFPN-
HCC from OM (9–11). 
Frontiers in Oncology 08
As the new generation of liver-specific ultrasound contrast 
agent, Sonazoid has an effective imaging time of more than 2 
hours, providing more adequate time for clinical examination and 
treatment. Besides, Sonazoid can be engulfed by hepatic Kupffer 
TABLE 2 Logistic univariate and multivariate proportional hazard models of risk factors. 

Variable 
Univariate Multivariate 

OR (95CI%) P OR (95CI%) P 

BMI 1.105 (1.008~1.211) 0.0323 1.139 (0.988~1.313) 0.0726 

Albumin 0.986 (0.946~1.027) 0.4908 

Gamma-glutamyl transferase 0.997 (0.994~1.000) 0.0433 0.997 (0.992~1.002) 0.2136 

High-density lipoprotein 2.622 (1.037~6.630) 0.0416 2.503 (0.675~9.282) 0.1700 

Tumor echo 

Hypoechoic 1(Ref) 

Isoechoic 1.186 (0.485~2.903) 0.7080 

hyperechoic 0.508 (0.226~1.142) 0.1012 

Tumor number 0.178 (0.091~0.347) <0.001 0.209 (0.083~0.525) 0.0009 

Envelope 0.634 (0.342~1.175) 0.1478 

Necrosis in tumor 0.106 (0.052~0.217) <0.001 0.117 (0.046~0.2990) <0.001 

Arterial phase enhancement pattern 7.208 (2.35~22.105) 0.0006 4.669 (1.294~16.844) 0.0186 

Quick entry in the arterial phase 0.147 (0.017~1.247) 0.0788 0.040 (0.003~0.586) 0.0187 

Portal venous phase and delay phase enhanced level 

Hypo-enhancement 1(Ref) 1(Ref) 

Iso-enhancement 3.482 (1.775~6.830) 0.0003 2.545 (0.909~7.127) 0.0754 

Hyper-enhancement 4.615 (0.463~45.981) 0.1922 17.619 (0.462~671.417) 0.1224 

Kupffer phase degree of washout 4.875 (2.490~9.544) <0.001 3.104 (1.152~8.362) 0.0251 
 

FIGURE 5 

Nomogram for differentiating AFPN-HCC from OM. The first line represents the scoring scale. Corresponding scores for each predictor factor are 
shown in lines 2-6. The score for each predictor is determined by referencing the first line. The total score for the risk evaluation is the sum of each 
predictor score. To differentiate between AFPN-HCC and OM, the score point is located on the total points line (line 7). Then, the user descends 
vertically to the risk of complication (line 8). 
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cells, forming specific imaging of the post-vascular phase (12–14). 
The KP, as the post-vascular phase, was obtained with a delay of 
more than 10 min after injection. It has been demonstrated that the 
SCEUS feature of KP washout maintains a relatively balanced 
sensitivity and specificity (15). Due to the lack of normal liver 
tissue and Kupffer cells, hepatic malignant tumors show hypo-
enhancement in the KP, whereas benign lesions maintain iso
enhancement, which significantly improves the sensitivity and 
specificity of the identification of benign and malignant liver focal 
lesions (16, 17). 

Few studies have focused on the differentiation of AFPN-HCC 
from OM using SCEUS. A meta-analysis was performed to evaluate 
the accuracy of CEUS in differentiating malignant from benign 
FLLs, showed that Sonazoid had the highest diagnostic accuracy 
among three major contrast agents (18). Ohama H et al. enrolled 73 
patients with HCC in a study to compare the post-vascular phase of 
SCEUS with the hepatobiliary phase of gadolinium ethoxybenzyl 
diethylenetriamine (Gd-EOB-DTPA) of MRI, confirmed that the 
hypo-echoic presentation of the KP may be specific to HCC, 
especially in progressive HCC (19). Sugimoto K et al. included 78 
HCC and dysplastic nodules, suggested that KP may be useful in 
estimating the histologic grade, especially in moderately and poorly 
differentiated types (20). A multi-center study conducted by Wang 
S et al. involved 41 cases of ICC and 49 cases of poorly differentiated 
HCC, and established a predictive model for poorly differentiated 
HCC and ICC based on SCEUS and clinical characteristics (21). 
Due to the high similarity between AFPN-HCC and some OM (like 
ICC and hepatic metastatic carcinoma) in conventional ultrasound, 
there were challenges in differential diagnosis between them. 

Our results showed that the majority of AFPN-HCC were single, 
hypo-echoic, and rarely with internal necrosis; SCEUS showed overall, 
rapid and homogeneous hyper-enhancement in the AP; iso- or hypo-
enhancement in the PVP and DP; and mild washout with hypo-
Frontiers in Oncology 09
enhancement in the KP. These findings were consistent with Wang 
et al. (22). It is mainly due to that AFPN-HCC is supplied by hepatic 
artery or by hepatic artery and portal vein, thus it shows hyper-
enhancement in the AP, which is consistent with typical HCC, ICC or 
OM. Several studies showed that AFPN-HCC were mostly well-
differentiated HCC with less necrosis and may certain an amount of 
Kupffer cells, thus the difference between AFPN-HCC and OM lies in 
the mild washout in the KP, showing iso- or hypo-enhancement, which 
was consistent with our findings (20, 23). In tumors, the phagocytic 
function of macrophages is in part associated with tumor progression. 
In addition, most of the OMs were multiple, large, hypo-echoic, and 
accompanied with necrosis internally; SCEUS showed heterogeneous 
hyper-enhancement in the AP by rim-enhancement; rapid washout 
with hypo-enhancement in the PVP and DP; and obvious washout 
with hypo-enhancement in the KP. A meta-analysis has proved that 
rim hyper-enhancement in the AP could be applied for detecting non-
HCC malignant tumors (24). Rim hyper-enhancement in the AP was 
more commonly seen in metastases (25–27), suggesting peripheral 
neovascularization and central necrosis, together with the elevated 
levels of reactive cellular components in the tumor margins and the 
surrounding noncancerous tissues, which disappeared in the PVP. 
Since the OMs have almost no Kupffer cells within it, it was obviously 
washout in the KP, as mentioned in the research of Li L et al. (28). 

Our study also has some limitations. First of all, the data were 
obtained from a single-center, which may lead to a degree of 
confounding bias, and our conclusions should be validated by 
prospective multicenter researches in the future. What’s more,  the
sample size of our study is relatively small that future studies should 
prospectively collect more data from multicenters to verify the 
nomogram externally and improve its validity. Furthermore, we used 
10 EPV for sample size calculation and did not consider the event rate. 
In addition, we did not analyze the capability of CEUS LI-RADS 
features to distinguish AFPN-HCC from OM, which should be further 
A B C 

FIGURE 6 

Performance and validation of the nomogram. (A) ROC curve of the nomogram. The point on the curve represents the optimal cutoff value 
(specificity, sensitivity). The brackets next to the area under the ROC curve (AUC) represent the 95% confidence interval. (B) Calibration curve of the 
nomogram. The apparent curve represents the relationship between predicted and actual probabilities of clinically significant complications. The 
bias-corrected curve is plotted by bootstrapping using 1,000 resamples. The ideal curve is the 45° line, which indicates perfect prediction. 
(C) Decision curve analysis of the nomogram. Red solid lines represent the nomogram, x axis, cutoff probability, and y axis, net benefit. AUC, area 
under the curve; ROC, receiver operating characteristic. 
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investigated in the future. We will continue to gather relevant data to 
establish diagnostic models for intrahepatic malignant tumors, which 
can better guide the clinical practice for individualized treatment. 
5 Conclusion 

This study found that tumor number, necrosis in tumor, AP 
enhancement pattern, AP perfusion velocity, and KP degree of 
washout contribute to the diagnosis of AFPN-HCC. Based on these 
characteristics, the nomogram has the potential to provide a non
invasive diagnosis of AFPN-HCC preoperatively, which can offer 
some support for clinical individualized treatment decisions. 
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