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Introduction

There seems to be a growing consensus that complexity is an overarching feature of

cancer (1–4). At the same time there is confusion regarding the meaning of the terms

‘complexity’ and ‘complex’, which presumably denote two linguistic forms of the same

thing: if something is complex then it displays complexity. Some scientists seem to think

about the growing number of molecules (or ‘targets’) which are found to play a role for

cancer, while others emphasize influences from the whole body with its many organs,

metabolism, obesity, microbial floras, or influences from environmental factors such as

diet, smoking and radiation (5–13). However, despite this confusion, most of cancer reports

from the last few years appear to use complexity to describe how cancer researchers and

physicians are becoming overwhelmed by the tsunami of new data revealing a perplexing

multifaceted picture.

This opinion article argues that cancer complexity represents a pathogenetic

mechanism, rather than simply a large number of ‘hallmark’ molecular aberrations

grouped into a collection of ‘clouds’ (such as obesity and neural-cancer crosstalk) (1).

Furthermore, it outlines how today’s targeting-based cancer research can be supplemented

with a novel strategy type. Cancer as we know it today has much in common with a

description of complexity emanating from the physical sciences. Nevertheless, cancer is

often addressed in the clinic with a problem-solving targeting strategy known to work well

with complicated problems. This distinction between complicated and complex is

important because, when it is viewed together with two general observations outlined in

this commentary, then it implies that the currently dominating cancer research strategy

needs to be supplemented with a novel strategy.
The clinical benefit coming from modern cancer
research

The first general observation is about the impact cancer research has had on patients.

The technically advanced research of today lags the old workhorses chemotherapy and

radiation as far as therapeutic benefit is concerned. Cytotoxic drugs, originally derived from

mustard gas, still brings the cure to more patients than modern targeting agents (14). This

is most evident for leukemia, lymphoma (with the CHOP drug cocktail estimated to have
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cured 20,000 DLBCL patients annually in the USA for the last 30

years) and testicular cancer. Perhaps the most notable therapeutic

advance of all times has been the cure of childhood leukemia by the

‘Total Therapy’ cytotoxic protocols designed in the 1960s and

1970s (15).

However, the way modern molecular science helps many

patients to survive much longer thanks to targeting drugs like

monoclonal antibodies and small molecule kinase inhibitors must

not be under-appreciated, and there have been spectacular advances

in melanoma and hematological malignancies. There are many

examples of how multi-omics data has benefitted clinical cancer

care by reducing recurrence and increasing long-term survival.

These data include spatial transcriptomics and a dynamic

regulatory network mapping of a tumor stress response to

oxidative damage (16–18). Large studies on early stage HER2-

positive breast cancer have shown that adding an anti-HER2

monoclonal antibody to chemotherapy reduces 10-year mortality

by a third from 21.1% to 14.7% and correspondingly the recurrence

rate from 31.9% to 22.9% (19), and the same research team reported

later that while a long-term risk of distant recurrence remains, it is

about a tenth lower in the time period after anti-HER2 therapy was

introduced (20). Five-year mortality in 500,000 women with early

invasive breast cancer has gradually decreased over the period 1990

to 2015 from 14.4% to 4.9%, and the authors state that while most of

this effect is due to surgery, adjuvant therapies such as

chemotherapy, hormones and targeting agents will contribute to

the reduced long-term mortality (21). It has furthermore been

reported that genomic medicine in combination with multi-omics

has transformed breast cancer care; e.g., with poly (ADP-ribose)

polymerase (PARP) inhibitors effectively reducing recurrence risk

in BRCA-mutated patients; and with several prognostic biomarkers

and precision treatment regimens now being under development

(22). There are similar results for lung cancer documenting a

significant clinical benefit of modern targeting treatment. Two-

year survival improved from 26% in men diagnosed in 2001 to

correspondingly 35% in 2024; since targeting modalities, especially

for the EGFR-positive NSCLC lung cancer subtype, was introduced

in 2013 this improvement is arguably linked to this addition to

chemotherapy (23). The remarkable success with a curative effect

from immune checkpoint blockade (ICB) in circa 50% of patients is

still largely limited to patients with malignant melanoma, but

response rates of up to 25% has been attained in some other

forms of solid cancer, and combinations with non-targeting

agents as well as development of drug conjugates featuring an

ICB component show great promise (24, 25). Nevertheless, it should

be realized that there is often a relatively modest clinical benefit

coming from addition of a targeting drug to conventional

treatment, and this can be illustrated by an example. The FDA

(US Food and Drug Administration) in 2024 approved the addition

of an immune checkpoint blockade PD-1 inhibitory monoclonal

antibody to standard chemotherapy for advanced mesothelioma

(NCT02784171). The main measure in this trial was overall

survival, where the median became significantly (p=0.0162)

improved to 17.2 months as compared with 16.1 months for the
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standard regimen, and progression-free survival was 7.1 months in

both groups.

To summarize this first general observation, while 50 years of

molecular dissection of cancer has greatly benefitted cancer patients

by prolonging survival, there is reason to doubt that it will have a

major curative impact for patients within a reasonable timeframe.
Complexity of both cancer and
normal physiology

The second general observation is about the true scale of the

quantity of factors that are involved in cancer, and about how

normal physiology controls many of these factors (26, 27). The devil

is sometimes in the details: just consider the path leading up to

mutations: at least a thousand DNA bases become spontaneously

degraded in each human cell each day and form potentially

mutagenic lesions. This damage initiates the physiologic

concerted action of >100 DNA repair enzymes and many of the

>500 human kinases. Furthermore, consider that 3 mutations, on

average, are formed, despite all DNA damage response activities,

each of the 1016 times that the 3x109 DNA base pairs/cell are

duplicated during a human (with >1013 cells) lifetime.

One aspect of this physiology is the maintenance that keeps the

whole body fit in the face of the myriad threats encountered by

virtually every cell every day. An important question is whether the

aim of this defense is maximal elimination of the threat or if instead

defense is regulated and seeks some kind of optimum. The presence

of stimulating and inhibitory activities searching for an optimum

balance point suggests that the answer to this question is that

physiologic defense is not striving for maximal effect. It is not only

made up of very many molecular factors, but in addition each

defense mission is regulated to reach a precise point of balance

between, on the one hand, activities directed against the threat and,

on the other, opposing activities mediating feed-back inhibition of

this attack. This delicate regulation ensures acceptable levels of

benefits resulting from neutralization of the threat and costs in the

form of collateral damage to healthy tissues and energy

consumption. The regulation is most probably dynamic in the

sense that one and the same threat, when encountered repeatedly

at different times by one and the same individual, leads to a

spectrum of different balance points, being seemingly randomly

distributed. Thus, this physiologic defense may very well be judged

to display complexity.

Physiologic defense against cancer is executed on many

frontiers. The extent to which the large quantity of DNA damage

can cause cancer-associated mutations is controlled on the DNA

damage response frontier. This frontier is no less essential than the

immune system for safeguarding us against cancer. It reduces the

formation of mutations but comes with a cost when it acts off-target

and mediates chromosome translocations causing lymphoma and

some epithelial cancers. Interestingly, one player on this frontier,

the V(D)J recombinase enzyme complex, is also part of the immune

system. On this second frontier, the immune system regulates and
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drastically reduces the extent to which precancerous mutated cells

(which have slipped through the DNA damage response safety net)

will progress all the way into a clinical tumor. Here, a balance point

with relatively little of attack on these cells is coupled to a risk for a

clinically overt case of cancer, while a balance point with relatively

much of attack comes with a cost in the form of autoimmunity.

Additional evidence that the efficiency of defense against cancer is

regulated is provided by a much-debated paradox (Peto’s from

1975) (28–30). The paradox lies in the observation that while a

single mutated cell is the origin of each cancer, there is a similar

cancer frequency among mammals with different total cell number,

ranging from a whale composed of 1017 cells to a bumble bee bat

with only 109 cells.

While the balance ‘optimum’ and ‘acceptable’ points within the

physiologic defense against threats presumably have been fixed

during evolution to serve the fitness of the human species, they will

not necessarily function to keep the human individual healthy. For

example, it would be desirable for an individual to have a more

efficient (perhaps on par with the whale) defense against tumors.

Conversely, one reason for evolution to permit an acceptable level

of cancer may be to allocate energy to other tasks than a more

efficient DNA damage response.

To summarize this second general observation, it shows that the

concept of physiologic regulatory processes with dynamic balance

points adds a new layer to cancer complexity.

These processes can be divided into three phases:
Fron
i. a vast quantity of molecular factors contributes to cancer,

ii. normal physiology will process these factors so that their

contribution to cancer becomes reduced and reaches an

‘optimum’ ensuring that

iii. eventually an ‘acceptable’ level of cancer disease is reached.
Implications for the future of cancer
research

The two outlined general observations indicate that cancer has

much in common with how complexity is viewed within some

branches of the physical sciences (31–39). A complicated system or

problem like a human-made machine typically contains many

components, with well-known properties and interactions.

Stimulating or blocking a component, being the principle of

drugs targeting a specific molecule, has a predictable and

reproducible effect. If cancer were such a problem, the current

cancer research strategy would be ideal. In contrast, a complex

problem may involve unknown or weakly defined parts and is

‘dynamic’ (meaning that it is continuously modified as both time

and its multi-dimensional organization change). Furthermore, it is

difficult to predict the effect resulting from manipulation of a

specific component. If we find that our present view on cancer

fits with this description of complexity, then it is not surprising that

targeting a single or a few molecules will seldom lead to a cure, or
tiers in Oncology 03
that a treatment’s benefit and side-effects cannot be predicted in

each patient.

It is reasonable to doubt that we can expect radically increased

cure rates from a continued mapping strategy the way it has

recently, in all its essence, been outlined as our way forward to

embrace cancer complexity (1, 4, 40–42). Previous technological

revolutions, like recombinant DNA revealing oncogenes and the

mapping of the human whole genome sequence, could not meet the

initial great expectations to win the ‘war on cancer’. Systems biology

is based on the assumption that the whole of complexity is more

than the sum of its components, and that it includes also

interactions and dynamic alterations in space and time of

components. Although the omics revolution doubtless will give us

a deeper understanding of cancer, it seems just possible that the

real-life complexity of cancer is far too vast for even this human

achievement to be able to provide the cancer cure.

We should therefore plan for a supplementary type of strategy

which is not built solely on modeling of discrete molecular data, but

rethink cancer management as dynamic rather than static, and take

advantage of experiences coming from chaos theory and from a

trial-and-error approach often referred to as tinkering. Recent

developments in systems biology computational modeling of

multi-omics data have provided significant information on the

dynamics of molecular aberrations in cancer and on predictability

of how they develop over time and in space. There are biological

phenomena which, in addition to randomly distributed events,

display so-called chaotic large-scale behavior (28–32). This

behavior follows simple rules, which allow for predictability of the

effects resulting from a manipulation. One example of such chaotic

behavior is ‘patterns’, both in morphology as well as in dynamic

circadian oscillations of for example intracellular calcium and

transcription factor concentrations, cell cycle control and tumor-

immune interactions (18, 29–35, 43). Systems biology modeling

approaches constitute an attempt to address the basic problem of

predictability inherent in complex systems. It should be

acknowledged that as yet such approaches have mainly been

preclinical and conceptual in character, and have played a clearly

minor role for practical clinical recommendations. However, there

are some recent reports on models touching on chaotic behavior

which have provided robust actionable tools (34, 36, 44–46). A

glioblastoma – immune system network study identified possibly

clinically targetable so-called bifurcation dynamics within tumor

phenotypic transitions, suggesting a causal pattern driving tumor

evolution and cell fate decisions (36). The result was suggested to

provide proof of concept evidence that such a complex pattern can

assist clinical therapeutic decisions. A multicenter clinical pathology

diagnostic work using multi-omics data demonstrated that

advanced mathematic modeling can ‘deconvolute’ the massive

data quantity and thereby reveal complex patterns of tumor

microenvironment dynamic organization, which provide

significant information guiding clinical therapeutic decisions (46).

Finally, another study touching on chaotic behavior applied a

complexity type of approach named ladderpath (describing how a

problem can be decompressed into hierarchical structures using

repetitive elements) to spatial multidimensional dynamical systems
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(47). Interestingly, it is discussed in this report how the ladderpath

approach is grounded not only in Kolmogorov complexity

computation, but was also inspired by a tinkering process being

suggested by the assembly theory on evolutionary biology (48),

where reuse of existing molecular components is viewed as being

central in the dynamics of complexity. Furthermore, the authors of

the ladderpath study (47) relate how this idea on reuse as a

mechanism within complex systems to generate new components

and interactions was conceived by François Jacob (49) and named

evolution by tinkering. They also relate how this tinkering concept

still today leads to new research with a fresh perspective and which

shows potential in fields such as drug discovery.

Indeed, as already mentioned, the cure of childhood leukemia (15)

was accomplished with this tinkering type of strategy (50–53). A panel

of pediatricians then assembled to formulate a qualified guess on how

to maximize the benefit of a reuse of all, at that time, available

cytotoxic agents without getting a fatal cost. This landmark discovery

was not inspired by results frommolecular mapping experiments. The

therapy causes cytotoxic damage to an infinite number of targets

including DNA and other macromolecules. It is tempting to speculate

that the predictable (i.e., being achieved in the great majority of all

treated patients) curative effect might be due to, in addition to all of the

lesions inflicted by this reuse of available therapeutic agents, an

unintended effect on some as yet unknown component of chaotic

behavior. For example, this latter effect might have altered a balance

optimum point within a physiological stress response mechanism and

by this means have mediated an immune attack that eliminated a few

dormant and treatment-resistant leukemia cells, and thus also the risk

for a deadly relapse. In this context, it is relevant to note that a recent

perspective article on the mechanisms mediating cancer

chemotherapy’s curative effect argues that research into non-

cytotoxic effects may bring insights into novel potent therapies (14).

Arguably, there was an element of tinkering also in the discovery of

ICB, since it came in the wake of less successful attempts to target

immunoregulatory molecules. As a therapy it represents the currently

dominating targeting strategy which is well-suited for a complicated

problem, and this may explain the therapy’s unpredictable and

sometimes complete lack of clinical effect (54). Thus, tinkering may

overlap with what we refer to as chaos theory; when a tinkering

attempt is successful it is sometimes because it happens to interfere

with a complex and dynamic normal physiologic defense mechanism.

In common language the word tinkering often refers to a non-

skilled person making a qualified guess on how to solve a problem in

a trial-and-error manner, using only whatever tools and materials

there is at hand. If you have any doubt whatsoever that human

scientific endeavors within a foreseeable future will make us master

cancer, then such tinkering should be judged to be a reasonable

supplementary research strategy. If pediatricians made the qualified

guess that cytotoxic agents can cure leukemia and they did find the

necessary tools in their available arsenal, and if the qualified but

previously disputed hypothesis that regulation of adaptive immunity

can cure malignant melanoma eventually succeeded to give us the

checkpoint blockade tools; then, can we suggest similar qualified

guesses worthy of testing with tinkering? One candidate is to focus on

how to adjust the balance points within the normal physiology of
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defense (against, for example, cancer) which have been defined by

evolution, and thus go against evolution and serve the interest of the

cancer patient instead of the species. If we are smart enough to

understand how smart evolution has been (to paraphrase Frans de

Waal), then we should advocate this candidate. Another candidate

may be based on the observation that many cancer forms and

therapies are strongly associated with the composition of the

intestinal microbiome, suggesting that trials with fecal or microbe-

specific transplantations are worthwhile (55, 56). The high burden of

cancer in obese people, when taken together with emerging evidence

of cancer reduction in people taking appetite-suppressingmetabolism

modifiers, indicates another area worth tinkering with.
Conclusions

In summary, knowledge on complexity is emerging from many

disciplines which suggests that the present cancer research strategy

needs to be diversified. The currently dominating experimental cancer

research strategy is incomplete, while not incorrect. It must be

supplemented with a strategy type based on chaos theory and tinkering.
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